
Programming 2
Object Oriented Programming

Daniel POP

Programming II Object-Oriented Programming

Course Outline

1. What is object-oriented programming and C++

2. Data types

3. Object-oriented concepts: classes, objects, messages

4. Classes

5. Type of objects

6. Class relationships

7. Inheritance. Multiple inheritance. Class hierarchies

8. Exception handling

9. Generic programming. Template class & functions

10. C++ Standard Template Library (STL)

11. Object-oriented analysis and design

Programming II Object-Oriented Programming

Unit 1

Programming II Object-Oriented Programming

Agenda

1. How did we get here?

2. What is Object-Oriented Programming?

3. Short history of OOP

4. What is C++?

5. Short history of C++

Programming II Object-Oriented Programming

The Road to Object-Oriented Programming
and Beyond

• Unstructured programming

• Procedural programming

• Modular programming

• Data abstraction

• Object-oriented programming

• Generic programming

• Functional programming

• Logic and symbolic programming

Programming II Object-Oriented Programming

test.c

// data

void main(int argc, char* argv[]) {

// local data

// statements

}

Unstructured Programming

• Simple / small application consisting of one main program

• Program = sequence of commands (statements) which

modify global data

• Machine code

• Drawback: unmanageable as program gets bigger; a lot of

copy/pasted code

• Example: in Assembler, C, Pascal etc.

Programming II Object-Oriented Programming

test.c
double sqrt(double arg1) { void f(double arg1, sometype arg2) {

…. ….

…. sqrt(arg1);

} ….

}

void main(int argc, char* argv[]) {

// local data

f(10, data1);

// statements

sqrt(14.6);

}

Procedural (Structured) Programming

• Based on the notion of procedure (function)

• Decide which procedures you want; use the best algorithms you

can find.

• Drawback: handling different the data structures and the

algorithms operating on data

• Example: programs written using C, Pascal, Fortran, Algol

Programming II Object-Oriented Programming

Modular Programming
• Program size grows => Organizing data

• Decide which modules you want; partition the program so that data
is hidden in modules. (data hiding principle)

• Drawback: only one state per module + each module exists only once
in one program user-defined types doesn’t behave the same way as
built-in types

• Example: programs written in C, Modula-2

stack.h
// declaration of the interface of module

char pop();

void push(char);
const stack_size = 100;

main.c
#include "stack.h"

void some_function() {

push(’c’);

char c = pop();

if (c != ’c’) error("impossible");
}

stack.c
#include "stack.h"
// ‘‘static’’ means local to this file/module

static char v[stack_size];

static char* p = v; // the stack is initially empty

char pop() {

// check for underflow and pop

}

void push(char c) {

// check for overflow and push

}

Programming II Object-Oriented Programming

Software systems size

Source: https://en.wikipedia.org/wiki/Source_lines_of_code

Programming II Object-Oriented Programming

Modular Programming
• Program size grows => Organizing data

• Decide which modules you want; partition the program so that data
is hidden in modules. (data hiding principle)

• Drawback: only one state per module + each module exists only once
in one program user-defined types doesn’t behave the same way as
built-in types

• Example: programs written in C, Modula-2

stack.h
// declaration of the interface of module

char pop();

void push(char);
const stack_size = 100;

main.c
#include "stack.h"

void some_function() {

push(’c’);

char c = pop();

if (c != ’c’) error("impossible");
}

stack.c
#include "stack.h"
// ‘‘static’’ means local to this file/module

static char v[stack_size];

static char* p = v; // the stack is initially empty

char pop() {

// check for underflow and pop

}

void push(char c) {

// check for overflow and push

}

Programming II Object-Oriented Programming

Data Abstraction (I)
• Based on user-defined types that behave the same way as built-in

types (Abstract Data Types)

• Decide which types you want; provide a full set of operations for

each type.

• Drawback: no way of adapting an ADT to new uses except modifying

its definition (need for “type fields” that distinguish between

various instantiations)

• Example: programs written using Ada, C++, Clu, Java

complex.h
class complex {

double re, im;
public:

complex(double r, double i) { re=r; im=i; }
complex(double r) { re=r; im=0; }
friend complex operator+(complex, complex);
friend complex operator-(complex, complex);
friend complex operator-(complex);
// ...

};

main.c

void f() {
int ia = 2,ib = 1/a;

complex a = 2.3;
complex b = 1/a;
complex c = a+b*complex(1,2.3);

c = -(a/b)+2;
}

Programming II Object-Oriented Programming

Data Abstraction (II)

• Drawback: no way of adapting an ADT to new uses

except modifying its definition (e.g using “type fields”

that distinguish between various instantiations)

• Example:

shape.h
enum kind { circle, triangle, square };

class shape {
point center;
color col;
kind k;

// representation of shape
public:

point where() { return center; }
void move(point to) { center = to; draw(); }
void draw();

};

shape.cpp
void shape::draw() {

switch (k) {
case circle: // draw a circle

break;

case triangle: // draw a triangle
break;

case square: // draw a square
break;

default: // unknown shape

}
}

Programming II Object-Oriented Programming

Object-Oriented Programming

• World of interacting objects, each one managing its own
state

• Decide which classes you want; provide a full set of
operations for each class; make commonality explicit
by using inheritance.

• Example: programs written using Simula, C++, Java,
Eiffel, Smalltalk etc.

shape.h
class shape {

point center;
color col;
// representation of shape

public:

point where() { return center; }
void move(point to) { center = to; draw(); }
virtual void draw();

};

rectangle.h
class rectangle : public shape {

double width, height;
// representation of rectangle

public:
void draw() {

// draw the rectangle
}

};

Programming II Object-Oriented Programming

Generic Programming

• Express algorithms independently of representation

details

• Decide which algorithms you want; parameterize

them so that they work for a variety of suitable types

and data structures.

• Example: programs written using C++, Java ( 1.5)

stack.h
template<class T> class stack {

T* v;
int max_size, top;

Public:
stack(int s);

~stack();
void push(T v);
T pop();

};

file.cpp
void f() {

stack<char> schar;
stack<complex> scomplex;
stack<list<int>> slistint;

schar.push(‘c’);
if(schar.pop()!=‘c’) throw Impossible();
scomplex.push(complex(3, 2));

}

Programming II Object-Oriented Programming

Functional Programming

file.cpp

auto lambda_echo = [](int i) { std::cout << i << std::endl; };

std::vector<int> col{20,24,37,42,23,45,37};

for_each(col, lambda_echo);

• Express processing in terms of mathematical functions
and their composition

• Decide what processing you need and express it as a
composition of functions.

• Favor recursive processing

• Avoids state and mutable data

• Example: Lisp (and derived), Scala, F#, Haskell

Programming II Object-Oriented Programming

Logic and Symbolic Programming

The logic programming paradigm views computation as automated

reasoning over a body of knowledge. Facts about the problem domain are

expressed as logic formulae, and programs are executed by

applying inference rules over them until an answer to the problem is

found, or the set of formulae is proved inconsistent.

Symbolic programming is a paradigm that describes programs able to

manipulate formulas and program components as data.[3] Programs can

thus effectively modify themselves, and appear to "learn", making them

suited for applications such as artificial intelligence, expert

systems, natural-language processing and computer games.

Languages that support this paradigm include Lisp and Prolog

Source: https://en.wikipedia.org/wiki/Programming_paradigm

https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Automated_reasoning
https://en.wikipedia.org/wiki/Problem_domain
https://en.wikipedia.org/wiki/Inference_rule
https://en.wikipedia.org/wiki/Symbolic_programming
https://en.wikipedia.org/wiki/Programming_paradigm#cite_note-symbolic-programming-lisp-3
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Natural-language_processing
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Prolog

Programming II Object-Oriented Programming

Imperative Programming vs
Declarative Programming

• Imperative – how to solve the problem
• struct ResultDataStructure {

• string Name;

• string Address;

• }

• list<ResultDataStructure> computeResult() {

• list<ResultDataStructure> list;

• for(int i=0; i<Students.length; i++) {

• if (0==strcmp(Students[i].Major, “CS”) {

• result.add(new ResultDataStructure(Students[i].getName(),

• Students[i].getAddress());

• }

• return list;

• }

• Declarative programming – what the problem is
• Ex: SQL, SPARQL, OWL, Prolog

• SELECT Name, Address FROM Students WHERE Major=‘CS’

SELECT ?name ?address

WHERE { ?person a foaf:Person .

?person foaf:name ?name .

?person foaf:mbox ?address }

Programming II Object-Oriented Programming

Classification of programming languages

How many programming languages are out there?

https://en.wikipedia.org/wiki/List_of_programming_languages

https://en.wikipedia.org/wiki/Comparison_of_programming_languages

https://en.wikipedia.org/wiki/List_of_programming_languages
https://en.wikipedia.org/wiki/Comparison_of_programming_languages

Programming II Object-Oriented Programming

Classification of programming languages

Do I need to learn them all?

Programming II Object-Oriented Programming

Very Long Term History of PL

Programming II Object-Oriented Programming

What is Object-Oriented Programming?
DEFINITION [Object Oriented Programming] A language or

technique is object-oriented if and only if it directly supports

[Stroustrup, 1995]:

[1] Abstraction – providing some form of classes and objects

[2] Inheritance – providing the ability to build new abstractions

out of existing ones

[3] Runtime polymorphism – providing some form of runtime

binding.

This definition includes all major languages commonly referred to as

object-oriented: Ada95, Beta, C++, Java, CLOS, Eiffel, Simula,

Smalltalk, and many other languages fit this definition.

Classical programming languages without classes, such as C, Fortran4,

and Pascal, are excluded. Languages that lack direct support for

inheritance or runtime binding, such as Ada88 and ML are also excluded.

Programming II Object-Oriented Programming

What is an object?

DEFINITION A typical dictionary definition reads: object: a visible or

tangible thing of relative stable form; a thing that may be apprehended

intellectually; a thing to which thought or action is directed [The

Random House College Dictionary, 1975]

DEFINITION [Object] Samplings from the OO literature include:

[1] An object has identity, state and behavior ([Booch, 1990]).

[2] An object is a unit of structural and behavioral modularity that has

properties ([Buhr, 1998]).

[3] An object as a conceptual entity that: is identifiable, has features

that span a local state space, has operations that can change the status

of the system locally, while also inducing operations in peer objects.

([de Champeaux, 1993])

Very challenging to think “object-oriented”; shift from

structural thinking; using classes, methods and attributes is not

OO!

Programming II Object-Oriented Programming

A Short History of Object-Oriented
Programming
• Simula 67 – the first OO programming language; extension of

ALGOL60

• Smalltalk – conceived by Alan Kay (Smalltalk-72, Smalltalk-80);

dynamically typed; Strongtalk (1993) – Smalltalk + type system

• mid 80’s – many languages added support for OO: Objective C, C++,

Object Pascal, Modula 3, Oberon, Objective CAML, CLOS.

• Eiffel – Bertrand Meyer (1988) – Pascal-like syntax, design-by-

contract

• Other “exotic” OO languages: Sather, Trellis/Owl, Emerald, Beta

(evolution of Simula), Self

• Java – James Gosling (1995); Java 1.5 (2004) – support for generic

programming; Java 1.8 (2014) – support for closures

• Extensions to Java: Groovy,

[Bruce, 2002]

Programming II Object-Oriented Programming

What is C++?
DEFINITION 1: C++ is a general-purpose programming

language with a bias towards systems programming that

supports efficient low-level computation, data abstraction,

object-oriented programming, and generic programming.

[Stroustrup, 1999]

DEFINITION 2: C++ is a statically-typed general-purpose

language relying on classes and virtual functions to support

object-oriented programming, templates to support generic

programming, and providing low-level facilities to support

detailed systems programming.

[Stroustrup, 1996]

Programming II Object-Oriented Programming

C++ Design Ideas
C++ was designed to support a range of good and useful styles. Whether they were object
oriented, and in which sense of the word, was either irrelevant or a minor concern
[Stroustrup, 1995]:

• [1] Abstraction – the ability to represent concepts directly in a program and hide incidental
details behind well-defined interfaces – is the key to every flexible and comprehensible system
of any significant size.

• [2] Encapsulation – the ability to provide guarantees that an abstraction is used only according
to its specification – is crucial to defend abstractions against corruption.

• [3] Polymorphism – the ability to provide the same interface to objects with differing
implementations – is crucial to simplify code using abstractions.

• [4] Inheritance – the ability to compose new abstractions from existing one – is one of the most
powerful ways of constructing useful abstractions.

• [5] Genericity – the ability to parameterize types and functions by types and values – is
essential for expressing type-safe containers and a powerful tool for expressing general
algorithms.

• [6] Coexistence with other languages and systems – essential for functioning in real-world
execution environments.

• [7] Runtime compactness and speed – essential for classical systems programming.

• [8] Static type safety – an integral property of languages of the family to which C++ belongs
and valuable both for guaranteeing properties of a design and for providing runtime and space
efficiency.

Programming II Object-Oriented Programming

A Brief History of C++: Early “life”
• 1979 – 1983 C with Classes: Bjarne Stroustrup (AT&T Bell Labs)

ports concepts (e.g. classes, inheritance) from Simula67 to C

• 1982 – 1985 From C with Classes to C++: the first commercial
release and the printing of the book (The C++ Programming
Language) that defined C++ was released in October 1985

• 1985 – 1991 Release 2.0 (1989) Evolutions from the first release
and 2nd Edition of the book in 1991

• 1987 – 2000: The Explosion in Interest and Use: growth of C++ tools
and library industry.

• 1994 : Standard Template Library

Programming II Object-Oriented Programming

A Brief History of C++: Standardization

• 1998 – C++98 (ISO/IEC 14882:1998) – 1st international standard for
C++; it includes STL

• 2003 – C++03 (ISO/IEC 14882:2003)

• 2007 – C++TR1 (ISO/IEC TR 19768)

• 2011 – C++11 (ISO/IEC 1488)

• 2014 December – C++14 (ISO/IEC 1488:2014)

• 2017 December – C++17 (ISO/IEC 14882:2017)

Programming II Object Oriented Programming

Further Reading

1. [Bruce, 2002] Kim B. Bruce – Foundations of Object-Oriented

Languages, MIT Press, 2002 [Section 1.1, Page 4-7]

2. [Stroustrup, 1999] Bjarne Stroustrup - An Overview of the C++

Programming Language in “The Handbook of Object Technology”

(Editor: Saba Zamir). CRC Press LLC, Boca Raton. 1999. ISBN 0-

8493-3135-8 [Section 4.2, Page 10-11]

3.

4. [Goguen, 1978] J.A. Goguen, J.W. Thatcher, and E.G. Wagner - An initial algebra approach to

the specification, correctness, and implementation of abstract data types. In R.T. Yeh, editor,

Current Trends in Programming Methodology, volume 4. Prentice-Hall, 1978

5. [Guttag, 1977] J.V. Guttag - Abstract data types and the development of data structures.
Communications of ACM, 20(6):396–404, 1977

[Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming

Language 3rd Edition, Addison Wesley, 1997 [Section 4.9.4]

http://www.amazon.com/Foundations-Object-Oriented-Languages-Types-Semantics/dp/026202523X
http://www.research.att.com/~bs/crc.pdf
http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544

Programming II Object-Oriented Programming

Unit 2

Programming II Object-Oriented Programming

Agenda
1. Basic OOP concepts

1. Class

2. Object

3. Message

2. Scopes

3. Classes

1. Declaration

2. Implementation

3. Accessing class members

4. Access control

Programming II Object Oriented Programming

Data type

DEFINITION [Data type] Data type =

– possible values of the type

– the way values are stored (internal representation in

memory)

– operations applicable

Examples:

– predefined (built-in): int, float, double,

char, void, pointer etc.

– user-defined: Employee, complex etc.

Programming II Object Oriented Programming

What is wrong with user-defined types in C?

• User-defined data types (struct) are not complete (operations

cannot be defined similarly to built-in types)

• Internal representation is visible and accessible to everyone

user.c

void f(complex c) {
double d1 = c.re, d2 = c.im;

}

complex.h

struct complex {
double re, im;

};

complex.h

struct complex {
double v[2];
// v[0] – real part,
// v[1] – imaginary part

};

user.c

void f(complex c) {
// Error
double d1 = c.re, d2 = c.im;

}

Programming II Object Oriented Programming

Abstraction
• Abstraction:

(real-life/human) Problem => (computer/machine) Model

• Model

– Data

– Operations

• DEFINITION [Abstraction] Abstraction means structuring a real-life problem
into well-defined entities by defining their data and operations.

• Remark: It’s a general process with no direct link with a programming
language.

• We get Abstract Data Types (models)

Programming II Object Oriented Programming

Abstract Data Types

• Introduced by Goguen 1978 and Guttag 1977 [Goguen 1978, Guttag

1977]

• DEFINITION [Abstract Data Type] An ADT is characterized by the

following properties:

– It exports a type;

– It exports a set of operations (the interface) that are the one and

only access mechanism to the type’s data structure (Encapsulation)

– Axioms and preconditions define the application domain of the type.

• Abstract Data Type = class of objects whose logical behavior is

defined by a set of values and a set of operations

• How to represent an abstraction:
– using mechanism provided by a programming language (e.g. class in OOP)

– using graphical representations offered by a modeling language (e.g. rectangle
in UML)

– using textual/non-standard description

Programming II Object Oriented Programming

Abstraction – an example

• Modeling employees of an institution

• Candidate properties of an employee

– name, address, date of birth

– hair color, musical preferences etc.

• Employee (Textual representation)

• Data

– Name

– Address

– Date of Birth

– E-mail

• Operations

• CRUD: Create/Read/Update/Delete

• Assign to a particular department

• Compute salary

Programming II Object Oriented Programming

An example: Employee (UML representation)

Employee
- name: String
- address: String
- E-mail: String
- DoB: Date

+ create(): Employee
+ getName(): String
+ getAddress(): String
+ getEmail(): String
+ getDoB(): Date
+ setName(String)
+ setAddress(String)
+ setEmail(String)
+ delete(Employee)
+ assign(Department)

- means private

+ means public

Programming II Object Oriented Programming

An example: Employee (C++ representation)

Employee.h

class Employee {
String name;
String address;
String email;
Date DoB;
Department department;

public:
Employee create();
static void delete(Employee& e);
void assign(Department& d);

String getName();
String getAddress();
String getEmail();
Date getDoB();

void setName(String&);
void setAddress(String&);
void setEmail(String&);

};

Employee.cpp

Employee Employee::create() {
name = “”;
address = “”;
email=“”;
DoB.init(“1/1/1900”);

}

Employee Employee::setName(String& n) {
name = n;

}

void Employee::delete(Employee& e) {
// list.remove(e);
department.remove(e);

}

void Employee::assign(Department& d) {
d.add(this);
department = d;

}

String Employee::getName() {
return name;

}

Programming II Object Oriented Programming

Basic object-oriented concepts: Class

DEFINITION [Class] A class is the implementation of a
data type (concrete, abstract or generic). It defines
attributes and functions which implement the data
structure and operations of the data type,
respectively.
Remarks:

1. Functions are also called methods. In [Stroustrup, 1997] a clear distinction is made

between functions and methods. A method is a virtual function. This terminology

will be followed throughout this course as well.

2. Classes define properties and behaviour of sets of objects.

Examples: Person, Employee, Window, House,
complex, Date etc.

Programming II Object Oriented Programming

Basic object-oriented concepts: Class (cont.)

complex
- re: double
- im: double

+ init(double, double)
+ real(): double
+ imag(): double

- private

+ public

Employee
- name: String
- address: String
- E-mail: String
- DoB: Date

+ init()
+ getName(): String
+ getAddress(): String
+ getEmail(): String
+ getDoB(): Date
+ setName(String)
+ setAddress(String)
+ setEmail(String)
+ assign(Department)

Programming II Object-Oriented Programming

Basic object-oriented concepts: Class (cont.)

• Classes are defined in C++ using struct or class keywords.

Syntax

class X {
// member variables
// member functions

};

struct X {
// member variables
// member functions

};

Remark: In case of using struct, by default,

all members are public. For class, they are

private by default. The programmer is free

to choose which keyword he/she prefers,

with a recommendation to use struct for

data types that doesn’t provide behaviour.

struct Date {
int day, month, year;

// Date initialization
void init(int day, int month, int year);

};

class Employee {
String name;
String address;
String email;
Date dob;

public:
void init();
void assign(Department& d);

String getName();
String getAddress();
String getEmail();
Date getDoB();

void setName(String);
void setAddress(String);
void setEmail(String);

};

EXERCISE: Write the declaration for class

complex.

Programming II Object Oriented Programming

Basic object-oriented concepts: Object

• DEFINITION [Object] An object is an instance of a class. It can be
uniquely identified by its name, it defines a state which is represented
by the values of its attributes at a particular time and it exposes a
behaviour defined by the set of functions (methods) that can be applied
to it.

• An OO Program = collection of objects that interact one with another.

• Example:
Employee e1;

complex a, b, c;

Employee team[10];

How are objects internally represented in C++?

Object3 Object1

Object4

Object2

Programming II Object Oriented Programming

Objects Representation in Memory

Programming II Object Oriented Programming

Basic object-oriented concepts: Message
• Q: How does objects interact?

• A: By sending messages from one object to another asking the recipient to apply an
operation on itself.

• DEFINITION [Message] A message is a request to an object to invoke one of its
functions. A message contains the name of the function and the arguments of the
function.

• Sending a message is achieved in C++ by ‘.’ or ‘->’ operators.

Employee Employee::init() {
dob.init(1, 1, 1980);

}

void Application::run() {
Employee john;
john.init();
john.setName(“John”);

}

int main() {
Application myApp;
myApp.run();

}

How objects interact in C++?

Programming II Object Oriented Programming

Communication between Objects

Employee Employee::init() {
dob.init(1, 1, 1980);

}

void Application::run() {
Employee john;
john.init();
john.setName(“John”);

}

int main() {
Application myApp;
myApp.run();

}

Programming II Object-Oriented Programming

Scopes
DEFINITION [Scope] A scope is a specific part of the source code.

• Example: any block (delimited by { and }) defines a scope; each
function defines a scope.

• Each class defines a new scope. The name of the scope is the
same as class name.

• A name is defined in the global scope if it is defined outside any
function, class or namespace. It is visible from the point of
declaration down to the end of the file.

• Every declaration introduces a name in the scope => this name
is visible only in that scope and hides names declared in
enclosing scopes or at global scope.

Programming II Object-Oriented Programming

Scope resolution operator
DEFINITION [Scope resolution operator]

The scope resolution operator (::) allows to
access an identifier (name) defined in another
namespace than the current one.

int x; // global x

void f() {
int x; // local x hides the global x
x = 1; // local x = 1
::x = 2; // accessing the global x

}

int* px = &x; // address of global x

[Stroustrup, 1997 – Section 4.9.4]

int x = 0;

void f() {
int y = x;
int x = 1;
y = x;

}

Syntax

ScopeName :: Identifier

<== Hiding x

… and what is going on here? ==>

Programming II Object-Oriented Programming

Class declaration

• Classes are defined in C++ using struct or class keywords.

Syntax

class X {
// member variables
// member functions

};

struct X {
// member variables
// member functions

};

Remark: In case of using struct, by default,

all members are public. For class, they are

private by default. The programmer is free

to choose which keyword he/she prefers,

with a recommendation to use struct for

data types that doesn’t provide behaviour.

struct Date {
int day, month, year;

// Date initialization
void init(int day, int month, int year);

};

class Employee {
String name;
String address;
String email;
Date DoB;

public:
void init();
void assign(Department& d);

String getName();
String getAddress();
String getEmail();
Date getDoB();

void setName(String);
void setAddress(String);
void setEmail(String);

};

EXERCISE: Write the declaration for class

complex.

Programming II Object-Oriented Programming

Implementing member functions

• In C++, each member function is handled as any other ordinary C

function.

• A member function is a name introduced in the scope defined by its

parent class. Therefore, to access this name outside its scope of

definition, we need to fully qualify the name using the scope

resolution operator and the class name (namespace).

void Date:: init(int _day, int _month, int _year) {
day = _day;
month = _month;
year = _year;

}

This indicates that init is the identifier declared inside

Date class/namespace and not defined at global scope!

Programming II Object-Oriented Programming

Accessing class members

• Access to members of a class – the same
syntax as for struct in C, i.e. using ‘.’ or
‘->’ operators.

• One need to have an object through
which members are “incarnated” and
accessed (of course, there are some
exceptions… but we’re saving them for
later).

void f() {
Date today;
Date *pdate = &today;

today.init(4, 3, 2013); // March 7th, 2007

printf(“Today is %d/%d/%d.”,
pdate->day,
pdate->month,
today.year);

}

Syntax

object.member

pointer_to_object->member

void f() {
day = 4; // ERROR
// day is not in Date scope

}

void Date::init(int _day,
int _month,
int _year) {

day = _day; // OK
month = _month; // OK
year = _year; // OK

}

Programming II Object-Oriented Programming

Accessing class members (cont.)

New operators in C++: ‘.*’ and ‘->*’

// pointer to int data member of Date
typedef int Date::*PM;

// pointer to member function of Date taking 3 arguments of type int
typedef void (Date::*PMF)(int, int, int);

void f() {
Date today;
Date *pdate = &today;

PM pm = &Date::day;
PMF pmf = &Date::init;

(today.*pmf)(7, 3, 2007); //  today.init(7, 3, 2007);
today.*pm = 8; //  today.day = 8
pm = &Date::month;
today.*pm = 8; //  today.month = 8

(pdate->*pmf) (7, 3, 2007); //  pdate->init(7, 3, 2007);
pdate->*pm = 8; //  pdate->month = 8

}

Programming II Object-Oriented Programming

Access Control
• To achieve encapsulation in C++, various level of access are defined for class

members (data or functions):

– private – accessible only to member functions and friends;

– protected – accessible to member functions and friends + member functions and
friends of derived classes;

– public – accessible from everywhere.

• Public members define the public interface of a class.

class MyClass {
int x; // private, by default

public:
int y, z; // public
int f(); // public member function

private:
int w; // private data

protected:
int f(int, int); // protected member function

};

void main() {
MyClass obj;

// ERROR: private member
obj.x = 10;

// OK!
obj.f();

// ERROR:protected members
obj.f(1,1);

}

Programming II Object Oriented Programming

Encapsulation

• DEFINITION [Encapsulation] The principle of hiding the data

structures and to provide a well-defined, public interface to access

them.

• Example: representation of complex numbers

complex.h

struct complex {
private: // hide internal representation

double v[2];

public: // public interface to access data
double real();
double imaginary();

};

user.c

void f(complex c) {
double d1 = c.real(); // fixed, regardless internal representation
double d2 = c.imaginary(); // fixed, regardless internal representation

}

Programming II Object Oriented Programming

Further Reading

1. [Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming Language

3rd Edition, Addison Wesley, 1997 [Section 4.9.4, Chapter 10]

2. [Stroustrup, 2013] Bjarne Stroustrup – The C++ Programming Language

4th Edition, Addison Wesley, 2013 [Chapter 16]

http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=sr_1_1?s=books&ie=UTF8&qid=1458896863&sr=1-1&keywords=The+C+++Programming+Language+(4th+Edition)

