
Unit 8

Agenda

Exceptions

- Definition

- try-catch-throw mechanism

- Hierarchies of exceptions

- Catching exceptions

- Exceptions in constructors, destructor and

member initialization

- Exception specifications

Error handling

Errors occur during execution of a program (run-time)

• Detection of an error

• Handling of an error

- In separate modules of the program

- At separate moments

- Different actions

Exception

DEFINITION [Exception] An exception is a run-time error.

Examples: not enough memory, a file cannot be opened, invalid object received

for an operation, etc.

How to deal with exceptions?

- terminate the program => not appropriate

- return a value representing “error” => what is an acceptable error code? It

has to be checked by the caller.

- return a legal value and leave the program in an illegal state => caller has to

test an errno state variable

- call a function (error handler) supplied to be called in case of “error” => no

control over caller’s code

Useful, ordinary code is mixed with error-handling code => less readable

programs, hard to maintain => programs become “brittle”

Exception handling

DEFINITION [Exception handling] Exception handling is a mechanism that

allows two separately developed program components to communicate

when a program anomaly, i.e. exception, is encountered during the

execution of the program.

• Is an alternative to the traditional techniques when they are insufficient,

inelegant, or error-prone

• Is complete; it can be used to handle all errors detected by ordinary code

• Allows the programmer to explicitly separate error-handling code from

‘‘ordinary code’’ thus making the program more readable

• Supports a more regular style of error handling, thus simplifying

cooperation between separately written program fragments

Designed to handle only synchronous exceptions; asynchronous exceptions

require fundamentally different approaches.

Exception handling mechanism in C++

An exception is an object representing an exception occurrence.

1. Code (Component) that detects an error throws an exception (‘incarnated’ as

a regular object).

2. The effect of throw is to unwind the stack until a suitable catch is found (in a

function that directly/indirectly called the function that threw the exception).

void operation() {

// start ‘normal’ execution flow

if(some_exceptional_case_occurred) {

// throws an exception object

throw ExceptionType1{};

}

// continue ‘normal’ execution flow

}

Exception handling mechanism in C++

1. Code that handles an error ‘tries’ to execute an operation (call a function).

2. Catches all the errors that should be handled.

void foo() {

try { // … code that may raise an exception …

// other statements…

operation();

// other statements…

}

catch(ExceptionType1 e1) { // handle Exception type1
}

catch(ExceptionType2 e2) { // handle Exception type2
}

}

First exception is thrown will stop the execution of remaining statements in the try block.

For more examples, see slides “Exceptions in constructors”

Example

class FileNotFoundException {

public:

string describe() { return "File not found exc."; }

} ;

class FileWriteException {

public:

string describe() { return “File write exc.”; }

} ;

class File {

FILE* handle;

string name;

public:

File(const char* name, const char* mode);

File(const File&) = delete; // forbid copy ctor

void write(const char* data, int size);

~File();

};

File::File(const char* n, const char* mode)

: name{n}, handle{fopen(n, mode)} {

if (handle==nullptr) {

throw FileNotFoundException { };

}

}

File::~File() {

if (handle!=nullptr) {

fclose(handle);

}

}

void File::write(const char* data, int size) {

size_t written = fwrite(data, 1, size, handle);

if (written!=size)

throw FileWriteException { };

}

int main(int, char*[]) {

try {

char* test = “Write test in my sample file.”;

File f(“sample.txt”, “w+”);

f.write(test, strlen(test));

}

catch(FileNotFoundException e) {

cerr << e.describe();

}

catch(FileWriteException e) {

cerr << e.describe();

}

}

Example

New object created here.

New object created here.

A copy is created and

passed to this catch

clause using copy ctor

Same

here..

class FileNotFoundException {

public:

string describe() { return "File not found exc."; }

} ;

class FileWriteException {

public:

string describe() { return “File write exc.”; }

} ;

class File {

FILE* handle;

string name;

public:

File(const char* name, const char* mode);

File(const File&) = delete; // forbid copy ctor

void write(const char* data, int size);

~File();

};

File::File(const char* n, const char* mode)

: name{n}, handle{fopen(n, mode)} {

if (handle==nullptr) {

throw FileNotFoundException { };

}

}

File::~File() {

if (handle!=nullptr) {

fclose(handle);

}

}

void File::write(const char* data, int size) {

size_t written = fwrite(data, 1, size, handle);

if (written!=size)

throw FileWriteException { };

}

int main(int, char*[]) {

try {

char* test = “Write test in my sample file.”;

File f(“sample.txt”, “w+”);

f.write(test, strlen(test));

}

catch(FileNotFoundException e) {

cerr << e.describe();

}

catch(FileWriteException e) {

cerr << e.describe();

}

}

Example

New object created here.

New object created here.

No more copy!Same here..

class FileNotFoundException {

public:

string describe() { return "File not found exc."; }

} ;

class FileWriteException {

public:

string describe() { return “File write exc.”; }

} ;

class File {

FILE* handle;

string name;

public:

File(const char* name, const char* mode);

File(const File&) = delete; // forbid copy ctor

void write(const char* data, int size);

~File();

};

File::File(const char* n, const char* mode)

: name{n}, handle{fopen(n, mode)} {

if (handle==nullptr) {

throw FileNotFoundException { };

}

}

File::~File() {

if (handle!=nullptr) {

fclose(handle);

}

}

void File::write(const char* data, int size) {

size_t written = fwrite(data, 1, size, handle);

if (written!=size)

throw FileWriteException { };

}

int main(int, char*[]) {

try {

char* test = “Write test in my sample file.”;

File f(“sample.txt”, “w+”);

f.write(test, strlen(test));

}

catch(FileNotFoundException& e) {

cerr << e.describe();

}

catch(FileWriteException& e) {

cerr << e.describe();

}

}

Grouping of Exception (I)

Exceptions fall naturally into families => use inheritance to structure exceptions

class MathException {

public:

virtual string getDescription() {

cerr << “Math ex”;

}

};

class Overflow : public MathException {

public:

string getDescription() {

cerr << “Overflow ex”;

}

};

class Underflow : public MathException {

string getDescription() {

cerr << “Underflow ex”;

}

};

class DivideByZero : public MathException {

string getDescription() {

cerr << “Division by 0”;

}

};

Exception hierarchy can include

multiple inheritance as well.

Exceptions hierarchies increase the

robustness of your code.

Grouping of Exception (II)

void foo() {

try {

// using math functions

}

catch(Overflow) {

// handle Overflow exceptions

}

catch(MathException e) {

// handle any Math exceptions that is not Overflow

// MathException::getDescription

cerr << e.getDescription();

}

}

void f() {

try {

// using math functions

}

catch(Overflow e) {

// handle Overflow exceptions

cerr << e.getDescription();

}

catch(MathException& me) {

// handle any Math exceptions that is not Overflow

// call appropriate getDescription

// (e.g. of class Underflow if an underflow exception was thrown)

cerr << me.getDescription();

}

}

Giving a name is optional.

Only info specific to

MathException type is available in

catch branch, regardless of the

“original” type of the exception

(slicing effect).

To avoid slicing and keep

“original” type use reference

type.

Catching exceptions

Handler H is invoked when:

[1] if H is the same type as E

[2] if H is an unambiguous public base of E

[3] if H and E are pointer types and [1] or [2] holds for the

types to which they refer

[4] if H is a reference and [1] or [2] holds for the type to

which H refers.

void f() {

try {

throw E();

}

catch(H) {

}

}

const can be used to denote exceptions that are not modified

Example: catch(const MathException& e) { /* */ }

Basically, an exception is copied when it is thrown so that the handler gets a copy of the

original (see objects as function arguments).

REMARKS

1. Order of handlers is important. Why?

2. catch(...) – catches any exception because ellipsis indicates ‘any argument’

Catching exceptions – handlers order

void f() {

try {

// some math operations that throw Overflow exception!!

}

catch(MathException me) {

// handle any Math exceptions that is not Overflow

// call appropriate getDescription

// (e.g. of class Underflow if an underflow exception was thrown)

cerr << “Math exception: ” << e.getDescription();

}

catch(Overflow e) {

// handle Overflow exceptions

cerr << “Overflow ” << e.getDescription();

}

}

void f() {

try {

// some math operations that throw Overflow exception!!

}

catch(Overflow e) {

// handle Overflow exceptions

cerr << “Overflow: ” << e.getDescription();

}

catch(MathException me) {

// handle any Math exceptions that is not Overflow

// call appropriate getDescription

// (e.g. of class Underflow if an underflow exception was thrown)

cerr << “Math exception: ” << e.getDescription();

}

}

The rule is: catch more specific

types first!

...and the output is:

Overflow:

...and the output is:

Math exception:

Re-throwing exceptions

void f() {

try {

// code

}

catch(MathException& e) {

if(cannot_handle_it_completely)

throw; // re-throw this exception
else

// do the job & consume the exc.

}

}

Exceptions in constructors

Q: How to report errors from constructors?

A: Exceptions is an elegant mechanism for this.

class Vector {

static const int MAX_SIZE = 1000;

public:

class BadSize { } ;

Vector(int sz) {

if(sz<0 || sz>MAX_SIZE) throw BadSize{};

// do the actual job

}

};

void f(int size) {

try {

Vector v(size);

cout << “Going on...”;

}

catch(Vector::BadSize& bs) {

cerr << “Invalid size “

<< size << endl;

}

cout << “Return.\n”;

}

int main() {

f(-10); // Exception is thrown

f(5); // OK

return 0;

}

...and the output is:

Invalid size -10

Return.

Going on...

Return.

Exceptions in members initialization

Q: What happens if a member initialization throws an exception?

A: The constructor can catch this kind of problems by using try-catch block in its

initialization list.

class X {

Vector v;

public:

X(int size);

};

X::X(int size)

try

: v(size) // initialize v by size

{

// body of X::X(int) ctor

}

catch(Vector::BadSize) {

}

Copy-constructors and assignment operators are special case of constructors/operators

because they are invoked automatically, they deal with acquiring + releasing of resources.

Exceptions in destructors (I)

A destructor can be called:

[1] in ‘normal’ way, when objects are destroyed

[2] during exception handling, when during stack unwinding a scope containing an

object with destructor is exited

void f() {

try {
X anXObject;

// some operations that may generate an Exception

} // => destroy anXObject, using X::~X (), in case [2]

catch(Exception& e) {

}

X anotherXObject;

} // => destroy anotherXObject, using X::~X(), in case [1]

Use uncaught_exception function in the destructor of class X to decide

whether the destructor was called due to case [1] (returns false) or [2]

(returns true).

Exceptions in destructors (II)

In case [2] (during exception handling), if an exception “escapes” from the destructor

then std::terminate function is called to signal an abnormal program termination.

To protect itself from this kind of disaster, a destructor can use try-catch block.

X::~X() {

try {

// do the task that might raise an exception

}

catch(...) {

// handle any exception here

}

}

Uncaught exceptions?

If an exception is thrown but not caught anywhere in the program, the function

std::terminate will be called.

To handle all the exceptions that can be thrown in a program, the function main should

read like:

int main(int, char*[]) {

try {

// do the actual job

}

catch(…) {

// handle any uncaught exception so far

}

}

Exception specifications (deprecated on C++ 11

onwards)
Specify the set of exceptions that might be thrown by a function as part of function

declaration.

void add(Matrix& m1, Matrix& m2) throw (MathException,

bad_alloc);

class X {

void add(int) throw (Overflow);

};

• If exception list is missing then the function can throw any exception.

• void f() throw(); void f() noexcept; //doesn’t throw any exception

REMARKS

• Exception specifications must be included in both function’s declaration and definition.

• A virtual function can be overridden only by a function that has an exception-specifications at least

as restrictive as its own.

• If noexcept operator is specified and function throws an exception then the program

unconditionally terminates by calling std::terminate function. It doesn’t invoke destructors

from calling functions

• If other exception than the ones specified in exception specification is thrown => call to

std::unexpected(), which – by default – calls std::terminate(), which calls abort().

• User-defined handlers for std::unexpected, std::terminate using set_unexpected, respectively

set_terminate functions provided in standard library.

Syntax

type name(arg_list) throw (exception1,
...
exceptionN);

noexcept Operator

void my_fct(T& x) noexcept(Is_pod<T>());

• It means that my_fct may not throw exception(s) if the predicate Is_pod<T>() is true but may throw

if it is false.

• For example, if T is a POD it does not throw, whereas other types (e.g., a string or a vector) may

throw

• The predicate in a noexcept() specification must be a constant expression

• The noexcept() operator takes an expression as its argument and returns true if the compiler

‘‘knows’’ that it cannot throw and false otherwise.

• noexcept operator simply looks at every operation in expr and if they all have noexcept

specifications that evaluate to true, it returns true. A noexcept(expr) does not look inside definitions

of operations used in expr.

template<typename T> void call_f(vector<T>& v) noexcept(noexcept(f(v[0]))

{

for (auto x : v)

f(x);

}

Exceptions that are not errors

Exception-handling mechanism in C++ is a non-local control structure based on stack

unwinding that can be seen as an alternative return mechanism.

There are legitimate uses of exception that have nothing to do with errors.

void f(Queue& q) {

try {

for(;;) {

X m = q.get(); // get throws Empty exception if queue is empty

// use m

}

}

catch(Queue::Empty) {

return;

}

}

void f(Queue& q) {

for(; !q.isEmpty(); X m = q.get())

// use m

}

Implementation remarks

• Dynamic (run-time) detection of exceptions.

• Exception handling can be implemented so that there is no run-time overhead when no

exception is thrown and throwing an exception is not all that expensive as compared to

calling a function.

• C++ Standard Library (STL) exposes a hierarchy of predefined exceptions: bad_alloc,
bad_cast, bad_exception, overflow_error etc., all of them derived from class

exception.

• The standard-library exception classes, such as runtime_error and out_of_range,

take a string argument as a constructor argument and have a virtual function what()
that will regurgitate that string.

Further Reading

1. [Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming Language 3rd Edition,

Addison Wesley, 1997 [Chapter 14]

2. [Stroustrup, 2013] Bjarne Stroustrup – The C++ Programming Language 4th Edition,

Addison Wesley, 2013 [Chapter 13]

http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=sr_1_1?s=books&ie=UTF8&qid=1458896863&sr=1-1&keywords=The+C+++Programming+Language+(4th+Edition)

