Course 7 Regular Expressions

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

Applications of Regular Expressions

- Unix environments heavily use regular expressions
 - E.g., bash shell, grep, vi & other editors, sed
- Perl scripting good for string processing
- Lexical analyzers such as Lex or Flex
- Pattern matching (detection of DoS Vulnerabilities in Java Programs - <u>http://www.cs.utexas.edu/~marijn/publications/evil-</u> regexes.pdf, Web programming, Programming web interfaces)

Regular Expressions vs. Finite Automata

- Offers a declarative way to express the pattern of any string we want to accept
 - E.g., 01*|10*
- Automata => more machine-like < input: string , output: [accept/reject] >
- Regular expressions => more program syntax-like

Regular Expressions

Let V- alphabet.

The *regular expressions (r.e)* are words over the alphabet $V \cup \{\bullet, *, |\} \cup \{(,), \emptyset\}$.

Symbols •, *, | are considered operators.

Note: The following are equivalent: (1) • and .; (2) +, U and |.

R.e. are inductively defined as:

- 1. λ and \emptyset are r.e.;
- 2. for all $a \in V$, the word a is r.e.;
- if R and S are r.e., then $R|S, R \bullet S, R^*$ are r.e.;
- any r.e. is built by applying the rules (1)-(3) finitely many times.

Language Operators

- Union of two languages:
 - L U M = all strings that are either in L or M (L|M)
 - <u>Note</u>: A union of two languages produces a third language
- Concatenation of two languages:
 - L.M = all strings that are of the form xy or x•y
 s.t., x ∈ L and y ∈ M
 - The *dot* operator is usually omitted
 - i.e., LM is same as L.M

"i" here refers to how many strings to concatenate from the parent language L to produce strings in the language Lⁱ

Kleene Closure (the * operator)

- Kleene Closure of a given language L:
 - L⁰= {ɛ}
 - $L^1 = \{ w \mid \text{for some } w \in L \}$
 - L^2 = { $w_1w_2 | w_1 \in L, w_2 \in L$ (duplicates allowed)}
 - \dot{L}^{i} = { $w_1 w_2 ... w_i$ | all w's chosen are $\in L$ (duplicates allowed)}
 - (Note: the choice of each w_i is independent)
 - $L^* = \bigcup_{i \ge 0} L^i$ (arbitrary number of concatenations)

Example:

- Let L = { 1, 00}
 - L⁰= {ɛ}
 - L¹= {1,00}
 - L²= {11,100,001,0000}
 - $L^{3} = \{111, 1100, 1001, 10000, 000000, 00001, 00100, 0011\}$
 - $L^* = L^0 U L^1 U L^2 U ...$

Building Regular Expressions

- Let E be a regular expression and the language represented by E is L(E)
- Then:
 - (E) = E
 - L(E | F) = L(E) U L(F)
 - L(E F) = L(E) L(F)
 - L(E*) = (L(E))*

Simplification of regular expressions

- $\alpha | (\beta | \delta) \equiv (\alpha | \beta) | \delta$
- $\alpha | \beta \equiv \beta | \alpha$
- $\alpha \mid \phi \equiv \alpha$
- $\alpha | \alpha \equiv \alpha$
- $\alpha(\beta\delta) \equiv (\alpha\beta)\delta$
- $\alpha\lambda \equiv \lambda\alpha \equiv \alpha$
- $\alpha(\beta|\delta) \equiv \alpha\beta|\alpha\delta$
- $(\alpha|\beta)\delta \equiv \alpha\delta|\beta\delta$
- $\alpha \emptyset \equiv \emptyset \alpha \equiv \emptyset$

- $\lambda + \alpha \alpha^* \equiv \alpha^*$
- $\lambda + \alpha^* \alpha \equiv \alpha^*$

...

Examples: RE to language

- 1. R = (a|b). Then $L(R) = L(a|b) = L(a)UL(b) = \{a\} \cup \{b\} = \{a, b\}$
- 2. R = (ab). Then $L(R) = L(a)L(b) = \{a\}\{b\}$
- 3. R = a(b|a). Then $L(R) = a\{b, a\} = \{ab, aa\}$
- 4. $R = a^*$. Then $L(R) = \bigcup_{j=0}^{\infty} \{a^j\} = \{\lambda, a, a^2, ...\} = \{w \in \{a^*\}\} = \{a^n | n \ge 0\}$
- 5. $R = (a|b)^*$. Then $L(R) = (L_a \cup L_b)^* = (\{a\} \cup \{b\})^* = (\{a, b\})^*$
- 6. $R = a(a|b)^*$. Then $L(R) = a(\{a, b\})^* = \{aw|w \in \{a, b\}^*\}$
- *z* $R = (b|a)^*a$. Then $L(R) = (\{b, a\})^*a = \{wa|w \in \{a, b\}^*\}$
- 8. $R = a(a|b|c)^*c$. Then $L(R) = \{awc | w \in \{a, b, c\}^*\}$
- 9. $R = a(a|b)(a|b|c)^*$. Then $L(R) = \{aaw, abw|w \in \{a, b, c\}^*\} = \{w \in \{a, b, c\}^* w \text{ contains at least one } a\}$
- 10. $R = (a|b|c)^*b(a|b|c)^*$. Then $L(R) = (\{a, b, c\})^*b(\{a, b, c\})^*$
- 11. R = b(b|a|b)c. Then $L(R) = b\{b, a\}c = \{bb, ba\}c = \{bbc, bac\}$

Examples: language to RE

- $L(R) = \{w \text{ ends with } b \text{ and contains at least one } a\}.$ $R = (a|b)^*a(a|b)^*b$
- $L(R) = \{w \text{ word of } a's \text{ and } b's \text{ even length}\}.$ $R = ((a|b)(a|b))^*$
- $L(R) = \{w \text{ word of } a's \text{ and } b's \text{ with odd number of } b's\}.$ $R = (a|b)((a|b)(a|b))^*$
- $L(R) = \{w \in \{a, b\}, w \text{ ends with } aa \text{ or } bb\}.$ $R = (a|b)^*(aa|bb)$
- $L(R) = \{w \in \{1,0\}^*, w \text{ has alternating } 0's \text{ and } 1's\}$. (Bonus)
- $L(R) = \{w \in \{a, b\}, |w| \equiv 1 \mod 4\}$. (Bonus)

Precedence of Operators

- Highest to lowest
 - * operator (star)
 - . (concatenation)
 - operator

Example:

 $\bullet 01^* | 1 = (0.((1)^*)) | 1$

Finite Automata (FA) & Regular Expressions

To show that they are interchangeable, consider the following theorems:

Proofs in the book Introduction to Automata Theory Languages and Computation by Hopcrof, Motwani, Ullman

- Kleene Theorem part 1: For every DFA A there exists a r.e. R such that L(R)=L(A).
- <u>Kleene Theorem part 2</u>: For every r. e. R there exists an ε -NFA E such that L(E)=L(R).

DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once) from the start state to *each of the* final states and enumerate all the expressions along the way

Other examples

Construct ϵ -NFA for the following r.e.:

- a|b|c
- io|ma
- (a*b)|c*
- (a|b)b*

(see whiteboard)

Summary

- Regular expressions
- Equivalence to finite automata
- DFA to regular expression conversion
- Regular expression to ε-NFA conversion