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Course 7
Regular Expressions

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm
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Applications of Regular Expressions
n Unix environments heavily use regular expressions 

n E.g., bash shell, grep, vi & other editors, sed
n Perl scripting – good for string processing
n Lexical analyzers such as Lex or Flex
n Pattern matching (detection of DoS Vulnerabilities in 

Java Programs - http://www.cs.utexas.edu/~marijn/publications/evil-

regexes.pdf, Web programming, Programming web 
interfaces)

http://www.cs.utexas.edu/~marijn/publications/evil-regexes.pdf
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Regular Expressions vs. Finite 
Automata
n Offers a declarative way to express the pattern of any 

string we want to accept
n E.g., 01*|10*

n Automata => more machine-like 
< input: string  , output: [accept/reject]  >

n Regular expressions => more program syntax-like
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Regular Expressions

Regular 
expressions

Finite Automata
(DFA, NFA, e-NFA)

Regular
Languages

=

Automata/machines
Syntactical 
expressions

Formal language 
classes
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Regular Expressions
Let 𝑉- alphabet. 
The regular expressions (r.e) are words over the alphabet
𝑉 ∪ {•,∗, |} ∪ {(, ), ∅}.
Symbols •, ∗, | are considered operators.
Note: The following are equivalent: (1) • and . ; (2) +, U and |.
R.e. are inductivelly defined as:
1. 𝜆 and ∅ are r.e.; 
2. for all a ∈ 𝑉, the word a is r.e.; 
3. if 𝑅 and 𝑆 are r.e., then 𝑅|𝑆, 𝑅•S, 𝑅∗ are r.e.;
4. any r.e. is built by applying the rules (1)-(3) finitely many 

times.
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Language Operators
n Union of two languages:

n L U M = all strings that are either in L or M (L|𝑀)
n Note: A union of two languages produces a third 

language
n Concatenation of two languages:

n L . M = all strings that are of the form xy or 𝑥•𝑦
s.t., x Î L and y Î M

n The dot operator is usually omitted 
n i.e., LM is same as L.M
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Kleene Closure (the * operator)
n Kleene Closure of a given language L:

n L0= {e}
n L1= {w | for some w Î L}
n L2= { w1w2 | w1 Î L, w2 Î L (duplicates allowed)}
n Li= { w1w2…wi | all w’s chosen are Î L (duplicates allowed)}
n (Note: the choice of each wi is independent)
n L* = Ui≥0 Li (arbitrary number of concatenations)

Example:
n Let L = { 1, 00}

n L0= {e}
n L1= {1,00}
n L2= {11,100,001,0000}
n L3= {111,1100,1001,10000,000000,00001,00100,0011}
n L* = L0 U L1 U L2 U …

“i” here refers to how many strings to concatenate from the parent 
language L to produce strings in the language Li
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Building Regular Expressions 
n Let E be a regular expression and the 

language represented by E is L(E)
n Then:

n (E) = E
n L(E | F) = L(E) U L(F)
n L(E F) = L(E) L(F)
n L(E*) = (L(E))*



Simplification of regular 
expressions

n 𝛼| 𝛽|𝛿 ≡ 𝛼|𝛽 |𝛿
n 𝛼|𝛽 ≡ 𝛽|𝛼
n 𝛼| ∅ ≡ 𝛼
n 𝛼|𝛼 ≡ 𝛼
n 𝛼 𝛽𝛿 ≡ 𝛼𝛽 𝛿
n 𝛼𝜆 ≡ 𝜆𝛼 ≡ 𝛼
n 𝛼 𝛽|𝛿 ≡ 𝛼𝛽|𝛼𝛿
n (𝛼|𝛽)𝛿 ≡ 𝛼𝛿|𝛽𝛿
n 𝛼∅ ≡ ∅𝛼 ≡ ∅

n 𝜆 + 𝛼𝛼∗ ≡ 𝛼∗

n 𝜆 + 𝛼∗𝛼 ≡ 𝛼∗

n …
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Examples: RE to language
1. 𝑅 = (𝑎|𝑏). Then L 𝑅 = 𝐿 𝑎 𝑏 = 𝐿 𝑎 U𝐿 𝑏 = {𝑎} ∪ {𝑏}= {𝑎, 𝑏}
2. 𝑅 = (𝑎𝑏). Then L 𝑅 = 𝐿 𝑎 𝐿(𝑏) = 𝑎}{𝑏
3. 𝑅 = 𝑎(𝑏|𝑎). Then L 𝑅 = 𝑎 𝑏, 𝑎 = 𝑎𝑏, 𝑎𝑎
4. 𝑅 = 𝑎∗. Then L 𝑅 = ⋃"#$% {𝑎"} = {𝜆, 𝑎, 𝑎&, … } = {𝑤 ∈ {𝑎∗}} = {𝑎'|𝑛 ≥ 0}
5. 𝑅 = (𝑎|𝑏)∗. Then L 𝑅 = (𝐿( ∪ 𝐿))∗=({𝑎} ∪ {𝑏})∗=({𝑎, 𝑏})∗

6. 𝑅 = 𝑎(𝑎|𝑏)∗. Then L 𝑅 = 𝑎({𝑎, 𝑏})∗ = 𝑎𝑤 𝑤 ∈ 𝑎, 𝑏 ∗

7. 𝑅 = (𝑏|𝑎)∗𝑎. Then L 𝑅 = ({𝑏, 𝑎})∗𝑎 = 𝑤𝑎 𝑤 ∈ 𝑎, 𝑏 ∗

8. 𝑅 = 𝑎(𝑎|𝑏|𝑐)∗𝑐. Then L 𝑅 = 𝑎𝑤𝑐 𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗

9. 𝑅 = 𝑎(𝑎|𝑏)(𝑎|𝑏|𝑐)∗. Then L 𝑅 = 𝑎𝑎𝑤, 𝑎𝑏𝑤 𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗ = {
}

𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗ −
𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑎

10. 𝑅 = (𝑎|𝑏|𝑐)∗𝑏(𝑎|𝑏|𝑐)∗. Then L 𝑅 = ({𝑎, 𝑏, 𝑐})∗𝑏({𝑎, 𝑏, 𝑐})∗

11. 𝑅 = 𝑏 𝑏 𝑎 𝑏 𝑐. Then L 𝑅 = 𝑏 𝑏, 𝑎 𝑐 = 𝑏𝑏, 𝑏𝑎 𝑐 = 𝑏𝑏𝑐, 𝑏𝑎𝑐
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Examples: language to RE
n L R = 𝑤 𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 𝑏 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑎 .

𝑅 = 𝑎 𝑏 ∗𝑎 𝑎 𝑏 ∗𝑏
n L R = 𝑤 𝑤𝑜𝑟𝑑 𝑜𝑓 𝑎*𝑠 𝑎𝑛𝑑 𝑏*𝑠 𝑒𝑣𝑒𝑛 𝑙𝑒𝑛𝑔𝑡ℎ .

𝑅 = ( 𝑎 𝑏 (𝑎|𝑏))∗

n L R = 𝑤 𝑤𝑜𝑟𝑑 𝑜𝑓 𝑎*𝑠 𝑎𝑛𝑑 𝑏*𝑠 𝑤𝑖𝑡ℎ 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏*𝑠 .
𝑅 = 𝑎 𝑏 ( 𝑎 𝑏 (𝑎|𝑏))∗

n L R = 𝑤 ∈ 𝑎, 𝑏 , 𝑤 𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 𝑎𝑎 𝑜𝑟 𝑏𝑏 .
𝑅 = 𝑎 𝑏 ∗(𝑎𝑎|𝑏𝑏)

n L R = 𝑤 ∈ 1,0 ∗, 𝑤 ℎ𝑎𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 0*𝑠 𝑎𝑛𝑑 1*𝑠 . (Bonus)
n L R = 𝑤 ∈ 𝑎, 𝑏 , 𝑤 ≡ 1 𝑚𝑜𝑑 4 . (Bonus)



12

Precedence of Operators
n Highest to lowest

n * operator (star)

n . (concatenation) 
n | operator

n Example: 
n 01* | 1 = ( 0 . ((1)*) ) |  1
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Finite Automata (FA) & Regular 
Expressions
n To show that they are interchangeable, 

consider the following theorems:
n Kleene Theorem part 1: For every DFA A there 

exists a r.e. R such that L(R)=L(A).
n Kleene Theorem part 2: For every r. e. R there 

exists an e -NFA E such that L(E)=L(R).

e -NFA NFA

DFAReg Ex

Theorem 2

Theorem 1

Proofs 
in the book 
Introduction to 
Automata Theory 
Languages and 
Computation by 
Hopcrof, Motwani, 
Ullman

Kleene Theorem
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DFA to RE construction
Reg ExDFA Theorem 1

Example:

q0 q1 q20 1

1 0 0,1

(1*) 0 (0*) 1 (0 + 1)*

Informally, trace all distinct paths (traversing cycles only once) 
from the start state to each of the final states 
and enumerate all the expressions along the way

1*00*1(0|1)*

00* 1* 1 (0+1)*

Q) What is the language?



RE to e-NFA construction 
n Given a r.e., we can always built an e-NFA recognizing L(r.e.) using 

the following diagrams.
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e -NFAReg Ex Theorem 2

R

S

e

e

e

e

a

e-NFA recogn. lang. e

e

e-NFA recogn. word. a e-NFA recogn. lang. ∅

e-NFA recogn. lang. R|S; R,S – r.e.

ee

e

e

R Se

e-NFA recogn. lang. RS; R,S – r.e.

R
e-NFA recogn. lang. R*; R– r.e.



16

RE to e-NFA construction 
e -NFAReg Ex Theorem 2

Example: (0+1)*01(0+1)*

0

1

e

e

e

e

e

e

e 0 1

(0|1)* 01 (0|1)*

e e
0

1

e

e

e

e

e

e

e ee
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Other examples
Construct e-NFA for the following r.e.:
n a|b|c
n io|ma
n (a*b)|c*
n (a|b)b*
(see whiteboard)
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Summary
n Regular expressions 
n Equivalence to finite automata
n DFA to regular expression conversion
n Regular expression to e-NFA 

conversion


