Course 9 Properties of Regular Languages

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

Topics

How to prove whether a given language is not regular?

Some languages are *not* regular

When is a language is regular? if we are able to construct one of the following: DFA or NFA or ε -NFA or regular expression or grammar of type 3

When is it not? If we can show that no FA can be built for a language. How to prove languages are *not* regular?

What if we cannot come up with any FA?

- A) Can it be language that is not regular?
- B) Or is it that we tried wrong approaches?

How do we *decisively* prove that a language is not regular?

"The hardest thing of all is to find a black cat in a dark room, especially if there is no cat!" -Confucius

Example of a non-regular language

Let L = {w | w is of the form $0^n 1^n$, for all $n \ge 0$ }

- Hypothesis: L is not regular
- Intuitive rationale: How do you keep track of a running count in an FA?

A more formal rationale:

- By contradition, if L is regular then there should exist a DFA for L.
- Let k = number of states in that DFA.
- > Consider the special word w= $0^k 1^k => w \in L$
- DFA is in some state p_i, after consuming the first i symbols in w

Uses Pigeon Hole Principle

- Let {p₀,p₁,... p_k} be the sequence of states that the DFA should have visited after consuming the first k symbols in w which is 0^k
- But there are only k states in the DFA!

Rationale...

- > ==> at least one state should repeat somewhere along the path (by) + Principle)
- ==> Let the repeating state be p_i=p_i for i < j</p>
- > ==> We can fool the DFA by inputing 0^{(k-(j-i))}1^k and still get it to accept (note: k-(j-i) is at most k-1).
- > ==> DFA accepts strings w/ unequal number of 0s and 1s, implying that the DFA is wrong!

The Pumping Lemma for Regular Languages

What it is?

The Pumping Lemma is a property of all regular languages.

How is it used?

A technique that is used to show that a given language is **not** regular.

It can not be used to show that a given language is regular.

Pumping Lemma for Regular Languages

Let L be a regular language.

Then <u>there exists</u> some constant **N** such that <u>for</u> <u>every</u> string $w \in L$ s.t. $|w| \ge N$, <u>there exists</u> x, y, z, w = xyz, such that:

3. For all *k*≥0, all strings of the form $xy^k z \in L$

This property should hold for <u>all</u> regular languages.

Definition: *N* is called the "Pumping Lemma Constant"

Pumping Lemma: Proof

- L is regular => it should have a DFA.
 - Set N := number of states in the DFA
- Any string w∈L, s.t. |w|≥N, should have the form: w=a₁a₂...a_m, where m≥N
- Let the states traversed after reading the first N symbols be: {p₀,p₁,... p_N}
 - > ==> There are N+1 p-states, while there are only N DFA states
 - > ==> at least one state has to repeat i.e, p_i= p_j where 0≤i<j≤N (by PHP)</p>

Pumping Lemma: Proof...

- > => We should be able to break w=xyz as follows:
 - > $x=a_1a_2..a_i$; $y=a_{i+1}a_{i+2}..a_J$; $z=a_{J+1}a_{J+2}..a_m$
 - x's path will be p₀..p_i
 - y's path will be p_i p_{i+1}..p_j (but p_i=p_j implying a loop)
 - z's path will be p_jp_{J+1}..p_m
- Now consider another string w_k=xy^kz , where k≥0
- Case k=0
 - DFA will reach the accept state p_m
- Case k>0
 - DFA will loop for y^k, and finally reach the accept state p_m for z
- ▶ In either case, $w_k \in L$ This proves part (3) of the lemma

Pumping Lemma: Proof...

For part (1):
 Since i<j, y ≠ ε

For part (2):

 By PHP, the repetition of states has to occur within the first N symbols in w

==> |xy|≤N

Using P.L. to prove nonregularity

- *L* regular \Rightarrow *L* satisfies P.L.
- *L* non-regular \Rightarrow ?

Idea of 3.: Instead of proving $A \Rightarrow B$, prove $\neg B \Rightarrow \neg A$ (proof by contrapositive)

3. L non-regular $\leftarrow L$ does not satisfy P.L.

Idea of 3.: Instead of proving $A \Rightarrow B$, assume A and derive a contradiction, i.e. $\neg B$

L regular and *L* does not satisfy P.L.

Note: This N can be anything (need not necessarily be the #states in the DFA.)

Example 1

Claim L = {w | $w = 0^n 1^n$, $n \ge 1$ } is non-regular.

Proof:

By contradiction, assume L is regular and derive a contradiction

- Then, there exists N s.t. for all $w \in L$. Let $w = 0^{N}1^{N}$
- There exists x, y, z, w=xyz, such that:
 - 1. Y≠ *E*
 - 2. **|X**y|≤N
 - 3. For all k \geq 0, the string xy^kz is also in L

• w satisfies (1) and (2) above but:

$$w = 0^{N}1^{N} = 0...00...00...01...1 ==> \#0>\#1$$

 $< x > < y > < - z \longrightarrow$
(3) does not hold $w = 0^{N}1^{N} = 0...01...11...11...1 ==> \#0<\#1$
 $< x > < y > < - z \longrightarrow$
 $w = 0^{N}1^{N} = 0...00..1...0...1...1==> w$ has not the required

snape

Example 2

Claim L_{eq} = {w | w is a binary string with equal number of 1s and 0s} is non-regular.

Assume L_{eq} be regular. Then there exists N such that for every string $w \in L$ s.t. $|w| \ge N$, there exists x, y, z with w=xyz, such that: (1) $y \ne \varepsilon$, (2) $|xy| \le N$ (3) Exists $k\ge 0$ and $xy^kz \in L$. Take N=N^{*}, and $w=0^{N^*}1^{N^*}$ ($|w|=2N^*\ge N^*$), $w \in L_{eq}$. Proof proceeds like in Example 1.

Example 3

Prove L = $\{0^n | n \ge 1\}$ is not regular.

Assume L_{eq} be regular and derive a contradiction. Then there exists N such that for every string $w \in L$ s.t. $|w| \ge N$, there exists x, y, z with w=xyz, such that: (1) $y\neq\epsilon$, (2) $|xy| \le N$ (3) For all k ≥ 0 , all strings of the form $xy^k z \in L$. Take N=N^{*}, and w=0^{N*}10^{N*} ($|w|=2N^*+1\ge N^*$). Then w can be divided into 3 parts: x=0...0 (length N*-2), $y=01,(|xy|=N^*-2+2\le N^*), z=0...0$ (length N*). Then $|xy|=N^{*}\leq N^{*}$. For k=0 we have xz=0...0 (no 1). So not in L_{eq.} We found a counterexample for which the PL does not

hold. Hence L_{eq} is not regular.

Example 4

Prove L = {1ⁿ | n is prime} is not regular.

Assume L_{eq} be regular. Then there exists N such that for every string $w \in L$ s.t. $|w| \ge N$, there exists a way to break w into three parts, w=xyz, such that: (1)y $\ne \epsilon$, (2) $|xy| \le N$ (3) For all k≥0, all strings of the form $xy^kz \in L$.

Take N=p, and w=1^p($|w|=p\ge p$ and p - prime). Then w can be divided into 3 parts: $|y|=l\ge 1$ (cond. (1) – is satisfied, and assume $|xy| \le p$ s.t. (2) is satisfied).

Trying to prove (3): Let k=p+1. We have $|xy^{p+1}z| = |xyz| + |y^p| = p+p|y|=p(1+|y|)$ which is not always a prime number, e.g. p=3, |y|=1, $|xy^{p+1}z|=3(1+1)=6$.