
1

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

The C programming Language

Cosmin Bonchis

cosmin.bonchis@e-uvt.ro

2

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Organizational
• Course objectives: present the C programming language, and

programming concepts

• Grading:

– 50% laboratory: (! avg 5 mandatory for exam
acceptance)

• Activity on class,

• Homeworks,

• Theoretical quizzes.

• Laboratory exam

– 50% exam:

• exam quiz (mandatory 5! for next step),

• exam programming oral assignments

3

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Important
Lecture attendance: required.
Expect you: To be up to date with class material. To hand out
programming assignments by the stated deadlines.
Expect you: Work hard.
Academic honesty: cheating leads to failing class and
reporting.OK/encouraged: speak up in class. Two-way, rather
than one-way communication. Request: be concise, to the point.
Disclaimer: I can make mistakes/be wrong. Let me know (in
person, email) how I can improve things.

4

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Resources:

Literature:
 Books:

B. Kernighan, D. Ritchie - The C Programming Language, 2nd ed., Prentice-Hall,1988
Ivor Horton – Beginning C: From Novice to Professional
Steve Oualline - Practical C Programming, Third Edition

 Online lectures:
 C Programming. Brian Brown, Central Institute of Technology, NZ. Constantin quizzes
 C Programming Steven Summit, Experimental College, University of Washington, USA.
 Introduction to C Programming, University of Leicester, UK.
 C Programming. Steve Holmes, University of Strathclyde, UK.
 C Language Tutorial. Drexel University, USA. A short introduction

official documents:
 ISO/IEC 9899:1990 (the C90 standard)
 ISO/IEC 9899:1999 (the C99 standard)

on the web:
C-FAQ - http://www.eskimo.com/~scs/C-faq/top.html

Software:
Whatever ANSI/ISO standard-complying compiler (and library), standalone or IDE

E.g.:
 - free:

 gcc (Linux)+Code::blocks as an IDE, MinGW GCC (Win32) + Code::blocks as an IDE, djgpp (DOS) + rhide as
an IDE

 - commercial:
…

http://www.eskimo.com/~scs/C-faq/top.html

5

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Communicating with computers is not easy !

It would be nice if we could write programs in English

6

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

PROGRAM: a concise definition

Niklaus Wirth (author of Pascal):

Program = Data + Algorithm

Problem

program Computer

Solution

7

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

PROGRAM: a concise definition - continued

.

.

.

Data registers Arithmetical and Logical Unit

ALU

Memory

8 bits

0
1
2
3
4
5Address register

Program Counter

Stack Pointer

Processor

co
de, d

ata

I/O devices

resu
lts

D
A
T
A

C

O

D

E

P
R
O
G
R
A
M

O
S

01100100

00001101

8

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Programming Languages

Low level:
machine code language

assembly language (assembler)

High level:
FORTRAN (early ’50)
COBOL (’50)
LISP (late ’50)
ALGOL (58, 60, 68)
PASCAL
Prolog (logical)
Smalltalk, C++, JAVA (OOP)
Haskell, Scheme (functional)
…

C (early ’70) by D. Ritchie (Bell Labs)

http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

9

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

The C Programming Language

Developed for system programming (rewriting of UNIX OS for PDP-7 and PDP-11)

Later used also for general programming

First programming language implemented on almost all operating systems

First standardized programming language (ANSI C – 1989)

Characteristics:

- highly portable

- fast and compact code

- small and flexible

- …

Best suited for
- system programming
- embedded programming

10

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Basic steps in developing an application

 1. Source text editing (Tool: text editor) ----> Source text file

 2. Compilation (Tool: compiler)
Source text file ---> Object code file

3. Link-editing (Tool: link-editor)
Object code file(s) + Library modules (in object code format)
– ---> Executable program file

4. Testing and debugging (Tool: debugger)
Executable program file + Test data set
 ---> List of corrections

if errors

if errors

if errors

Step Tool OutputInput

11

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: functions

C program = set of function definitions
+ declarations of functions and global variables

 + preprocessor directives

Why?
Real programs are very large and complex!

Developing them as a single functional unit is

- not practical

- not at all easy to maintain

- hard to reuse

Therefore, they are broken up in several (not seldom, hundreds or thousands of)
smaller functional units, usually grouped, according to their functionality in separate
translation units (source files).

Functional units: - functions (in C programms: functions returning some value)
- procedures (in C programms: void functions)

12

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: breaking down into functions

#include <stdlib.h>
#define N 1000
enum boolean { FALSE, TRUE};
int main()
{
int a[N], b[2*N], i, sorted=FALSE;
for(i=0;i<N; i++) /* init a */

a[i]=rand();
for(i=0;i<2*N; i++) /* init b */

b[i]=rand();
while(!sorted) /*sort a */

{
sorted=TRUE;
for(i=0; i<N-1;i++)

if(a[i]>a[i+1])
{
int aux;
aux=a[i];
a[i]=a[i+1];
a[i+1]=aux;
sorted=FALSE;
}

}
while(!sorted) /*sort b */

{
sorted=TRUE;
for(i=0; i<N-1;i++)

if(b[i]>b[i+1])
{
int aux;
aux=b[i];
b[i]=b[i+1];
b[i+1]=aux;
sorted=FALSE;
}

}
...
}

init_a();

init_b();

sort_a();

sort_b();

#include <stdlib.h>
#define N 1000
enum boolean { FALSE, TRUE};
int a[N], b[2*N];
int main()
{

}

void init_a()
{
...
}
void init_b()
{
...
}
void sort_a()
{
...
}
void sort_b()
{
...
}

13

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: parameterizing functions

#include <stdlib.h>
#define N 1000
enum boolean { FALSE, TRUE};
int main()
{
int a[N], b[2*N], i, sorted=FALSE;
for(i=0;i<N; i++) /* init a */

a[i]=rand();
for(i=0;i<2*N; i++) /* init b */

b[i]=rand();
while(!sorted) /*sort a */

{
sorted=TRUE;
for(i=0; i<N-1;i++)

if(a[i]>a[i+1])
{
int aux;
aux=a[i];
a[i]=a[i+1];
a[i+1]=aux;
sorted=FALSE;
}

}
while(!sorted) /*sort b */

{
sorted=TRUE;
for(i=0; i<N-1;i++)

if(b[i]>b[i+1])
{
int aux;
aux=b[i];
b[i]=b[i+1];
b[i+1]=aux;
sorted=FALSE;
}

}
}

#include <stdlib.h>
#define N 1000
enum boolean { FALSE, TRUE};

void init(int [], int);
void sort(int [], int);

int main()
{
int a[N], b[2*N];
init(a, N);
init(b, 2*N);
sort(a,N);
sort(b, 2*N);
}

void init(int t[], int n)
{
int i;
for(i=0;i<n; i++)

t[i]=rand();
}

void sort(int t[], int n)
{
int i, sorted=FALSE;
while(!sorted) /*sort a */

{
sorted=TRUE;
for(i=0; i<n-1;i++)

if(t[i]>t[i+1])
{
int aux;
aux=t[i];
t[i]=t[i+1];
t[i+1]=aux;
sorted=FALSE;
}

}
}

Program.c Main.c

Array_f.c

14

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: translation units (source files)

…

File_1.c File_2.c File_n.c

Function definitions

int main()
{
...
}

15

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure (refined)

#

int main()
{
 int val;

 val=f(); /* call of f() */

}
#

int f()
{

return expr;
}

#

Legend:
 # preprocessor directive

declaration of global variable

function declaration (prototype)

declaration of local variable

function definition

scope of identifiers

file.c

include <header.h>
int count;

int f();

A function is executed
only if it is called!

16

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: functions

Function:

- declaration (prototype) – in each translation unit where a call exists

- calls – several, even in the same translation unit

- definition – unique throughout all translation units

/*definition of function f */
Type f()
{
…
}

int main()
{...
f(); /*call of f() */
...
f(); /*call of f() */
}

Type f(); /*prototype */

Type f(); /*prototype */
Type f2()
{...
f(); /*call of f() */
}

/* no calls to f()! */

17

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: functions

Function declaration:

Type function_name (<parameter type_declaration_list>);

Function definition:

Function call:

Type function_name (<parameter declaration_list>)
{
/*declarations of local variables and functions*/
/* statements*/
…
return expression; /* expression of type Type */
}

function_name (<actual_argument_list>);
var= function_name (<actual_argument_list>);

18

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Functions: taxonomy

#include <stdlib.h>
#define N 1000
void init(int [], int);
void sort(int [], int);

int main()
{
int a[N], b[2*N];
...
init(b, 2*N);
...
}

calling function (caller)

function call

actual arguments

formal arguments (parameters)

called function

void init(int t[], int n)
{
int i;
for(i=0;i<n; i++)
 t[i]=rand();
}

function declaration (prototype)

19

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: means of communication between functions

Communication: sharing data #include <stdlib.h>
#define N 1000
enum boolean { FALSE, TRUE};

void init(int [], int);
void sort(int [], int);

int main()
{
int a[N], b[2*N];
init(a, N);
init(b, 2*N);
sort(a,N);
sort(b, 2*N);
}

void init(int t[], int n)
{
int i;
for(i=0;i<2*n; i++)

t[i]=rand();
}

void sort(int t[], int n)
{
int i, sorted=FALSE;
while(!sorted) /*sort a */

{
sorted=TRUE;
for(i=0; i<n-1;i++)

if(t[i]>t[i+1])
{
int aux;
aux=t[i];
t[i]=t[i+1];
t[i+1]=aux;
sorted=FALSE;
}

}
}

void init(int t[], int n)
{
int i;
for(i=0;i<n; i++)

t[i]=rand();
}

t a n N

init(a, N);

t b n 2*N

- through the actual arguments,
- through the returned value
- through global variables

20

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: means of communication between functions

Communication: sharing data

- through global variables int count;

void f1(void);

int main()
{
count++;
f1();
}

void f2(void)
{
count++;
…
}

void f2(void);
void f1(void)
{
count++;
f2();
}

count: 0

Static Data

StackSP:

123

file.c

s
c
o
p
e

of

c
o
u
n
t

21

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Program structure: means of communication between functions

Communication: sharing data

- through the returned value
#include <stdio.h>
int getint();

int main() {
int nr;
 getint();
}

int getint()
{
int x;
scanf(“%d”, &x);
return x;
}

Static Data

Stack

SP:

nr:
x: 1234

nr =

1234

22

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

The call context is a storage area on the stack on which:

- the values of actual arguments are copied (in reverse order!)

- the return address is saved

- the local automatic variables of the called function are created

Functions: call context

Local automatic variables

Return address

Actual arguments
Call context

Caller’s call context

23

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Functions: The C calling convention

 The C calling convention:
Arguments are passed (by the calling function) to the called function

- by value and

- in reverse order

...
init(a, N);
...

void init(int t[], int n)
{
int i;
for(i=0;i<n; i++)

t[i]=rand();
}

N

a

return
address

i:

n:
t:

caller’s call context

call context

SP:

prior to the call

during the call

/after the call

Na

24

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Functions: the return mechanism

 The return mechanism is implemented as a type-driven protocol,

 used by the compiler both when compiling:

- the return expression statement and

- the statement which takes over of the return value in the caller.

called function

type f()
{
...
return expression;
}

calling function

...
result=f();
...

public (shared) storage area

(type)expression
(type)expression

25

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Return mechanism: a possible protocol

The return value:

- is placed in a register (or several registers) by the called function

- is “taken” by the caller function from the same register (registers)

Exception:

if the return value is a structure, the address of a memory area where the actual
structure is saved, is passed via registers to the caller function.

Return type Public (shared) storage area
char low byte of register R0
short R0
int (2 bytes) R0
long R0, R1
float R0, R1
double R0, R1, R2, R3
long double R0, R1, R2, R3, R4

26

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Functions: recursive functions

Recursive function: a function that calls itself, directly or indirectly

Pro's:
"recursive code is more compact, and often much easier to write and understand
than the non-recursive equivalent. Recursion is especially convenient for
recursively defined data structures like trees." (K&R, 4.10)

Con's:
recursive functions need more storage area and take more time to execute
than the non-recursive equivalent, because of the additional overhead
incurred by the repeated function calls.

Caution:
every recursive function has to test a condition
to stop recursive calls to stand forever!

27

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Recursive functions: some examples

 #include <stdio.h>
/* printd: print n in decimal */
void printd(int n)
{
 if (n < 0)

{
 putchar('-');
 n = -n;
 }
 if (n / 10)

printd(n / 10);

/* if FALSE -> stop recursive calls! and print out a digit */

 putchar(n % 10 + '0');
}

/* compute factorial of n */
unsigned long factorial(unsigned int n)
{
 if(n<=1) /* if FALSE stop recursive calls*/

 return 1; /* and return to previous call */

 else
 return n*factorial(n-1);
}

28

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Functions: recursive calls

...
result=factorial(4);
...

/* compute factorial of n */
unsigned long factorial(unsigned int)
{
 if(n<=1)

 return 1;

 else

 return n*
}

4

return addr

return addr
n:

n:

3
n:

return addr

n:
return addr

4

2

1

result:

n=4

n-1factorial(n-1)

return 1

24

29

West University of Timisoara
Faculty of Mathematics and Informatics Programming I

based on Lucian Cucu's lecture - The C
 Programming Language

Recursive functions: possible problems

If

- the recursive call never ends (missing a proper condition!)

or

- the recursive call is performed a large number of times

then, as a consequence, the stack may be exhausted!

In such cases, if

- the code was compiled with the compiler switch "check stack overflow"

the program stops with the error message: "Stack overflow!"

- the code was compiled without the compiler switch "check stack overflow"

the result is impressible!!!

Then, if recursion is less efficient and possibly dangerous,

why use recursion?
Because:

- it is easier to implement
- a certain type of recursive functions (tail-recursive functions) are
 automatically transformable to their iterative equivalent, which is more efficient!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

