
Advanced Data Structures

Labwork 2: Disjoint-set structures. Binomial

Heaps

October 14, 2020

Disjoint set structures

This homework is about using a disjoint-set data structure to compute a minimum-
weight spanning tree of a weighted graph.

Weighted graphs

A weighted graph is a finite set of nodes connected by edges which have
positive real numbers as weights. For example, the following is a weighted
graph with 5 nodes and 6 edges: We will assume that

1
5

3

4

29

14

17

12
9

9
10

Figure 1: A weighed graph which is connected

• the nodes of a graph with n nodes are labeled with numbers from 1 to n.

• a text file which stores the representation of a weighted graph in the
following way:

– The first line contains the value of n (an integer)

– The following lines contain 3 numbers separated by whitespace:

i j w

to indicate that the graph has an edge from node i to node j with
weight w.

1



We assume that the edges are enumerated in increasing order of weight.
For example, the weighted graph from Fig. ?? can be stored and read
from a text file with the following content:

5

1 4 9

1 5 9

4 5 9

2 5 10

2 4 12

2 3 17

Minimum weight spanning trees

A graph is connected if there is a path between every two nodes in the graph.
Fo example the weighted graph from Fig. ?? is connected.

A spanning tree of a weighted and connected graph G is a set T of edges
of G such that

1. Every node of G is an endpoint of an edge in T

2. T has no loops.

The weight w(T ) of T is the sum of weights of edges in T .
For example, the following are spanning trees of the graph in Fig. ??:

1
5

3

4

29

14

12

9

w(T1) = 44

1
5

3

4

2

17

9

9
10

w(T2) = 45

1
5

3

4

29

14

9
10

w(T3) = 42

A minimum weight spanning tree (or MWST) of G is a spanning tree of
G whose weight has minimum possible value. For example, T3 is a MWST of
the graph from Fig. ??.

A MWST of a connected and weighted graph G with n nodes can be found
with Kruskal algorithm:

Start with the initial partition S = {{1}, {2}, . . . , {n}}, T = ∅ and W = 0
for each edge (i, j, w) of G, in increasing order of weights do

if i, j are not in the same component of S
add (i, j, w) to T
Union(i, j)
W = W + w

end if
end for
return T,W

2



Labwork 1

Implement a program that reads from a text file graph.txt the representation
of a connected weighted graph G and computes a MWST of G. The program
will print the weight and the list of edges of the MWST.

Suggestion: implement a disjoint set-data structure using the explanations
from Lecture 2, and use it to implement Kruskal algorithm.

Labwork 2

Consider a simply linked-list of nodes with the following structure (the nodes
are linked via the sibling pointers)

struct Node {

int key;

Node *sibling;

}

Write down a program that performs the following operations:

• It reads from the console a line of n integers separated by spaces

k1 k2 . . . kn

and creates a pointer ptr to the linked list with nodes containing the keys
k1, . . . , kn, in this order:

ptr
. . .k1 k2 kn

• calls the function

Node* reverseList(Node *ptr);

that reverses te list ptr (by making the links to point in the opposite
direction), and returns a pointer to its first element.

. . .k1 k2 kn

(Note: You should implement reverseList)

• Displays the keys of the nodes in the inversed list,by traversing the nodes
from head to tail.

3



Binomial heaps

Labwork 3

You can download from Classroom or from the webpage of this lecture

http://staff.fmi.uvt.ro/~mircea.marin/lectures/ADS/binoheap.zip

an incomplete implementation of binomial heaps. Complete the implementation
with the implementation of the capability to extract the node with minimum key
from a binomial heap. This amounts to implementing the following functions:

• Node* reverseList(Node* l)

which should behave the same as the function implemented in the previous
exercise.

• Node* findMinRoot(Node* l)

should return a pointer to the node with minimum key from the linked
list of nodes pointed to by l. If l is the null pointer, the function should
return the null pointer.

Exercises

1. Suppose that x is a node in a binomial tree within a binomial heap, and
assume that x → sibling 6= NIL.

(a) If x is not a root, how does x → sibling → degree compare to
x → degree?

(b) If x is a root, how does x → sibling → degree compare to
x → degree?

2. Show the binomial heap that results when node with key 24 is inserted
into the binomial heap shown below:

H.head 25 12

37 18

41

6

7

10 28 13

16 23 77

42

8

1711

27

14

38

29

3. Show the binomial heap that results when the node with key 28 is deleted
from the binomial heap shown below:

4



H.head 25 12

37 18

41

6

7

10 28 13

16 23 77

42

8

1711

27

14

38

29

4. Suppose H is a binomial heap implemented as described in the lecture
notes. Write the pseudocode for the operation

increaseKey(H, x, k)

which takes as inputs a pointer to a node x in H with x → key < k and
increases the key of x to new value k.

(a) Draw the binomial heap that results after increasing the key of node
x in the heap depicted below to new value 12.

H.head 25 15

37 18

41

6 x

7

10 28 13

16 23 77

42

8

1711

27

14

38

29

(b) What is the worst runtime complexity of this operation?

(c) Indicate a binomial heap H with 16 nodes, a node x of H, and a value
k such that the operation

increaseKey(H, x, k)

takes the longest possible time.

5


