

Pointers

- review (control flow)
- Pointers
- memory addresses
« definition
- declaration
- initialization
- de-referentiation
. Sizeof
- Arrays and Pointers
- Legal operations
- Strings
- String utility functions

review (control
flow)

selection statements: if, switch
iteration statements:; for, while, do while

while and for

int counter = 0;
char c=getchar(};

while(c 1= EOF)

syntax:)
counter++;

f(Seonaion) putchar(c); int a[20][10];
; iti c = getchar(); inti, j;
+code is executed if condition is , e eamien)
. for(j = 0; | < 10; j++)
. alil(jl =i
else
{

[*code is executed if condition is
false*/

}

switch (Var)

1{

case 'A’:

* execute if Var == 'A%/
break ;

case 'B":

case 'C':

/* execute if Var=="B" | | Var=="C" %/
break;

default :
f*default code */
}

syntax:

if (<condition>)
{

/*code is executed if condition is
true*/

h

else

{

/*code is executed if condition is
false*/

h

switch (Var)
{

case 'A’:

/* execute if Var =="A" */
break ;

case 'B":

case 'C':

/* execute if Var=="B' | | Var =="C" */
break;

default :
/*default code */

}

while and for

int counter = 0;
char c=getchar();

while(c != EOF)
{
counter++;
putchar(c); int a[20][10];
c = getchar(); inti, j;
} for(i=0; i< 20; i++)

for(j=0;j<10; j++)
alilljl = i;

Pointers

- review (control flow)
- Pointers
- memory addresses
« definition
- declaration
- initialization
- de-referentiation
. Sizeof
- Arrays and Pointers
- Legal operations
- Strings
- String utility functions

Pointers

What is a pointer?

- Pointer =

- is an object (a variable)

- who's value is interpreted as a
memory address

- Address can be used to access/modify a
variable from anywhere in memory

Memory:
physical and virtual

- Physical memory: physical resources where data
can be stored and accessed by your computer
- cache
- RAM
- hard disk
- removable storage
- Virtual memory: abstraction by OS, addressable
space accessible by your code

Physical memory Virtual memory

» Haw miich physical memary doT have?
- 2 MB (gache] + 3 GE [RAK) + 163 GB HDD)

tual mermany da | have?
3 GE o

Physical memory

- Different sizes and access speeds

- Memory management - major function of OS

- Optimization - to ensure your code makes the
best use of physical memory available

- OS moves around data in physical memory
during execution

- Embedded processors - could have many limits

Virtual memory

- How much physical memory do I have?

- 2 MB (cache) + 3 GB (RAM) + 160 GB (HDD)
+..

- How much virtual memory do I have?

- <4 GB (32-bit OS), typically 2 GB for
Windows, 3-4 GB for linux

- Virtual memory maps to different parts of

physical memory

- Usable parts of virtual memory: stack and heap

- stack: where declared variables go

- heap: where dynamic memory goes

Addresses

File.obj
char a; Reserve space for 0XF1D

shorth; 1 byte at address 0xF1D2
long c; 2 bytes at address 0xF1D4 OxF1D4 a:
4 bytes at address OxF1D8

Load value of
-.atb+c.e— 1 byte at address 0xF1D2
2 bytes at address 0xF1D4
4 bytes at address 0xF1D8

Store new value on
1 byte at address 0xF1D2
2 bytes at address 0xF1D4
4 bytes at address OxF1D8

E-B-We Ee@ e & tE-
B | uteriensan [« [0 7] & EFE=
- = X inr-cnE

B8 @dO I IR Y KB

| lal |

- 08 |Liberationsans |v|[10 |v| A A EEEE

SUM

2. ,[iLBZiEZHZZ)ﬁ

A B B | D/ F
1 Grade Grade 2 Grade 3. Final Grade
qlm]‘/7 ‘/a 8=(B2+C2+D2)/3
3 |Maria 8 9 7
Vasile 9 8 7

O |00 (N[v |

Variables by address

- Every variable allocated in memory has an address!
- Doesn't have any address:

- register variables

- constants/literals/preprocessor defines

- expressions (unless result is a variable)
- The address of a variable: by using the & operator

iNntn=4;

double PI =3 .14159;

int *pn = &n ; /*address of integer n* /
double *ppi = &PI ; /* address of double PI */

- Address of a variable of type t has type t *

de-referentiation

what I can do with a pointer?

» Accessing/modifying addressed variable:
dereferencing/indirection operator *

/* prints "pi=3.14159\n " */

printf ("pi = %g\n", *ppi);

/* pi now equals 6.14159 */

*ppi =*ppi+3;

« Dereferenced pointer can be considered as
any other variable

* null pointer, i.e. 0 (NULL): pointer that does not
reference anything

if(ppi == NULL)
/*cannot be accessed - dereferenciated*/

Pointer:declare, init, use

declaration (is a variable)

[modifier] type *variable_name;
initialization

inta=7;

int *pa;

pa = &a;

char *pc = "string pointer";

float *pf;

pf = (float *)malloc(4);
de-referentiation (usage)

*pa; is the value from the address of a

*pa=5; awillbe5

strcpy(pc, "new string");

Definition:

A pointer is a variable,
who's value is interpreted as a
memory address, where a data
of the declared type of the
pointer is accessible.

char *pc; /*pointer to char */

int *pi; /*pointer to int */

double *pd; /* pointer to double */
int a, *p, *q=&a;

Pointers: sizeof

How much space is allocated for a pointer?

char *pStr = "Timisoara";
int x =5, *pX = &x;
double *pdVal;

floar *pf;
charc='Q', *pc = &¢;

What returns sizeof():
pStr
pX
pdval
pf
B s pC

memary

Answer:

A pointer variable is stored on the number
of bytes needed to store an address!

Usualy 4 bytes, sometimes 2 bytes or even
1 byte, depending on the machine / type of
memory

casting pointers

- Can explicitly cast any pointer type to any
other pointer type

ppi = (double *)pn;
/*where pn originally of type (int *) */

- Implicit cast to/from void * also possible
- Dereferenced pointer has new type,

- Possible to cause segmentation faults,

- difficult-to-identify errors

- What happens if we dereference ppi now?

Accessing caller’s variables

int a, b; inta, b;

swap(a, b); swap(&a, &b);

void swap(int x, inty)

void swap(int *x, int *y)

{ {
int temp; int temp;
temp=x; temp=*x;
X=Y,; X=RY,
y=temp; *y=temp;

} }

Function with
multiple outpu

What is wrong with this code?

#include <stdio.h>

char *get_str () {
char msg[] = "A simple message" ;
return msqg ;

}

int main (void) {
char *str = get_str();
puts(str) ;

return O ;

}

Pointer invalid after variable passes
out of scope !

Why pointers?

In order to:

a) do what is not possible without them
- access to local variables of the caller function
- return more than one value to the caller
function
- access dynamically allocated storage

b) do things better with them than without them
- array processing

......

Pointers (2)

- Arrays and Pointers
- Legal operations

- Strings

- String utility functions

Declara
rodifl
[modifi
Eq.
TYPE'
TYPE:
L
ppat
Ppat

Pointers

What is a pointer?

- Pointer =

- is an object (a variable)

- who's value is interpreted as a
memory address

- Address can be used to access/modify a
variable from anywhere in memory

Addresses

File.obj
char a; Reserve space for 0XF1D

shorth; 1 byte at address 0xF1D2
long c; 2 bytes at address 0xF1D4 OxF1D4 a:
4 bytes at address OxF1D8

Load value of
-.atb+c.e— 1 byte at address 0xF1D2
2 bytes at address 0xF1D4
4 bytes at address 0xF1D8

Store new value on
1 byte at address 0xF1D2
2 bytes at address 0xF1D4
4 bytes at address OxF1D8

E-B-We Ee@ e & tE-
B | uteriensan [« [0 7] & EFE=
- = X inr-cnE

Pointer:declare, init, use

declaration (is a variable)

[modifier] type *variable_name;
initialization

inta=7;

int *pa;

pa = &a;

char *pc = "string pointer";

float *pf;

pf = (float *)malloc(4);
de-referentiation (usage)

*pa; is the value from the address of a

*pa=5; awillbe5

strcpy(pc, "new string");

Why pointers?

In order to:

a) do what is not possible without them
- access to local variables of the caller function
- return more than one value to the caller
function
- access dynamically allocated storage

b) do things better with them than without them
- array processing

......

Pointers (2)

- Arrays and Pointers
- Legal operations

- Strings

- String utility functions

Declara
rodifl
[modifi
Eq.
TYPE'
TYPE:
L
ppat
Ppat

Array and pointers

- Addition/subtraction of an integer to/from a pointer.

TYPE t[N], *p, *q; g2 ¢
p=&4[0]; * p=t*/ ‘

q=&t[4];

- Subtraction of 2 pointers
intn=q-p;
p++;

- Incrementation/ decrementation p+;

-Comparison of two pointers
|f(p==q)
if(pl=q)

if(p<q)

Legal operations with pointers

1. Initialization and assignment

2. De-referentiation

3. Addition/subtraction of an integer to/from a pointer
4. Incrementation/decrementation

5. Subtraction of a pointer from another pointer

6. Comparison of two pointers

Obs:

- Operations 3 and 4 only make sense (shall only be

performed) if the pointer points to an element of an array!
- Operations 5 and 6 only make sense (shall only be

performed) if both pointers point to elements of the same

array!

Array, Pointers

Remember: the name of an array is a synonym for the
address of its first element and is constant!

TYPE t[N], *p=t;

p is equal to t and both are addresses (&t[0])
Then

p+0isequaltot+0 T |

p+i is equal to t+i IIE/U Tz

*p is equal to *t
*(p+ti) is equal to *(t+i)
but
p++is not equal to t++ ! (t is a constant and cannot be
modified!)

t[0] is equal to p[0]
t[i] is equal to p[i]

Pointer's efficiency

Not any use of pointers leads to greater efficiency!
TYPE t[N], *p=t;

tlil means *(t+i) which
is equivalentto *(p+i)

for(i=0; i<N; i++)

tlil=...; *(t+i*sizeof(TYPE))

is equivalent to
Summary of operations:
for(i=0; i<N; i++) 1 addition, 1 multiplication
*(pHi)=...; and 1 de-referentiation / iteration

and both are slower than:

for(i=0; i<N; i++, p++)

Km— .
P=eees Summary of operations:
1 addition and 1 de-

referentiation/iteration

dynamic memory allocation

stdlib.h

allocate memory at run time

void * malloc(int no_of_bytes);

deallocate memory

dynamic allocation

TYPE1 *p1, *p2;
TYREZ *p3, *pd;

void free(void *);

p1=mallocin*sizeofTYPET
i p1 1= NULL)

pa=malloc{m*sizeafTYPEZ)):
ifpd 1= NULL)

free{pd); #p2 no mare need*/
p2=mallocir*sizeaf(TYPE1)k
iF (2 1= NULLY

freeipt);
iffipd=mallocim*sizeciTYPE2)) == MULL)
{/* handle errar */}

dynamic allocation

TYPE1 *p1, *p2;
TYPE2 *p3, *p4;

p1=malloc(n*sizeof(TYPE1));
if(p1!= NULL)

p3= ma"OC(m*SiZEOf(TYPEz));
if(p3 1= NULL)

free(p3); /*p3 no more need*/
p2=malloc(n*sizeof(TYPE1));
if (p2 != NULL)

free(p1);
if((p4=malloc(m*sizeof(TYPE2)) == NULL)
{/* handle error */ }

arrays of pointers;
pointers to pointers

Declaration:
[modifiers] type_name *array_name[constant_expression];
[modifiers] type_name **variable_name;

E.g.
TYPE1 *a[N];
TYPE2 *b[M];

ppa=a,

ppatt;
ppatt;

What is different?
char T[n][m], *ap[k], **pp;

Strings as arrays

- Strings stored as null-terminated character
arrays (last character =="\0’)
char str[] = "This is a string.";
char *pc = str;
- Manipulate string as you would an array
(pc+10) ='S’; / same as str[10] ="S; */
puts(str); /* prints "This is a String ." */

String functions

string.h

Copy functions: strcpy(), strncpy()

char * strncpy(strto, strfrom ,n);
copy n chars from strfrom to strto
char #* strcpy(strto, strfrom);

copy strfrom to strto

Comparison functions: strcmp(), strncmp()

int stremp(str1, str2);
compare str1, str2; return 0 if equal, positive if str1>str2,
negative if stri<str2

int strncmp(str1,str2 ,n);

compare first n chars of str1 and str2

String length: strlen()

int strlen (str);
get length of str

Concatenation functions: strcat(), strncat()

char * strcat (sTo, sFrom);

- add sFrom to end of sTo

char * strncat (strto, strfrom ,n);

- add n chars from sFrom to end of sTo

Search functions: strchr(), strrchr()

char * strchr (str,c);

- find char cin str, return pointer to
first occurrence, or NULL if not found
char * strrchr (str,c);

- find char cin str, return pointer to last
occurrence, or NULL if not found

