Course 9 Properties of Regular Languages

Topics

1) How to prove whether a given language is not regular?

Some languages are not regular

When is a language is regular?
if we are able to construct one of the following: DFA or NFA or ε-NFA or regular expression or grammar of type 3

When is it not?
If we can show that no FA can be built for a language.

How to prove languages are not regular?

What if we cannot come up with any FA?
A) Can it be language that is not regular?
B) Or is it that we tried wrong approaches?

How do we decisively prove that a language is not regular?

[^0]
Example of a non-regular
 language

Let $L=\left\{w \mid w\right.$ is of the form $0^{n} 1^{n}$, for all $\left.n \geq 0\right\}$

- Hypothesis: L is not regular
- Intuitive rationale: How do you keep track of a running count in an FA?
- A more formal rationale:
> By contradition, if L is regular then there should exist a DFA for L.
, Let $\mathrm{k}=$ number of states in that DFA.
, Consider the special word $w=0^{k} 1^{k}=>w \in L$
, DFA is in some state p_{i}, after consuming the first i symbols in w

Uses Pigeon Hole Principle

Rationale...

, Let $\left\{p_{0}, p_{1}, \ldots p_{k}\right\}$ be the sequence of states that the DFA should have visited after consuming the first k symbols in w which is 0^{k}
> But there are only k states in the DFA!
> ==> at least one state should repeat somewhere along the path (by arate)
> ==> Let the repeating state be $p_{i}=p_{j}$ for $i<j$
> ==> We can fool the DFA by inputing $0^{(k-(-i-i))} 1^{k}$ and still get it to accept (note: k-(j-i) is at most $k-1$).
> ==> DFA accepts strings w/ unequal number of 0s and 1 s , implying that the DFA is wrong!

The Pumping Lemma for Regular Languages

What it is?

The Pumping Lemma is a property of all regular languages.

How is it used?

A technique that is used to show that a given language is not regular.
It can not be used to show that a given language is regular.

Pumping Lemma for Regular Languages

Let L be a regular language.
Then there exists some constant \boldsymbol{N} such that for every string $w \in L$ s.t. $|w| \geq N$, there exists x, $y, z, w=x y z$, such that:

1. $y \neq \varepsilon$
2. $|x y| \leq N$
3. For all $k \geq 0$, all strings of the form $x y^{k} z \in L$

This property should hold for all regular languages.
Definition: N is called the "Pumping Lemma Constant"

Pumping Lemma: Proof

- L is regular => it should have a DFA.
- Set N := number of states in the DFA
- Any string $w \in L$, s.t. $|w| \geq N$, should have the form: $w=a_{1} a_{2} \ldots a_{m}$, where $m \geq N$
- Let the states traversed after reading the first N symbols be: $\left\{\mathrm{p}_{0}, \mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{N}}\right\}$
> ==> There are $\mathrm{N}+1 \mathrm{p}$-states, while there are only N DFA states
> ==> at least one state has to repeat i.e, $p_{i}=p_{j}$ where $0 \leq i<j \leq N(b y P H P)$

Pumping Lemma: Proof...

> => We should be able to break w=xyz as follows:
> $x=a_{1} a_{2} . . a_{i}$;
$y=a_{i+1} a_{i+2 . .} a_{J} ; \quad z=a_{J+1} a_{J+2 .} . a_{m}$
> x's path will be $p_{0} . . p_{i}$
, y's path will be $p_{i} p_{i+1} . p_{j}$ (but $p_{i}=p_{j}$ implying a loop)
, z's path will be $p_{j} p_{\mathrm{J}+1} . . \mathrm{p}_{\mathrm{m}}$
, Case k=0

, DFA will reach the accept state p_{m}
, Case k>0
, DFA will loop for y^{k}, and finally reach the accept state p_{m} for z
> In either case, $\mathrm{w}_{\mathrm{k}} \in \mathrm{L}$
This proves part (3) of the lemma

Pumping Lemma: Proof...

For part (1):

- Since $i<j, y \neq \varepsilon$

For part (2):

- By PHP, the repetition of states has to occur within the first N symbols in w
- ==> $|x y| \leq N$

Using P.L. to prove nonregularity

1. L regular $\Rightarrow L$ satisfies P.L.
2. L non-regular \Rightarrow ?
i Idea of 3 :: Instead of proving $A \Rightarrow B$, prove $\neg \mathrm{B} \Rightarrow \neg \mathrm{A}$ (proof by contrapositive)
3. L non-regular $\Longleftarrow L$ does not satisfy P.L.
i.Idea of 3 .: Instead of proving $A \Rightarrow B$, assume A and derive a contradiction, i.e. $\neg B$
4. L regular and L does not satisfy P.L.

Example 1

Claim $L=\left\{w \mid w=0^{n} 1^{n}, n \geq 1\right\}$ is non-regular.

- Proof:

By contradiction, assume L is regular and derive a contradiction

- Then, there exists N s.t. for all $w \in L$. Let $w=0^{N} 1^{N}$
- There exists $x, y, z, w=x y z$, such that:

1. $\mathrm{y} \neq \varepsilon$
2. $|x y| \leq N$
3. For all $k \geq 0$, the string $x y^{k} z$ is also in L

- w satisfies (1) and (2) above but:
(3) does not hold

Example 2

Claim $L_{\text {eq }}=\{w \mid w$ is a binary string with equal number of 1 s and 0 s$\}$ is non-regular.
Assume $\mathrm{L}_{\text {eq }}$ be regular. Then there exists N such that for every string $w \in L$ s.t. $|w| \geq N$, there exists x, y, z with $w=x y z$, such that: (1) $y \neq \varepsilon$, (2) $|x y| \leq N(3)$ Exists $k \geq 0$ and $x y^{k} z \in L$.
Take $N=N^{*}$, and $w=0^{N^{*}} 1^{N^{*}}\left(|w|=2 N^{*} \geq N^{*}\right), w \in L_{\text {eq }}$.
Proof proceeds like in Example 1.

Example 3

Prove $L=\left\{0^{n} 10^{n} \mid n \geq 1\right\}$ is not regular.
Assume $L_{\text {eq }}$ be regular and derive a contradiction. Then there exists N such that for every string $w \in L$ s.t. $|w| \geq N$, there exists x, y, z with $w=x y z$, such that: (1) $y \neq \varepsilon$, (2) $|x y| \leq N(3)$ For all $k \geq 0$, all strings of the form $x y^{k} z \in L$.
Take $N=N^{*}$, and $w=0^{N^{*}} 10^{N^{*}}\left(|w|=2 N^{*}+1 \geq N^{*}\right)$. Then w can be divided into 3 parts: $x=0 \ldots 0$ (length $\mathrm{N}^{*}-2$), $y=01,\left(|x y|=N^{*}-2+2 \leq N^{*}\right), z=0 \ldots 0$ (length $\left.N^{*}\right)$. Then $|x y|=N^{*} \leq N^{*}$. For $k=0$ we have $x z=0 \ldots 0$ (no 1). So not in Leq.
We found a counterexample for which the PL does not hold. Hence $L_{\text {eq }}$ is not regular.

Example 4

Prove $L=\left\{1^{n} \mid n\right.$ is prime $\}$ is not regular.
Assume L_{eq} be regular. Then there exists N such that for every string $w \in L$ s.t. $|w| \geq N$, there exists a way to break w into three parts, $w=x y z$, such that: (1) $y \neq \varepsilon,(2)|x y| \leq N$ (3) For all $k \geq 0$, all strings of the form $x y^{k} z \in L$.
Take $N=p$, and $w=1 p(|w|=p \geq p$ and $p-$ prime $)$. Then w can be divided into 3 parts: $|y|=\mid \geq 1$ (cond. (1) - is satisfied, and assume $|x y|<=p$ s.t. (2) is satisfied).
Trying to prove (3): Let $k=p+1$. We have $\left|x y^{p+1} z\right|=|x y z|+$ $\left|y^{p}\right|=p+p|y|=p(1+|y|)$ which is not always a prime number, e.g. $p=3,|y|=1,\left|x y^{p+1} z\right|=3(1+1)=6$.

[^0]: "The hardest thing of all is to find a black cat in a dark room, especially if there is no cat!" -Confucius

