
Programming 2
Object Oriented Programming

Daniel POP

Programming II Object-Oriented Programming

Unit 4

Programming II Object-Oriented Programming

Agenda
1. Self-reference

2. Modifiers

1. static

2. const

3. mutable

4. friend

3. Nested classes

4. Concrete classes

5. Plain old data objects

Programming II Object-Oriented Programming

Modifiers: static (I)

DEFINITON [static data member] A variable that is part of a class, yet is not part of an

object of that class is called a static member.

• There is exactly one copy of a static variable ‘shared’ by all objects of that class.

• Static data member = ‘global variable’ defined and accessible only in the scope of that

class.

DEFINITION [static member function] A function that need access to static members of a

class, yet doesn’t need to be invoked for a particular object, is called a static member

function.

• Static member function = ‘global function’ defined and accessible only in the scope of

that class.

In order to clearly differentiate between static and non-static

members + enhance code readability, the first (bold) syntax

is recommended to be used.

Syntax

// declaration
static <member decl.>;

// access

X::memberName;
Obj.memberName;

Programming II Object-Oriented Programming

Modifiers: static (II)
class Date {

int day, month, year;

static Date today; // declare the static data member
public:

// …

static void initToday();
};

Date Date::today; // create the static data member

void Date::initToday() {
time_t t;
time(&t);
tm* now = localtime(&t);
day = now->tm_mday; // ERROR: whose day is this day?
today.day = now->tm_mday;
today.month = 1 + now->tm_mon;
today.year = 1900 + now->tm_year;

}

int main(int, char*[]) {
Date::initToday();
return 0;

}

• static data members have to be

defined/initialized somewhere (in

the class definition they are only

declared!)

• static member functions DO NOT

receive this pointer

• => the access to non-static

members (data/function) is not

possible from within static

functions

• creation, initialization and access

to static members are independent

of objects existence.

• static members are prone to race

conditions in multi-threaded code!

• Example: default date (today) in

Date class

Memory representation

of static data.

Programming II Object-Oriented Programming

Self-Reference
void f() {

Date d;
d.init(25,12,2007).getMonth();

}

=> The prototype of init
function should be:

Date& init(int, int, int);

Each non-static member
function knows what object
it was invoked for and can
explicitly refers to it using
this keyword.

this is a pointer to the object
for which the function was
called

• For non-const function its
type is: X* const this;

• For const function its type
is: const X* const this;

Similar in Java (this), Smalltalk
(self) or Simula (THIS).

Date& Date::init(int day, int month, int year) {
this->_day = day; //  _day = day
_month = month; // implicit use of this

this->year = year; // year – makes possible

// to use the same name
// for members and args

this++; // ILLEGAL: this is a const pointer

return *this;
}

Programming II Object-Oriented Programming

Modifiers: const (I)
class X {

const int ci=17;
static const int MAX_VIEWS; // declaration

public:
};

// initialization of static const members
const int X::MAX_VIEWS = 256;

Data members

― Cannot be modified!

― Useful to declare constants at class

scope

Constant data members must be initialized at

declaration or in the initialization list of

each constructor of the class.

Constant data members are helpful to

implement immutable objects.

Usually, it makes sense to have constant static

members because constant values are

usually shared between all the instances

of a class (e.g. MAX_VIEWS).

Syntax

const <member declaration>;

Programming II Object-Oriented Programming

Modifiers: const (II)

class Date {
int day, month, year;
static Date today; // declare the static data member

public:
// const, inline member function

int getDay() const {

day = 0 ; // ERROR: we’re in const function
return day;

}

int getMonth() const;
void setMonth(int);

};

int Date::getMonth() const {

return month;
}

int main(int, char*[]) {
Date d;
cout << d.getDay() << d.getMonth() << d.getYear();
return 0;

}

Member functions

― Cannot modify the state of the object (i.e. data members)

― Enhances the code’s clarity

― Prevents accidental updates

― When the function is implemented outside its class, const suffix is required (see

getMonth() example)

Syntax

<member declaration> const;

<member declaration> const {
// implementation

}

― Calling non-const member

functions on const objects?

void f(Date& d, const Date& cd) {
d.getMonth(); // ERR vs OK?
cd.getMonth(); // ERR vs OK?
d.setMonth(3); // ERR vs OK?
cd.setMonth(3); // ERR vs OK?

}

Programming II Object-Oriented Programming

Modifiers: mutable
class Date {

int day, month, year;

mutable string cache; // always changeable!

mutable boolean validCache; // always changeable!

public:
// const member function
string toString() const;

};

string Date::toString() const {
if(!validCache) {

cache = compute_new_string_representation();
validCache = true;

}
return cache;

}

Applies only to data members

― Can always be modified, even in

const functions!

― Useful for members that need to be

changed in const functions and don’t

represent the “actual” internal state

of the object

Syntax

mutable <declaration>;

Programming II Object-Oriented Programming

Mutability through indirection
Alternative to mutable modifier is a

technique named Mutability through

Indirection, where the changing data is

placed in a separate object (in example,

Cache* c)

Cache* c – is not modified, rather the

content it points to.

struct Cache {
string cache;
boolean validCache;

};

class Date {
int day, month, year;
Cache* c; // to be initialized in constructor(s)

public:
// const member function
string toString() const;

};

string Date::toString() const {
if(!c->validCache) {

c->cache = compute_new_string_representation();
c->validCache = true;

}
return c->cache;

}

Programming II Object-Oriented Programming

Friends (I)

class Matrix { /* declarations */ };

class Vector { /* declarations */ };

Define a function that: Vector x Matrix → Vector

• Rationale: functions need access to private members of one class

• Solution: make those functions members of the class

• What happens if one function need to have access to private

members of 2 or more classes? It can be member of only one class

:-(

• Friends – help us to do this :-)

Programming II Object-Oriented Programming

Friends (II)
DEFINITION [Friend functions] Friend functions are functions that are not

members of one class, yet they have access to private members (data +

functions) declared in that class.

DEFINITION [Friend class] If class X is friend class of class Y, then all

member functions of class X are friend functions (i.e. have access to

private members) of class Y.

Syntax

friend ftype fname([arg_list]);

friend class X;

It’s not relevant the access control modifier (private, public, protected) used to

declare a friend function/class, because friend functions are not

member of the class they are friend of!

Friends can be either functions that are

member of another class, or global functions.

Friends (III)
class Matrix; // Forward declaration

class Vector {
float v[4];

public:
Vector(float v0=0, float v1=0, float v2=0, float v3=0);
float operator[] (int index);

friend Vector multiply(const Vector&, const Matrix&);

};

class Matrix {
Vector rows[4];

friend Vector multiply(const Vector&, const Matrix&);

};

Vector multiply(const Vector& vec, const Matrix& mat) {

cout << v[0]; // OK or ERROR
cout << rows[0][0]; // OK or ERROR
cout << vec.v[0]; // OK or ERROR
cout << mat.rows[0][0]; // OK or ERROR

}

void main() {
Matrix m;
Vector v(1.0, 2.5, 5.0, 6.0);
Vector w = multiply(v, m); // w = v x m
cout << m.rows[0][0]; // OK or ERROR?

}

Programming II Object-Oriented Programming

Programming II Object-Oriented Programming

Friends (IV)

One of the key principle OO is data hiding (encapsulation), but sometimes is

to restrictive and needs to be “broken”

Not recommendable to use friends; use only if it’s impossible to solve the

problem otherwise.

Friends (V)

• More examples: see operator overloading

• Finding friends: declared before or identifiable by argument type

• Friendship is NOT reflexive nor transitive

• Friendship is not inherited

Action Non-static

member

function

Static

member

function

Friend

function

Has access to private members x x x

Is declared in the class scope x x

(transparently) Receives this pointer x

Programming II Object-Oriented Programming

Member or Friend?

• Some operations can be performed only by members: constructor, destructor,

virtual functions

• A function that has to access the members of a class should be a member unless

there’s a specific reason for it not to be a member.

• Prefer member functions over friends because of following OOP principles

and a much clear syntax.

• Member functions must be invoked for objects of their class only; no user defined

conversions are applied.

• For example, if transpose function transposes its calling object instead of creating a

new transposed matrix then it should be a member of class.

• Example: (see also operator overloading for more examples)

class X {
public:

X(int);
void m1();
friend int f1(X&);
friend int f2(const X&);
friend int f3(X);

};

void f() {
7.m1();
f1(7);

f2(7);
f3(7);

}

Programming II Object-Oriented Programming

Member or Friend?

• Some operations can be performed only by members: constructor, destructor,

virtual functions

• A function that has to access the members of a class should be a member unless

there’s a specific reason for it not to be a member.

• Prefer member functions over friends because of following OOP principles

and a much clear syntax.

• Member functions must be invoked for objects of their class only; no user defined

conversions are applied.

• For example, if transpose function transposes its calling object instead of creating a

new transposed matrix then it should be a member of class.

• Example: (see also operator overloading for more examples)

class X {
public:

X(int);
void m1();
friend int f1(X&);
friend int f2(const X&);
friend int f3(X);

};

void f() {
7.m1(); // err: X(7).m1() is not tried!
f1(7); // err: f1(X(7)); is not tried because

no implicit conversion is used for
non-const references

f2(7); // ok: f3(X(7));
f3(7); // ok: f3(X(7));

}

Programming II Object-Oriented Programming

Programming II Object-Oriented Programming

In-class initialization and function definition
class Date {

int day{today.day}, // in-class initialization
month{today.month}, // in-class initialization
year{today.year}; // in-class initialization

static Date today;

public:
int getDay() const { // inline function

return day;
}
int getMonth() const { // inline function

return month;
}

};

Date Date::today;

Programming II Object-Oriented Programming

Member classes (nested classes)
class Tree {

// member (nested) class
class Node {

Node∗ right;
Node∗ left;
int value;

public:
void test(Tree∗);

};

Node∗ top;

static Node* current;
public:

void g(Node∗ p);
};

void Tree::Node::test(Tree∗ p) {
top = right; // ERR: no object of type Tree specified
p−>top = right; // OK
current = left; // OK: current is static in enclosing class

}

void Tree::g(Tree::Node∗ p) {
int val = right−>value; // ERR: no object of type Tree::Node
int v = p−>right−>value; // ERR: Node::right is private
p−>test(this); // OK

}

Node* Tree::current = NULL; // ERR: Node not a type
Tree::Node* Tree::current = NULL; // OK

• No ‘special’ permissions for
nested classes

• They need to be referred
to using fully qualified names,
i.e. prefixed by enclosing class
name

• A nested class has access to
private members declared in
enclosing class (just as any
member function), as long as
is given an object of enclosing
class

Concrete classes

DEFINITON [concrete class] A class is called concrete if its representation

is part of its definition. This distinguishes it from abstract classes, which

provide an interface to a variety of implementations.

Programming II Object-Oriented Programming

enum class Month { jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec };

class Date {
public: // public interface:

class Bad_date { }; // exception class
explicit Date(int dd ={}, Month mm ={}, int yy ={}); // {} means ‘‘pick a default’’

// non-modifying functions for examining the Date:
int day() const;
Month month() const;
int year() const;
string string_rep() const; // string representation
void char_rep(char s[], int max) const; // C-style string representation

// (modifying) functions for changing the Date:
Date& add_year(int n); // add n years
Date& add_month(int n); // add n months
Date& add_day(int n); // add n days

private:
bool is_valid(); // check if this Date represents a date
int d, y; // representation
Month m;

};

bool is_date(int d, Month m, int y); // true for valid date
bool is_leapyear(int y); // true if y is a leap year
bool operator==(const Date& a, const Date& b);
bool operator!=(const Date& a, const Date& b);
const Date& default_date(); // the default date
ostream& operator<<(ostream& os, const Date& d); // print d to os
istream& operator>>(istream& is, Date& d); // read Date from is into d

Concrete classes

Programming II Object-Oriented Programming

We prefer concrete classes for small, frequently used, and performance-

critical types, such as complex numbers, smart pointers or containers.

1. A constructor specifying how objects/variables of the type are to be

initialized.

2. A set of functions allowing a user to examine a Date (namely accessors).

These functions are marked const to indicate that they don’t modify the

state of the object/variable for which they are called.

3. A set of functions allowing the user to modify Dates without actually

having to know the details of the representation or fiddle with the

intricacies of the semantics (mutators).

4. Implicitly defined operations that allow Dates to be freely copied.

5. A class, Bad_date, to be used for reporting errors as exceptions.

6. A set of useful helper functions. The helper functions are not members and

have no direct access to the representation of a Date.

“Plain Old Data” objects

DEFINITION: POD (‘‘Plain Old Data’’) is an object that can be manipulated as

‘‘just data’’ without worrying about complications of class layouts or user-

defined semantics for construction, copy and move.

A POD object must

• not have a complicated layout (e.g. with a vptr)

• not have non-standard (user-defined) copy semantics, and

• have a trivial default constructor

struct S0 { }; // a POD

struct S1 { int a; }; // a POD

struct S2 { int a; S2(int aa) : a(aa) { } }; // not a POD (no default constructor)

struct S3 { int a; S3(int aa) : a(aa) { } S3() {} }; // a POD (user-defined default constructor)

struct S4 { int a; S4(int aa) : a(aa) { } S4() = default; }; // a POD

struct S5 { virtual void f(); /* ... */ }; // not a POD (has a virtual function)

struct S6 : S1 { }; // a POD

struct S7 : S0 { int b; }; // a POD

struct S8 : S1 { int b; }; // not a POD (data in both S1 and S8)

struct S9 : S0, S1 {}; // a POD

Programming II Object Oriented Programming

Further Reading

1. [Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming

Language 3rd Edition, Addison Wesley, 1997 [Chapter 10]

2. [Stroustrup, 2013] Bjarne Stroustrup – The C++ Programming

Language 4th Edition, Addison Wesley, 2013 [Chapter 16]

http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=sr_1_1?s=books&ie=UTF8&qid=1458896863&sr=1-1&keywords=The+C+++Programming+Language+(4th+Edition)

