
Programming II Object-Oriented Programming

Unit 7

Programming II Object-Oriented Programming

Agenda

Inheritance

• Definition

• Derived classes

• Access control

• Constructors and destructor

• Virtual functions

• Polymorphism

• Multiple inheritance

Manager is an Employee

In an organization, each Manager is an Employee as well.

Let’s model this using Composition.

class Employee {
public:

Employee(String n, Date d);
void print() const {

cout << „Employee: ” << name << “ Dob: ”<< dob;
}

private:

String name;

Date dob; // birth date

Date doh; // hiring date
};

struct list {

void add(Employee*);

};

// WITH COMPOSITION
class Manager {

Employee emp; // his/her properties as an employee
list managedGroup; // list of managed persons

};

Programming II Object-Oriented Programming

Although technically it is

possible, it is not inline with

the meaning of the

relationship between the 2

concepts; this is not a whole-

part relationship, but a

specialization.

We need something else….

Inheritance

DEFINITION [Inheritance] Inheritance is a mechanism which allows a class

A to inherit members (data and functions) of a class B. We say “A inherits

from B”. Objects of class A thus have access to members of class B without

the need to redefine them.

Introduced in Simula.

Inheritance is identified by the phrase:

• “kind-of” at class level (Circle is a kind-of Shape)

• “is-a” at object level (The object circle1 is-a shape.)

B is called superclass, supertype, base class or parent class.

A is called subclass, subtype, derived class or

child class.

Inheritance graph / Class hierarchy

Person

Student Teacher

+ name : string

+ courses : List<Course> + university : Organization

+ Age() : double

+ getPublications() : List+ Grade(topic) : double

Programming II Object-Oriented Programming

Derived classes

Do not multiply objects without necessity. (W. Occam)

Inheritance is implemented in C++ through derivation.

Derived classes does not have to know implementation details about base classes.

Base classes are not “touched” in any way by inheritance.

class Manager : public Employee {
public:

Manager(const char* name);
int level;

private:
// list of managed persons
list managedGroup;

};

Programming II Object-Oriented Programming

Syntax

class DerivedClass :
[access_modifier] BaseClass {

} ;

Up-casting and down-casting

void f(Manager& m, Employee& e) {

Employee* pe = &m; // correct: every Manager is an Employee

Employee& re = m; // correct

Manager* pm = &e; // error: not every Employee is a Manager

List l;
l.add(&m);
l.add(&e);
l.add(new Manager{“John Doe”});
l.add(new Employee{“Vasile Popescu”, Date{10,10,1970}});

// Next is ok!
g(m);

// Next call generates a runtime exception because a non-Manager
// instance is passed-in as actual argument
g(Employee{“Vasile Popescu”, Date{10,10,1970}});

}

As a derived class is a kind-of base class => a derived class object (e.g. Manager)

can be used wherever a base class is acceptable (e.g. Employee) (up-casting)

But, not the other way around! (down-casting)

void g(Employee& e) {

// dangerous brute-force

Manager* pm = static_cast<Manager*>(&e);

cout << pm->level;

}

Programming II Object-Oriented Programming

Access control (I)

class Manager : public Employee { /* declarations */};

class Manager : protected Employee { /* declarations */};

class Manager : private Employee { /* declarations */};

ALL members of the base class are “inherited” in the derived class,

but not all are accessible.

Member functions of derived class have access to public and protected members of base class, but not to private ones.

To control the access to inherited members from base class, access control modifiers (private, protected, public) are

used.

If missing, private is

considered for a type (class)

declared using class keyword

and public if struct is used.

Base class Access control Type in derived class External access

private

protected

public

private

private

private

not accessible

private

private

not accessible

not accessible

not accessible

private

protected

public

protected

protected

protected

not accessible

protected

protected

not accessible

not accessible

not accessible

private

protected

public

public

public

public

not accessible

protected

public

not accessible

not accessible

accessible

Programming II Object-Oriented Programming

Remark: Because protected data member are accessible to derived classes member functions, they are

likely to create maintenance issues in the future. Their usage might be considered a design error.

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

Programming II Object-Oriented Programming

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

void f() {

B b;

A a;

AA aa;

b.x = 10;

b.y = 20;

b.z = 30;

a.x = 10;

a.y = 20;

a.z = 30;

aa.x = 10;

aa.y = 20;

aa.z = 30;

}

void AAA::aaa() {

x = 10;

y = 20;

z = 30;

}

Programming II Object-Oriented Programming

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

void f() {

B b;

A a;

AA aa;

b.x = 10; // ERROR: private

b.y = 20; // ERROR: protected

b.z = 30; // CORRECT!

a.x = 10;

a.y = 20;

a.z = 30;

aa.x = 10;

aa.y = 20;

aa.z = 30;

}

void AAA::aaa() {

x = 10;

y = 20;

z = 30;

}

Programming II Object-Oriented Programming

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

void f() {

B b;

A a;

AA aa;

b.x = 10; // ERROR: private

b.y = 20; // ERROR: protected

b.z = 30; // CORRECT!

a.x = 10; // ERROR: private

a.y = 20; // ERROR: private

a.z = 30; // ERROR: private

aa.x = 10;

aa.y = 20;

aa.z = 30;

}

void AAA::aaa() {

x = 10;

y = 20;

z = 30;

}

Programming II Object-Oriented Programming

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

void f() {

B b;

A a;

AA aa;

b.x = 10; // ERROR: private

b.y = 20; // ERROR: protected

b.z = 30; // CORRECT!

a.x = 10; // ERROR: private

a.y = 20; // ERROR: private

a.z = 30; // ERROR: private

aa.x = 10; // ERROR: private

aa.y = 20; // ERROR: protected

aa.z = 30; // CORRECT!

}

void AAA::aaa() {

x = 10;

y = 20;

z = 30;

}

Programming II Object-Oriented Programming

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

void f() {

B b;

A a;

AA aa;

b.x = 10; // ERROR: private

b.y = 20; // ERROR: protected

b.z = 30; // CORRECT!

a.x = 10; // ERROR: private

a.y = 20; // ERROR: private

a.z = 30; // ERROR: private

aa.x = 10; // ERROR: private

aa.y = 20; // ERROR: protected

aa.z = 30; // CORRECT!

}

void AAA::aaa() {

x = 10; // ERROR: private

y = 20; // CORRECT: protected

z = 30; // CORRECT: public

}

Programming II Object-Oriented Programming

Access control (II)

class B {

int x;

protected:

int y;

public:

int z;

};

class A : B {

void f() {

x = 10; // ERROR: private

y = 20; // CORRECT!

z = 30; // CORRECT!

}

};

class AA : public B {

};

class AAA : AA {

void aaa();

};

void f() {

B b;

A a;

AA aa;

b.x = 10; // ERROR: private

b.y = 20; // ERROR: protected

b.z = 30; // CORRECT!

a.x = 10; // ERROR: private

a.y = 20; // ERROR: private

a.z = 30; // ERROR: private

aa.x = 10; // ERROR: private

aa.y = 20; // ERROR: protected

aa.z = 30; // CORRECT!

}

void AAA::aaa() {

x = 10; // ERROR: private

y = 20; // CORRECT: protected

z = 30; // CORRECT: public

}

Programming II Object-Oriented Programming

Keep in mind: Data hiding (encapsulation) is a key principle to OOP! =>

Try to minimize the number of functions that have access to members.

Access control (III)

Programming II Object-Oriented Programming

A a;

a.z = 50;

B* pb = &a;

pb->z = 50;

Access control (III)

Programming II Object-Oriented Programming

A a;

a.z = 50; // ERROR: z is private

B* pb = &a;

pb->z = 50; // CORRECT: z is public

Access control (III)

Programming II Object-Oriented Programming

A a;

a.z = 50; // ERROR: z is private

B* pb = &a;

pb->z = 50; // CORRECT: z is public

Ooops! Is z accessible or not?

Access control (III)

Programming II Object-Oriented Programming

A a;

a.z = 50; // ERROR: z is private

B* pb = &a;

pb->z = 50; // CORRECT: z is public

Ooops! Is z accessible or not?

z should not be accessible (as per the design of class A that specifies B as private (hidden) base)

and IT IS NOT ACCESSIBLE!

The statement

B* pb = &a;

is erroneous and flagged appropriately by the compiler because

B is not a public base class of A.

Access control in a nutshell

Programming II Object-Oriented Programming

• If B is a private base, its public and protected members can be used only by member

functions and friends of D. Only friends and members of D can convert a D∗ to a B∗.

• If B is a protected base, its public and protected members can be used only by member

functions and friends of D and by member functions and friends of classes derived from D.

Only friends and members of D and friends and members of classes derived from D can

convert a D∗ to a B∗.

• If B is a public base, its public members can be used by any function. In addition, its

protected members can be used by members and friends of D and members and friends of

classes derived from D. Any function can convert a D∗ to a B∗.

Constructors and destructor

class Manager : public Employee {

list managedGroup;

int level;

public:

Manager(const String& s, const Date& d, List &g)

: Employee{s, d},

managedGroup{g} , level{0} {

}

};

An instance of a derived class contains an instance of a base class => need to be

initialized using a constructor

Use initialization list to call the appropriate constructor

Objects are constructed from the bottom to

up:

1) base,

2) non-static data members,

3) derived class.

Objects are destroyed in the reverse order:

derived class, non-static data members, base.

Programming II Object-Oriented Programming

Constructing an instance of class Manager

breaks down to the following steps:

(1) allocate memory to hold a Manager instance

(2) call Employee(s, d) to initialize base class

(3) call List(g) to initialize managedGroup

member

(4) execute Manager(…) constructor body

Manager myGoodBoss;

Slicing

void f() {

List l;

Manager m{„Popescu Vasile”, Date{04, 09, 1965}, l};

Employee c = m; // only Employee part is copied

}

Programming II Object-Oriented Programming

Functions with the same prototype

class Manager : public Employee {

list managedGroup;

int level;

public:

Manager(String s, Date d, List &g)

: Employee{s, d}, managedGroup{g} {

}

void print() const {

Employee::print(); // call base class member

cout << “Managed group: ” << managedGroup;

cout << “Level:” << level;

}

};

A member function of derived class may have the same prototype with the

function from the base class.

Base class function is not impacted, being still accessible using name resolution

operator

void main() {

Manager m{“Popescu”, Date{07, 09, 1978}, List{}};

Employee* pa = &m;

m.print(); // Manager::print()

m.Employee::print(); // base’s print

pa->print(); // Which print?

}

class Employee {
public:

Employee(String n, Date d);

void print() const;

private:

String name;

Date dob; // birth date

Date doh; // hiring date
};

void Employee::print() const {
cout << ”Employee: ” << name

<< “ Dob: ”<< dob;
}

Functions with the same prototype

class Manager : public Employee {

list managedGroup;

int level;

public:

Manager(String s, Date d, List &g)

: Employee{s, d}, managedGroup{g} {

}

void print() const {

Employee::print(); // call base class member

cout << “Managed group: ” << managedGroup;

cout << “Level:” << level;

}

};

A member function of derived class may have the same prototype with the

function from the base class.

Base class function is not impacted, being still accessible using name resolution

operator

void main() {

Manager m{“Popescu”, Date{07, 09, 1978}, List{}};

Employee* pa = &m;

m.print(); // Manager::print()

m.Employee::print(); // base’s print

pa->print(); // Employee::print

}

class Employee {
public:

Employee(String n, Date d);

void print() const;

private:

String name;

Date dob; // birth date

Date doh; // hiring date
};

void Employee::print() const {
cout << ”Employee: ” << name

<< “ Dob: ”<< dob;
}

Exercise: Invoking expected behavior

Make any necessary changes in the previous example so that

pa->print() call ‘re-directs’ to the behavior of print from

Manager class.

Exercise: Invoking expected behavior

Make any necessary changes in the previous example so that

pa->print() call ‘re-directs’ to the behavior of print from

Manager class.

class Manager : public Employee {

list managedGroup;

int level;

public:

Manager(String s, Date d, List &g)

: Employee{s, d, Employee::TMANAGER}, managedGroup{g} {
}

void print() const {

// Employee::print(); // call base class member
cout << “Managed group: ” << managedGroup;

cout << “Level:” << level;

}

};

class Employee {
public:

static const int TMANAGER = 10;

Employee(String n, Date d, int t);
void print() const;

private:

String name;

Date dob; // birth date

Date doh; // hiring date

int type; // type of Employee
};

void Employee::print() const {
cout << ”Employee: ” << name

<< “ Dob: ”<< dob;

switch(type) {
case Employee::TMANAGER:
((Manager*)this)->print();
break;

}
}

Employee::Employee(String n, Date d, int t)
: name{n}, dob{d}, type{t}

{
// other initializations

}

Virtual functions (I)

Two solutions for invoking the appropriate behavior:

• Type fields (see previous slide)

• Virtual functions

DEFINITION [Virtual function, method] A function that can be redefined in each

derived class is called virtual function (or method).

DEFINITION [Overriding] A function from a derived class with the same name and the

same list of arguments as a virtual function in a base class is said to override the base

class version of the virtual function.

The prototype of redefined function must have the same name and the same list of

arguments, and can only slightly differ in return value.

By default, a function that overrides a virtual function itself becomes virtual.

The compiler will ensure that the right virtual function is invoked for each object.

If a virtual function is not overrode in a derived class, then the base class

implementation is used.

Syntax

virtual <function prototype>;

Virtual functions (II)

class Manager : public Employee {

list managedGroup;

int level;

public:

Manager(String s1, String s2, List &g)

: Employee{s1, s2}, managedGroup{g} {

}

void print() const {

Employee::print(); // call base class member

cout << “Managed group: ” << managedGroup;

cout << “Level:” << level;

}

};

Without virtual function print.

void main() {

Manager m{“Popescu”, Date{07, 09, 1978}, List{}};

Employee* pa = &m;

m.print(); // Manager::print()

m.Employee::print(); // base’s print

pa->print(); // Employee::print

}

class Employee {
public:

Employee(String n, Date d);

void print() const;

private:

String name;

Date dob; // birth date

Date doh; // hiring date
};

void Employee::print() const {
cout << „Employee: ” << name

<< “ Dob: ”<< dob;
}

Virtual functions (II)

class Manager : public Employee {

list managedGroup;

int level;

public:

Manager(String s1, String s2, List &g)

: Employee{s1, s2}, managedGroup{g} {

}

void print() const {

Employee::print(); // call base class member

cout << “Managed group: ” << managedGroup;

cout << “Level:” << level;

}

};

With virtual function print.

void main() {

Manager m{“Popescu”, Date{07, 09, 1978}, List{}};

Employee* pa = &m;

m.print(); // Manager::print()

m.Employee::print(); // base’s print

pa->print(); // Manager::print
}

class Employee {
public:

Employee(String n, Date d);

virtual void print() const;

private:

String name;

Date dob; // birth date

Date doh; // hiring date
};

void Employee::print() const {
cout << „Employee: ” << name

<< “ Dob: ”<< dob;
}

Virtual functions (III)

Q: How the correspondence between object and proper (virtual) function is

achieved?

- Each instance (object) of a class having virtual functions holds a pointer to a

VTBL (Virtual Functions Table) corresponding to its class.

- The VTBL has an entry of type <virtual_function_name, address>

- Indirection

print

etc.

Employee::print

Implementation

cout << „Employee: ” << name

<< “ Dob: ”<< dob;

emp

void f(Employee* emp) {

emp->print();

}

vtbl

data

VTBL for Employee

JMP emp->vtbl->get(‘print’)
print

etc

Manager::print

Implementation

Employee::print();

cout << managedGroup;

vtbl

data

VTBL for Manageremp

f(new Employee(…))

f(new Manager(…))

Programming II Object-Oriented Programming

Object VTBL Code segment

Polymorphism (I)

DEFINITION [Polymorphism] Getting “the right” behavior from base class

functions independently of exactly what kind of instance (base of various

derived classes) is actually used is called polymorphism.

DEFINITION [Polymorphic type] A type/class with virtual functions is called

(run-time) polymorphic type.

To get polymorphic behavior, objects must be manipulated through pointers or

references and the member functions must be virtual, otherwise no run-time

polymorphism is used.

Static binding – at compile time. Examples:
― Employee e; e.print(); // by type

― Employee& re = . . .; re.Manager::print(); // f. q. n

― Employee* pe; pe->Manager::print(); // fully qualified name

Dynamic binding – at run-time. Examples:
― Employee* pe = new Manager(); pe->print(); // polymorphism

― Employee& re = m; re.print(); // polymorphism

Programming II Object-Oriented Programming

Polymorphism (II)

class HeadOfDepartment : public Employee {

int departmentID;

public:

HeadOfDepartment (String& s, Date& d, int id)

: Employee{s, d}, departmentID{id} {

}

void print() const {

Employee::print();

cout << „Department: ” << departamentID;

}

};

// polymorphic behavior

void printList(const List& aList) {

for(int i=0; i<aList.size(); i++)

aList.get(i)->print(); // right behavior is invoked

}

int main(int, char*[]) {

List l; // don’t worry too much about the type List ☺

l.add(new Manager(„Popescu”, Date(01,01,1968), List()));

l.add(new HeadOfDepartment(„Alexandrescu”, Date(), 1001));

l.add(new Employee(“Ionescu”, Date(10,10,1970));

printList(l);

return 0;

}

Programming II Object-Oriented Programming

Employee and

Manager
classes are

defined in

previous slides.

Constructors and destructor

Programming II Object-Oriented Programming

A virtual function invoked from a constructor or a destructor reflects that the

object is partially constructed / destroyed => It is therefore typically a bad idea

to call a virtual function from a constructor or a destructor.

override specifier

class HeadOfDepartment : public Employee {

int departmentID;

public:

HeadOfDepartment (String& s, Date& d, int id)

: Employee(s, d), departmentID(id) {

}

void print() const override ;

};

void print() const override { // ERROR override repeated in impl.

Employee::print();

cout << „Department: ” << departamentID;

}

Programming II Object-Oriented Programming

In a large or complicated class hierarchy with many virtual functions, it is best

to use virtual only to introduce a new virtual function and to use override on all

functions intended as overriders. Using override is a bit verbose but clarifies the

programmer’s intent.

override is a suffix – it always come last in a declaration! Do NOT repeat it in

function implementation

override is not a keyword, it is a contextual keyword.

int override = 7; // OK!

// OK as well

class C : public B {

int override;

int f() override {

return override +

::override;

}

};

final specifier

class HeadOfDepartment : public Employee {

// ...

void print() const override final;

};

void print() const final { // ERROR final repeated in impl.

Employee::print();

cout << „Department: ” << departamentID;

}

class HeadOfDepartment final : public Employee {

// ...

}

Programming II Object-Oriented Programming

final prevents further overriding of a virtual function.

Used in class declaration makes all virtual functions final, so that derived

classes cannot override the behaviour.

final on the class not only prevents overriding, it also prevents further

derivation from a class

int final = 7; // OK!

// OK as well

class C : public B {

int final;

int f() override final {

return final +

::final;

}

};

using keyword

Programming II Object-Oriented Programming

struct Base {

void f(int);

};

struct Derived : Base {

void f(double);

};

void use(Derived d) {

d.f(1); // call Derived::f(double)

Base& br = d;

br.f(1);// call Base::f(int)

}

using keyword

• using declarations can be used to add a function to a scope.

• Multiple using declarations can bring functions from different basis,

• using cannot be used to gain access to private members

Programming II Object-Oriented Programming

struct Base {

void f(int);

};

struct Derived : Base {

void f(double);

};

void use(Derived d) {

d.f(1); // call Derived::f(double)

Base& br = d;

br.f(1);// call Base::f(int)

}

struct D2 : Base {

using Base::f; // bring all fs from Base into D2

void f(double);

};

void use2(D2 d) {

d.f(1); // call D2::f(int), that is, Base::f(int)

Base& br = d;

br.f(1); // call Base::f(int)

}

struct B1 {

void f(int);

};

struct B2 {

void f(double);

};

struct D : B1, B2 {

using B1::f;

using B2::f;

void f(char);

};

void use(D d)

{

d.f(1); // call D::f(int), that is, B1::f(int)

d.f('a'); // call D::f(char)

d.f(1.0); // call D::f(double), that is, B2::f(double)

}

Return type relaxation. Covariance

Covariant return rule: if the original return type of a virtual function was B∗, then the

return type of the overriding function may be D∗, provided B is a public base of D.

Similarly, a return type of B& may be relaxed to D&.

Programming II Object-Oriented Programming

struct Base {

virtual char* describe() = 0;

};

struct Derived : public Base {

char* describe() override { return “Derived”; }

};

struct Factory {

virtual Base* create() = 0;

};

struct DerivedFactory : Factory {

Derived* create() override {

return new Derived();

}

};

void use(Factory *f) {

Base* pb = f->create();

}

DEFINITION [virtual constructor] Member function such create is sometimes called

virtual constructor because they are used to indirectly create objects.

The relationship between Derived

and Base is covariant with the

relationship between Factory and

DerivedFactory.

Contravariance

Programming II Object-Oriented Programming

struct Animal {

virtual char* describe() = 0;

};

struct Cat : public Animal {

char* describe() override { return “I’m a cat\n”; }

};

struct Mouse : public Animal { /* impl of describe() */ }

struct CatDoctor {

virtual void treat(Cat& cat) {

std::cout << “CatDoctor::treat” << cat.describe() << std::endl;

}

};

struct AnimalDoctor : public CatDoctor { // AnimalDoctor is a CatDoctor, right?

// Does not compile due to override keyword

// Does not override Base::treat

void treat(Animal& anml) override {

std::cout << “AnimalDoctor::treat” << anml.describe() << std::endl;

}

};

int main() {

Cat tom;

Mouse jerry;

// Assume that override keyword is not used in the definition of AnimalDoctor

AnimalDoctor ad;

ad.treat(tom); // calls AnimalDoctor::treat

ad.treat(jerry);// calls AnimalDoctor::treat

ad.CatDoctor::treat(tom); // force calling CatDoctor::treat

}

The relationship

between Animal and

Cat is contravariant

with the relationship

between AnimalDoct

or and CatDoctor:

an AnimalDoctor IS-

A CatDoctor precisel

y because a Cat IS-

AN Animal.

Remark: the derived

treat function

accepts the broader

type (Animal)

because it must do

at least as much as

the base's function is

able to do.

C++ does not support

contravariance.

class Shape { // abstract class

public:

virtual void draw() const = 0; // pure virtual
};

class Circle : public Shape { // concrete type

public:

void draw() const;

};

void Circle::draw() const {

cout << “Draw the circle;”;

}

Pure virtual functions. Abstract classes

DEFINITION [Pure virtual function] A pure virtual function is a virtual function

declared, but not implemented in the base class.

A pure virtual function has to be override by all derived classes; otherwise it remains pure.

DEFINITION [Abstract class] A class having at least one pure virtual function is called

abstract class.

An abstract class cannot be instantiated (it is an incomplete type).

Programming II Object-Oriented Programming

void foo() {

Shape sh; // ERROR: Impossible to instantiate abstract classes!

Shape* sh = new Circle; // OK: Concrete class

sh->draw(); // Circle::draw

}

Syntax

virtual <function prototype> = 0;

Remark: In VTBL, a pure virtual

function’s entry is associated value 0.

Multiple inheritance

class Temporary {

Date start, end; // period of collaboration

}

// Multiple inheritance – a Consultant is a temporary Employee

// with an external affiliation

class Consultant : protected Temporary, public Employee {

Organization affiliation;

public:

Organization getAffiliation();

void setAffiliation(const Organization& org);

};

DEFINITION [Multiple inheritance] Multiple inheritance is when a class inherits

characteristics from two or more base classes.

Increased flexibility of class hierarchies => complex hierarchies (graph-like

hierarchies)

Programming II Object-Oriented Programming

Syntax

class DerivedClass : [access_modifier1] Base1,
[access_modifier2] Base2, . . .
[access_modifierN] BaseN {

// declarations
};

Employee class diagram - reloaded

Programming II Object-Oriented Programming

Diamond-like multiple inheritance

Programming II Object-Oriented Programming

Problem: an instance of base class Employee is included twice in an instance of derived

class TeamLeader (once from Manager and second from TechnicalExpert), causing:

(1) memory wasting (all data members from Employee are inherited twice)

(2) ambiguities: problems in accessing members from the base class Employee
TeamLeader tl;

tl.name = “John”; // refers to Manager::Employee::name or to

TechnicalExpert::Employee::name ?!

class Employee {

// declarations

};

class Manager : public Employee {

// declarations

};

class TechnicalExpert : public Employee {

// declarations

};

class TeamLeader : public Manager, public TechnicalExpert {

Team& team;

public:

Team& getTeam() const;

};

Multiple inheritance and access control

If a member of a base class can be reached through multiple paths in a multiple-

inheritance lattice, it is accessible if it is accessible through any path.

Programming II Object-Oriented Programming

class Employee {

// declarations

};

class Manager : public virtual Employee {

// declarations

};

class TechnicalExpert : public virtual Employee {

// declarations

};

class TeamLeader : public Manager, private TechnicalExpert {

Team& team;

public:

Team& getTeam() const;

};

TeamLeader tl;

tl.name = “John”; // accessible through Manager

Virtual base class (I)

DEFINITION [Virtual base class] If a class is declared as virtual base, then in a diamond-

like inheritance its instance is created and initialized only once.

Need to explicitly call the virtual base

class constructor!

Steps of object initialization:

(1) call virtual base constructor

(2) call constructors of base classes in

order of their declaration

(3) initialize derived class members

(4) initialize derived object itself

Programming II Object-Oriented Programming

Syntax

class DerivedClass : [access_modifier] virtual BaseClass {

// declarations
};

class Employee {

// declarations

};

class Manager : public virtual Employee {

// declarations

};

class TechnicalExpert : public virtual Employee {

// declarations

};

class TeamLeader : public Manager, public TechnicalExpert

: Employee{...}, Manager{...}, TechnicalManager{...} {

// declarations

};

Virtual base class (II)

Using virtual base, the Employee’s members are inherited only once in TeamLeader, thus,
TeamLeader tl;

tl.name = “John”;

unambiguously refers to member name inherited ONCE from Employee.

Note: Other OOP languages (Java) forbids multiple inheritance and replaces it with

multiple interfaces implementation + single class inheritance.

Memory representation of class instances for both cases: without and with virtual base

classes.

Programming II Object-Oriented Programming

class Shape { // abstract class

public:

virtual void draw() const = 0; // pure virtual

};

struct Point {

double x, y;

}

class Circle : public Shape, private Point { // concrete type

public:

void draw() const;

};

void Circle::draw() const {

cout << “Draw the circle;”;

}

Design considerations

DEFINITION [Interface inheritance] – usage of abstract class inheritance

DEFINITION [Implementation inheritance] – usage of base classes with state and/or

defined member functions.

Combinations of the two approaches are possible, we can define and use base classes with

both state and pure virtual functions.

Programming II Object-Oriented Programming

Class inheritance vs. object composition

Class inheritance (white-box) Object composition (black-box)

Visibility Reuse

Static (compile time) Dynamic (can change at run-time

through instantiation)

Easy to understand (and use) Difficult to understand

Breaks encapsulation principle Doesn’t break encapsulation principle

Reusing problems Keeps each class encapsulated and

focused on one task

Large class hierarchies; fewer objects Small class hierarchies; more objects

Delegation pattern

DEFINITION [Delegation] Delegation is handing of a task over another object.

Alternative to inheritance.

Advantage over inheritance: behavior can be changed at run-time

class A {
public:

virtual void foo() {
printf(“An A at work.");

}
};

class AA : public A {
public:

virtual void foo() {
printf("An AA at work.");

}
};

class B {
A* pa;

public:
B(A* aa) : pa(aa) { }

void setA(A* aa) { pa = aa; }

virtual void foo() {
// delegate the task to object pa
pa->foo();

}
};

void main() {
B b(new A);
b.foo(); // A behavior
b.setA(new AA);
b.foo(); // AA behavior

}

Delegation is best used when you want to use another class’s behavior as is, without changing that

behavior. Example: Board, 3DBoard example

Further Reading

1. [Stroustrup, 1997] Bjarne Stroustrup – The C++ Programming

Language 3rd Edition, Addison Wesley, 1997 [Chapter 12]

2. [Stroustrup, 2013] Bjarne Stroustrup – The C++ Programming

Language 4th Edition, Addison Wesley, 2013 [Chapter 20]

Programming II Object-Oriented Programming

http://www.amazon.com/C++-Programming-Language-3rd/dp/0201889544
http://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=sr_1_1?s=books&ie=UTF8&qid=1458896863&sr=1-1&keywords=The+C+++Programming+Language+(4th+Edition)

