Course 8 Equivalence and Minimization of DFAs

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

Applications of interest

- Comparing two DFAs:
 - L(DFA₁) == L(DFA₂)?

- How to minimize a DFA?
 - 1. Remove unreachable states
 - 2. Identify & condense equivalent states into one

When to call two states in a DFA "equivalent"?

Two states p and q are said to be equivalent iff:

 Any string w accepted by starting at p is also accepted by starting at q;

<u>AND</u>

→ p≡q

 Any string w rejected by starting at p is also rejected by starting at q.

Computing equivalent states in a DFA Table Filling Algorithm

<u>Pass #0</u>

Mark accepting states ≠ non-accepting states

<u>Pass #1</u>

1.

- 1. Compare every pair of states
- 2. Distinguish by one symbol transition
- 3. Mark = or \neq or blank (i.e. can not distinguish)

<u>Pass #2</u>

- 1. Compare every pair of states
- 2. Distinguish by up to two symbol transitions (until different or same or tbd)

А	=							
В	=	I						
С	x	x	Ш					
D	x	x	x	I				
Е	x	X	X	X	II			
F	x	X	X	X	X	II		
G	x	x	x	Π	x	X	II	
Н	x	x	=	x	x	X	X	=
	A	В	С	D	Е	F	G	Η

(keep repeating until table complete) How the table on the right was obtained? Table Filling Algorithm ⁴

Table Filling Algorithm

- Recursive discovery of distinguishable states in a DFA
 - Base case: If p is an accepting state and q is not accepting then the pair {p,q} is distinguishable.
 - Induction: Let p, q be states s.t. for some input symbol a, r = δ (p, a) and s = δ (q, a) are known to be distinguishable. Then the pair {p,q} is distinguishable.

Α	II							
В		Π						
С			=					
D				=				
Е					=			
F						=		
G							Π	
Н								=
	A	В	С	D	Е	F	G	Н

1. Mark X between accepting vs. non-accepting state

- Α = Β = С Х = D Х = Е Х Х Х Х = F X = G Х X = Η Х Х = А В С Е F D G Η
- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

А	=							
В		=						
С	X	X	=					
D	X	X		Ш				
Е	X	X	X	X	II			
F					X	I		
G	X	X			X		Ш	
Н	X	X			Х			=
	A	В	С	D	Е	F	G	Н
		1						

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

- Α = Β = С Х Х = D X Х Х =Е Х X Х Х = F X Х = G Х Х X X = Η X Х Х = Α В С Ε F G Η D
- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

- Α = Β = С Х Х = D X X Х =Е Х Х Х Х = F X Х Х =G X Х Х Χ = Η X X X X = Α С Ε | F G В Η D
- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

- Α = Β = С Х Х = D X X Х =Е Х Х X Х = F X Х Х = G X Х Х Х Х = Η Х X X X Х = = Α С E F В D G Η
- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

- Α = Β = С Х Х = D X X Х =Е Х Х X Х = F X Х Х = G X Х Х Х Х = Η Х X Х X Х Х = = Α С | E | F D В G Η
- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В	=	=						
С	X	X	=					
D	X	X	X	=				
Е	X	X	X	X	=			
F	X	Χ	X	X	X	=		
G	X	X	X	=	X	X	=	
Н	X	X	=	X	X	X	X	=
nas	A	В	С	D	E	F	G	Н

- 1. Mark X between accepting vs. non-accepting state
- 2. Pass 1:

Look 1- hop away for distinguishing states or strings

3. Pass 2:

Look 1-hop away again for distinguishing states or strings continue....

- Α = B = С Х Х = D X Х X = Ε Х Х Х Х = F X Х = G Х X X Χ = Η X Х X Х = F Η Ε G Α В
- 1. Mark X between accepting vs. non-accepting state
- 2. Pass 1:

Look 1- hop away for distinguishing states or strings

3. Pass 2:

Look 1-hop away again for distinguishing states or strings Equivalences: continue....

• D=G

Retrain only one copy for each equivalence set of states

Equivalences:
• A=B
• C=H
• D=G

IC F

(D,G

Table Filling Algorithm – special case

Α	I							
В		=						
С			I					
D				=				
Е				?	=			
F						=		
G							=	
Н								=
	A	В	С	D	Е	F	G	Н

Q) What happens if the input DFA has more than one final state?
Can all final states initially be treated as equivalent to one another?

DFA Minimization by state equivalence method

DFA Minimization with unreacheable states

methods

Putting it all together ...

How to minimize a DFA?

- <u>Goal</u>: Minimize the number of states in a DFA
 Depth-first traversal from the start state
- Algorithm:
 - Eliminate states unreachable from the start state
 - 2. Identify and remove equivalent states
 - 3. Output the resultant DFA

Summary

- Simplification of DFAs
 - How to remove unreachable states?
 - How to identify and collapse equivalent states?
 - How to minimize a DFA?