
Programming II Object-Oriented Programming

Unit 5

Programming II Object-Oriented Programming

Agenda

1. Objects

Objects

DEFINITION [Object] An object is an instance of a class. It can be uniquely
identified by its name, it defines a state which is represented by the values
of its attributes at a particular time and it exposes a behaviour defined by
the set of functions (methods) that can be applied to it.

The simplest way to create an object in C++ is by variable declaration. If a
variable is an instance of a class/struct then it is also called object.

int main(int, char*[]) {

Date day1; // <- 1st object

Date day2{25, 12}; // <- 2nd object

Date *today = new Date{15, 03, 2004}; // <- 3rd object
cout << “Today is "

<< today->getDay() << „/” << today->getMonth() << „/” << today->getYear();

delete today;

return 0;

}

Programming II Object-Oriented Programming

Object Instantiation - Summary

Type When is constructed When is destroyed

1 Local variable Each time its declaration is encountered in

the execution of the program

Each time the program exits the

block in which it occurs

2 Local static variable First time its declaration is encountered in

the execution of the program

Termination of the program

3 Non-local object Once at the start of the program Once at the termination of the

program

4 Dynamic allocation (Free-store) Using new operator Using delete operator

5 Array of objects When array is created When array is destroyed

6 Temporary object When the expression is evaluated At the end of the full expression in

which it occurs

7 Union member

8 Dynamic allocation in user-supplied

memory

Using an overloaded version of operator new Using delete operator

9 Non-static member object When the ‘enclosing’ object is created When the ‘enclosing’ object is

destroyed

Programming II Object-Oriented Programming

Local variable

int f(int a) {

Date d1, d2{03, 03, 2007}; // creating the objects

if(a>0) {

Date d3=d1; // creating object using copy-constructor

} // d3 is destroyed

Date d4;

} // destroying objects d4, d2, d1 (in this order)

Objects are destroyed in reverse order of their creation.

Programming II Object-Oriented Programming

Local static variable

int f(int a) {

static Date d{03, 03, 2007}; // static object

} // d is not destroyed!

Static objects are created when their declaration is executed first
time only.

The destructors for static objects are called in reverse order when the
program terminates.

Act as ‘global’ variables visible only to blocks where they are
declared.

Programming II Object-Oriented Programming

Non-local variable

Date gdate1;

int f(int a) {

cout << gdate1;

}

Date gdate2{1,1,1970};

Non-local = global, namespace or class static variables

Any global object (declared outside any function) is constructed before
function main is invoked, in the order of their definitions.

The destructors for static objects are called in reverse order when the
program terminates.

No implementation-independent guarantees are made about the order
of construction/destruction of non-local objects in different compilation
units (files).

class X {
static Date referenceDate;

};

Date X::referenceDate{1,1,1970};

Programming II Object-Oriented Programming

File1.cpp File2.cpp

Free store (Dynamic allocation)

int f(int a) {

Date *d1 = new Date{03, 03, 2007}; // creating the object

if(a>0) {

Date *d2 = new Date;

cout << *d2;

delete d2;

}

delete d1;

}

Operator new – allocates and initializes
memory from free store

Operator delete – de-allocates and
cleanup memory

DO NOT FORGET TO DESTROY ALL
OBJECTS ALLOCATED USING NEW

OPERATOR !

Programming II Object-Oriented Programming

Syntax

X* p = new X;

X* p = new X{init_value};

delete p;

Array of objects

int f(int a) {
Date weekend[2]{{9,4,2016}, {10,4}};

Date *da = new Date[3] {{1}, {2}, {3}};

Date *year = new Date[365];

delete [] year;

delete [] da;

}

Before C++11:

There was no way to specify explicit arguments for a constructor in an array
declaration, the default constructor being the only option and thus mandatory.

C++11 onwards:

It is possible to specify arguments matching any user-defined constructor.

The destructor for each element of an array is invoked when the array is
destroyed.

Don’t forget the squared brackets in delete to free all the elements of the array
(delete [] array).

Programming II Object-Oriented Programming

Syntax

X array[size];

X* p = new X[size];

delete [] p;

Temporary object

void f(String& s1, String& s2) {

// ...

cout << s1 + s2;

// ...

}

- Temporary objects are results of expression evaluation (e.g. arithmetic operations)

- A temporary object can be used as initializer for a const reference or named object:

― const string& s = s1+s2;
― string s = s1+s2;

- A temporary object can also be created by explicitly invoke the constructor

― handleComplex(complex(1,2));
- Problems may arise. See below.

void f(String& s1, String& s2) {

// c_str() returns a C-style, zero-terminated array of chars

char* pch = (s1+s2).c_str();

cout << pch;

// pch points to an invalid memory address that was destroyed together with

// the temporary obj. s1+s2

}

class String {

char *s;

public:

char* c_str() { return s; }

// TODO: add the rest

// of required members

};

Programming II Object-Oriented Programming

String temp = s1 + s2;
cout << temp;
destroy temp;

Union members

class X {

};

union AUnion {

int x;

char name[12];

X obj; // OK: No constructors or destructor defined for type X

Date date; // ERROR: Date has constructors and destructor

void f();

};

A union can have member functions.

A union can’t have static members.

A union can’t have members with custom constructors or destructor.

Programming II Object-Oriented Programming

User-supplied memory

void* operator new(size_t, void* p) {

return p; // memory area

} // Explicit placement operator

void* buf = reinterpret_cast<void*>(0xF00F); // nasty, nasty!

// placement syntax

X* p2 = new (buf) X; // invokes operator new(sizeof(X), buf);

class PersistentStorage {

virtual void* alloc(size_t)=0;

virtual void free(void*)=0;

};

void* operator new(size_t s, PersistentStorage* p) {

return p->alloc(s);

}

void destroy(X* p, PersistentStorage* storage) {

p->~X(); // explicit call of destructor

storage->free(p); // release the memory

}

PersistentStorage* ps = new FileStorage(“a.bin”);

Should be used with
caution!

Programming II Object-Oriented Programming

void f() {

X* p1 = new (ps) X;

X* p2 = new (ps) X[10];

X* p3 = new (ps) X(3);

destroy(p1, ps);

destroy(p2, ps);

destroy(p3, ps);

}

Accessing a specific

memory address as an

object of type X (

useful in drivers
development).

Non-static members (I)

class Student {
Date dob; // non-static member
String name; // non-static member

public:
Student(const char* n, const Date& d);

};

Student::Student(const char* n, const Date& d) {
dob = d;
name = String{n};

}

void f() {
Date d{7, 8, 1988};
Student aStudent{„Popescu”, d};

}

Steps to initialize aStudent object:

(1) Memory allocation = sizeof(Date)
+ sizeof(String)

(2) Call default constructor for Date
to initialize dob member.

(3) Call default constructor for
String to initialize name member.

(4) Call the Student::Student(n,d)
constructor.

(5) Call assignment operator in
line dob=d;

(6) Call assignment operator in
line name=n;

The “real” initialization of dob and name objects is done in 2 steps: a default
constructor + an assignment operator (steps 2+5 and 3+6).

Programming II Object-Oriented Programming

Non-static members (II)

class Student {

Date dob; // non-static member

String name; // non-static member

public:

Student(const char* n, const Date& d);

};

Student::Student(const char* n, const Date& d)

: name{n}, dob{d} {

}

void f() {

Date d{7, 8, 1988};

Student aStudent{„Popescu”, d};

}

Steps to initialize aStudent object:

(1) Memory allocation =
sizeof(Date) + sizeof(String)

(2) Call the copy constructor of
Date to initialize dob in
dob(d)

(3) Call the custom constructor of
String to initialize name in
name(n)

(4) Call Student::Student(n,d)

The “real” initialization of dob/name objects is done in one step: calling the
appropriate constructor.

Programming II Object-Oriented Programming

Non-static members (III)

Order of initialization:

1. Initialize members in order of their
declaration in class (the order in
initialization list is irrelevant).

2. Call the constructor of the class.

Order of destroy:

1. Call the destructor of the class.

2. Call the members’ destructor in
reverse order of declaration.

The following members can be
initialized only in initialization list:

― References (X& member;)

― const (const int member;)

― Types without default constructor
(X member;)

static const members can be initialized
at declaration as well.

class Club {

Club(); // private default constructor

public:

Club(const char* s);

};

class X {

// declaration + initialization

static const int ci = 1;

const int i;

Date& date;

Club club;

public:

X(int ii, Date& dd,

const char* clubName)

: i(ii),

date(dd),

club(clubName) {

i = ii; // error – const member

}

};

const int X::ci; // definition

Const float X::cf = 1.2;

Programming II Object-Oriented Programming

Resource management (I)

void use_file(const char* fn) {

FILE* fp = fopen(fn, “w”);

// use fp

fclose(fp);

}

Solution 1:

void use_file(const char* fn) {

FILE* fp;

try {

fp = fopen(fn, “w”);

// use fp

}

catch(...) {
fclose(fp);

throw;

}

fclose(fp);

}

Resource = file, memory, lock

Ensure proper release of resource!

Certainly, not in this example ;)

Problems with solution 1:

• tedious

• verbose

• potentially expensive

• error-prone

Solution 2 = Resource acquisition is initialization (RAII) (usage of local objects to

allocate/release resources in constructors/destructors).

void use_file(const char* fn) {

File_ptr f(fn, “w”);

// use f

fwrite(“Text”, 1, 4, f); // call operator FILE* to convert File_ptr to FILE*

}

class File_ptr { // smart pointer

public:

File_ptr(const char* fn, const char* a) {

: p{fopen(fn, a)} {

if (p==nullptr) throw runtime_error{"File_ptr: Can't open file"};

}

File_ptr(FILE* pp) : p{pp} { }

~File_ptr() { fclose(p); }

operator FILE*() { return p; }

private:

FILE* p;

};

Advantages of the 2nd solution:

- the destructor will be called independently of whether normal or abnormal exit

- simpler main code and less error-prone (no need to call fclose – it’s done automatically

in destructor)

Resource management (II)

Resource management (III)

Ideally, a well-designed constructor doesn’t leave its object in some ‘‘half-constructed’’

state.

Applying resource acquisition is initialization to object’s members ensures transactional

creation of objects, i.e. either an object is completely created or not at all!

class X {

public:

X(const char* x, mutex& y)

: f(x, “rw”), // acquire f

lck(y) // acquire lck

{ }

private:

File_ptr f;

Lock_ptr lck;

};

This implies that where this simple model for acquisition of resources is adhered to, the

author of the constructor does not need to write explicit exception-handling code.

Standard containers of STL use RAII to implicitly manage acquisition and release.

Resource management (IV)

“Transactioning” memory allocation

class Y {

public:

Y(int size) {

p = new int [size];

init();

}

~Y() { delete [] p; }

private:

int* p;

void init();

};

class YY {

public:

YY(int size) : p{size} {

init();

}

private:

vector<int> p;

void init();

};

Q: Exceptions and new operator. What happens if X’s constructors throws an exception? Is

the memory freed?

A: In the ordinary case, yes! But, if placement syntax is used the answer depends on the

used allocator.

Example:

X* px = new (a) X [10]; // allocation from allocator a (deallocate it from a);

// depends on allocator

// Allocator’s operator delete function is called.

Resource management (V)

Resource exhausting: when a resource acquisition fails (e.g. not enough memory)

Solutions:

• Resumption – ask the caller to fix the problem and carry on

• Termination – abandon the computation and return to some caller

Resumption – is implemented using function-call mechanism

Termination – is implemented using exception-handling mechanism

void* operator new(size_t size) {

for(;;) {

if(void* p = malloc(size)) return p;

if(_new_handler==0) throw bad_alloc(); // termination

_new_handler(); // resumption

}

}

What information does the code causing a resource exhausting send to the caller? More

information => increase dependency between each other. To preserve code reusability

and to increase maintainability, the coupling between different

modules/components should be minimized, but it must provide enough

information so that the caller can recover from problem reliable and conveniently.

Programming II Object Oriented Programming

Further Reading

1. [Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming

Language 3rd Edition, Addison Wesley, 1997 [Chapter 10, 11.5]

2. [Stroustrup, 2013] Bjarne Stroustrup – The C++ Programming
Language 4th Edition, Addison Wesley, 2013 [Chapter 16.3]

http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=sr_1_1?s=books&ie=UTF8&qid=1458896863&sr=1-1&keywords=The+C+++Programming+Language+(4th+Edition)

Programming II Object-Oriented Programming

Unit 6

Programming II Object-Oriented Programming

Agenda
Class relationships

• Association

• Aggregation

• Composition

• Inheritance

Relationship types (I)

Concepts does not exist in isolation. They coexist and interact.

Association is a loose relationship in which objects of one class

“know” about objects of another class (has-a)

Aggregation is part-whole relationship (is-part-of)

Composition is similar to aggregation, but is more strict

(contains)

Inheritance is a generalization-specialization relationship (is-a,

kind-of)

Programming II Object-Oriented Programming

Relationship types (II)

Programming II Object-Oriented Programming

Reflexive relationships: objects of the

same class are related to each other

Directed relationship: refers to a

directional relationship represented by

a line with an arrowhead, which depicts

a whole-part directional flow.

Associations (I)

DEFINITION [Association] Association is a loose relationship in which objects of

one class “know” about objects of the other class.

Association is identified by the phrase “has a”.

Association is a static relationship.

Read relationships from left to right and from top to bottom.

Examples: A Car has a Driver.

A Student enrolls-in Course.

Programming II Object-Oriented Programming

Associations (II)

Multiplicity - The multiplicity applies to the adjacent class and is independent of

the multiplicity on the other side of the association.

Notation Meaning

1 Exactly one

* Zero or many

0..5 Zero to five

0..4,6,10 Zero to five, six or ten

Exactly one (default)

Programming II Object-Oriented Programming

Associations (III)

Programming II Object-Oriented Programming

Remarks: complicated to maintain

Implementation: member

variables (pointers or references)

to the associated object.

typedef unsigned char uchar;

class Car;

class Driver {

string name;

Date birthDate;

string licenseID;

Car* car;

public:

Driver(string name, Date& bd, string id);

};

class Car {

string make;

string model;

int builtYear;

Driver* driver;

public:

Car(…., Driver* drv);

Driver* getDriver() const;

void setDriver(Driver* drv);

};

Aggregation and Composition

Both aggregation and composition represent a whole-part relationship.

Several definitions exist for aggregation and composition based on the

following elements:

― Accessibility: The part objects are only accessible through the

whole object.

― Lifetime: The part objects are destroyed when the whole object is

destroyed.

― Partitioning: The whole object is completely partitioned by part

objects; it does not contain any state of its own.

Programming II Object-Oriented Programming

Aggregation (I)

DEFINITION [Aggregation] Aggregation is a relationship between part

and whole in which:

• parts may exist independently of the whole;

• parts may be shared between two whole instances.

Aggregation is identified by the phrase “is-part-of”.

Aggregation cannot be circular, i.e. an object cannot be part of itself.

Examples: Color is-part-of a Car.

A Player is-part-of a Team.

Programming II Object-Oriented Programming

Aggregation (II)

Programming II Object-Oriented Programming

typedef unsigned char uchar;

class Color {

uchar red, green, blue;

public:

Color(uchar r, uchar g, uchar b);

uchar getRed() const {

return red;

}

// etc.

};

class Car {

string make;

string model;

int builtYear;

Color& color; // aggregation (as reference)

public:

Car(string& mk, string& mdl, int y,

const Color& col);

Color getColor() const;

void setColor(const Color& c);

};

class Player {

string name;

Date dob;

public:

Player(const char* n, const Date& d);

};

class Team {

string name;

string homeTown;

int groundYear;

PlayerNode* players; // aggregation (as linked list)

public:

Team(string& n, string& t, int y);

Player[] getPlayers() const;

void addPlayer(const Player& p);

void removePlayer(const Player& p);

};

struct PlayerNode {

Player& player;

PlayerNode* next;

};

Composition

DEFINITION [Composition] Composition is a relationship between

part and whole in which part may not be independent of the

whole.

Composition is identified by the phrase “contains”.

The contained object is destroyed once the container object is

destroyed => No sharing between objects.

Example: A car contains an engine, four tires, two seats, and one

transmission

Programming II Object-Oriented Programming

Composition (II)

Programming II Object-Oriented Programming

class Gearbox;

class Tire;

class Engine;

class Seat;

class Car {

string make;

string model;

int builtYear;

Color& color; // aggregation (as reference)

Seat seats[2]; // composition 1 to many

Tire tires[4]; // composition 1 to many

Engine engine; // composition 1 to 1

Gearbox gb; // composition 1 to 1

public:

Car(string& mk, string& mdl, int y,

const Color& col);

Color getColor() const;

void setColor(const Color& c);

Engine getEngine() const;

Tire getTire(int position) const;

// etc.

};

Aggregation vs. Composition

Source: [Fowler, 2000, Page 85-87]

Differences between aggregation, composition and associations still under debate
in software design communities.

Programming II Object-Oriented Programming

Further Reading

1. [Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming Language 3rd Edition,

Addison Wesley, 1997 [Chapter 12]

2. [Sussenbach, 1999] Rick Sussenbach - Object-oriented Analysis & Design (5 Days), DDC

Publishing, Inc. ISBN: 1562439820, 1999 [Chapter 5]

3. [Fowler, 2000] Martin Fowler with Kendall Scott – UML Distilled 2nd Ed, Addison-Wesley,

2000

Programming II Object-Oriented Programming

http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/Object-oriented-Analysis-Design-5-Days/dp/1562439820

