Course 7
Regular Expressions

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

i Applications of Regular Expressions

Unix environments heavily use regular expressions
= E.g., bash shell, grep, vi & other editors, sed

Perl scripting — good for string processing

Lexical analyzers such as Lex or Flex

Pattern matching (detection of DoS Vulnerabilities in
Java Programs - http://www.cs.utexas.edu/~marijn/publications/evil-

regexes pdf, VW€D programming, Programming web
interfaces)

http://www.cs.utexas.edu/~marijn/publications/evil-regexes.pdf

Regular Expressions vs. Finite

i Automata

= Offers a declarative way to express the pattern of any
string we want to accept

. E.g., 01*10*

= Automata => more machine-like
< input: string , output: [accept/reject] >
= Regular expressions => more program syntax-like

* Regular Expressions

Syntactic
expressions

mata/machines

i Regular Expressions

Let V- alphabet.

The reqular expressions (r.e) are words over the alphabet
VU {3 U{() 0}

Symbols ¢, *, | are considered operators.

Note: The following are equivalent: (1) »and . ; (2) +, U and |.

R.e. are inductivelly defined as:

. Aand @ arer.e.;

». forallaeV,thewordaisr.e.;

5. IfRand S arer.e., then R|S, RS, R* arer.e.;

4. any r.e. is built by applying the rules (1)-(3) finitely many
times.

i Language Operators

= Union of two languages:

= L UM = all strings that are either in L or M (L| M)
= Note: A union of two languages produces a third
language
= Concatenation of two languages:

= L. M = all strings that are of the form xy or x*y
st,xelLandy e M

= The dot operator is usually omitted
= i.e., LM is same as L.M

Kleene Closure (the * operator)

Kleene Closure of a given language L.:

LO= {€}

L= {w | for some w € L}

L2={wqw, | Wy € L, wy, € L (duplicates allowed)}

= L'={wyw,...w;| all W's chosen are € L (duplicates allowed)}
= (Note: the choice of each w; is independent)

« L*=U., Li (arbitrary number of concatenations)
Example:
= LetL={1, 00}
LO= {e}
L1={1,00}
L2={11,100,001,0000}
L3={111,1100,1001,10000,000000,00001,00100,0011}

« L*=oyrLrur2y...

i Building Regular Expressions

= Let E be a reqgular expression and the
language represented by E is L(E)

= Then:
« (E)=E
= L(E|F)=L(E)UL(F)
= L(EF)=L(E) L(F)
L(E7) = (L(E))"

i expressions

a
a
a
a

Simplification of regular

(B16) = (a|p)|6
B =Fla
0=«

a=aq

a(Bé) = (aB)d
al = Ala = «a
a(B|6) = aflad
(a|B)d = ad|fd
aD =0a=0

s Ataa"=a
s At+ta'a=a

i Examples: RE to language

. R =(a|b). Then L(R) = L(alb) = L(a)UL(b) = {a} U {b}={a, b}

2 R =(ab). Then L(R) = L(a)L(b) = {a}{b}

5. R =a(bla). Then L(R) = a{b,a} = {ab, aa}

+ R=a".ThenL(R) = URo{a’} ={La,a?% ..} ={we{a*}}={a"n =0}
5. R=(alb)". Then L(R) = (Lo U Lp)"=({a} U {b})"=({a, b})"

& R =a(alb)". Then L(R) = a({a,b})" = {aw|w € {a, b}"}

7 R=(bla)*a. Then L(R) = ({b,a})"a = {walw € {a, b}"}

. R =a(alb|c)*c. Then L(R) = {awc|w € {a, b, c}"}

o R =a(alb)(alb|c)*. Then L(R) = {aaw,abw|w € {a,b,c}'} = {w € {a,b,c}* —

w contains at least one a}
0. R = (alb|c)*b(a|b|c)*. Then L(R) = ({a,b,c})*b({a,b,c})"
1z R =b(blalb)c. Then L(R) = b{b,a}c = {bb,ba}c = {bbc, bac}

10

i Examples: language to RE

L(R) = {w ends with b and contains at least one a}.

R = (a|b)*a(alb)*b
L(R) = {wword of a’s and b's even length}.

R = ((alb)(alb))’
L(R) = {wword of a’s and b's with odd number of b's}.

R = (alb)((alb)(alb))”

L(R) = {w € {a, b}, w ends with aa or bb}.

R = (a|b)*(aa|bb)
L(R) = {w € {1,0}*,w has alternating 0's and 1's}. (Bonus)
L(R) = {w € {a, b}, |w| = 1 mod 4}. (Bonus)

11

i Precedence of Operators

= Highest to lowest
= * operator (star)

= . (concatenation)
= | operator

= Example:
= 01% | 1

(0.((1)"))] 1

12

Finite Automata (FA) & Regular
Expressions

= [0 show that they are interchangeable,
consider the following theorems:

Proofs » Kleene Theorem part 1: For every DFA A there

in the book

Introduction to exists ar.e. R such that L(R)=L(A).

Automata Theory

conguagesarnd o Kleene Theorem part 2: For every r. e. R there

Computation by

Hoparof, Motwani exists an ¢ -NFA E such that L(E)=L(R).

Ullman
CeNFAD C_NFA

Theorem 2 \ Kleene Theorem

Theorem 1

13

2lrs Theorem@
DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once)
from the start state to each of the final states
and enumerate all the expressions along the way

Example:

1 0
\ C\

1*) 0O (O 1 O+1)
N AN ~ A_Y_) - ~ S
1* 00* 1 (0+1)

@ Q) What is the language?

1*00*1(0[1)* .

@gEX/Theorem>@
RE to e-NFA construction

= Given ar.e., we can always built an e-NFA recognizing L(r.e.) using

the following diagrams.
*-@® 2@ o @

e-NFA recogn. lang. ¢ e-NFArecogn. word. a e-NFArecogn. lang. ¢

V‘ k@ —~@RrRO-0Os @

e-NFA recogn. lang. RS; R,S —r.e.

e-NFA recogn. Iang. R|S, R,S —r.e.

e-NFA recogn. lang. R*; R—r.e.

15

> -NFA
@(‘EEX/Theorem @

* RE to e-NFA construction

Example: (0+1)*01(0+1)*

(011)* 01 (011)*

16

i Other examples

Construct e-NFA for the following r.e.:
= al|b|c

O iolma

= (@"b)|c”

o (a|b)b*

(see whiteboard)

17

i Summary

= Regular expressions
= Equivalence to finite automata
= DFA to regular expression conversion

= Regular expression to e-NFA
conversion

18

