Course 7 Regular Expressions

Applications of Regular Expressions

- Unix environments heavily use regular expressions
- E.g., bash shell, grep, vi \& other editors, sed
- Perl scripting - good for string processing
- Lexical analyzers such as Lex or Flex
- Pattern matching (detection of DoS Vulnerabilities in Java Programs - nttp://www.cs.utexas.edu/~marijn/publications/evilregexes.pdf, Web programming, Programming web interfaces)

Regular Expressions vs. Finite Automata

- Offers a declarative way to express the pattern of any string we want to accept
- E.g., 01*| 10^{*}
- Automata => more machine-like
< input: string, output: [accept/reject] >
- Regular expressions => more program syntax-like

Regular Expressions

Regular Expressions

Let V - alphabet.
The regular expressions (r.e) are words over the alphabet $V \cup\{0, *, \mid\} \cup\{(),, \varnothing\}$.
Symbols •, *, | are considered operators.
Note: The following are equivalent: (1) • and . ; (2) +, U and |.
R.e. are inductivelly defined as:

1. λ and \emptyset are r.e.;
2. for all $\mathrm{a} \in V$, the word a is r.e.;
3. if R and S are r.e., then $R \mid S, R \cdot S, R^{*}$ are r.e.;
4. any r.e. is built by applying the rules (1)-(3) finitely many times.

Language Operators

- Union of two languages:
- L U M = all strings that are either in L or M (L|M)
- Note: A union of two languages produces a third language
- Concatenation of two languages:
- L. M = all strings that are of the form $x y$ or $x \cdot y$ s.t., $x \in L$ and $y \in M$
- The dot operator is usually omitted
- i.e., LM is same as L.M

Kleene Closure (the * operator)

Kleene Closure of a given language L :

- $\mathrm{L}^{0}=\{\varepsilon\}$
$L^{1}=\{w \mid$ for some $w \in L\}$
- $L^{2}=\left\{w_{1} w_{2} \mid w_{1} \in L, w_{2} \in L\right.$ (duplicates allowed) $\}$
- $L^{i}=\left\{w_{1} w_{2} \ldots w_{i} \mid\right.$ all w's chosen are $\in L$ (duplicates allowed) $\}$
- (Note: the choice of each w_{i} is independent)
- $L^{*}=\bigcup_{i \geq 0} L^{i}$ (arbitrary number of concatenations)

Example:

- Let $\mathrm{L}=\{1,00\}$
- $\mathrm{L}^{0}=\{\varepsilon\}$
- $L^{1}=\{1,00\}$
- $L^{2}=\{11,100,001,0000\}$
- $L^{3}=\{111,1100,1001,10000,000000,00001,00100,0011\}$
- $L^{*}=L^{0} \bigcup L^{1} \bigcup L^{2} \bigcup \ldots$

Building Regular Expressions

- Let E be a regular expression and the language represented by E is $L(E)$
- Then:
- (E) = E
- $L(E \mid F)=L(E) U L(F)$
- $L(E F)=L(E) L(F)$
- $L\left(E^{*}\right)=(L(E))^{*}$

Simplification of regular expressions

- $\alpha|(\beta \mid \delta) \equiv(\alpha \mid \beta)| \delta$
- $\alpha|\beta \equiv \beta| \alpha$
- $\alpha \mid \varnothing \equiv \alpha$
- $\alpha \mid \alpha \equiv \alpha$
- $\alpha(\beta \delta) \equiv(\alpha \beta) \delta$
- $\alpha \lambda \equiv \lambda \alpha \equiv \alpha$
- $\alpha(\beta \mid \delta) \equiv \alpha \beta \mid \alpha \delta$
- $(\alpha \mid \beta) \delta \equiv \alpha \delta \mid \beta \delta$
- $\alpha \emptyset \equiv \emptyset \alpha \equiv \emptyset$
- $\lambda+\alpha \alpha^{*} \equiv \alpha^{*}$
- $\lambda+\alpha^{*} \alpha \equiv \alpha^{*}$
- ...

Examples: RE to language

1. $\quad R=(a \mid b)$. Then $\mathrm{L}(R)=L(a \mid b)=L(a) \cup L(b)=\{a\} \cup\{b\}=\{a, b\}$
2. $\quad R=(a b)$. Then $\mathrm{L}(R)=L(a) L(b)=\{a\}\{b\}$
3. $\quad R=a(b \mid a)$. Then $\mathrm{L}(R)=a\{b, a\}=\{a b, a a\}$
4. $R=a^{*}$. Then $\mathrm{L}(R)=\cup_{j=0}^{\infty}\left\{a^{j}\right\}=\left\{\lambda, a, a^{2}, \ldots\right\}=\left\{w \in\left\{a^{*}\right\}\right\}=\left\{a^{n} \mid n \geq 0\right\}$
5. $\quad R=(a \mid b)^{*}$. Then $\mathrm{L}(R)=\left(L_{a} \cup L_{b}\right)^{*}=(\{a\} \cup\{b\})^{*}=(\{a, b\})^{*}$
6. $\quad R=a(a \mid b)^{*}$. Then $\mathrm{L}(R)=a(\{a, b\})^{*}=\left\{a w \mid w \in\{a, b\}^{*}\right\}$
7. $\quad R=(b \mid a)^{*} a$. Then $\mathrm{L}(R)=(\{b, a\})^{*} a=\left\{w a \mid w \in\{a, b\}^{*}\right\}$
8. $R=a(a|b| c)^{*} c$. Then $\mathrm{L}(R)=\left\{a w c \mid w \in\{a, b, c\}^{*}\right\}$
9. $\quad R=a(a \mid b)(a|b| c)^{*}$. Then $\mathrm{L}(R)=\left\{a a w, a b w \mid w \in\{a, b, c\}^{*}\right\}=\left\{w \in\{a, b, c\}^{*}-\right.$ w contains at least one a\}
10. $R=(a|b| c)^{*} b(a|b| c)^{*}$. Then $\mathrm{L}(R)=(\{a, b, c\})^{*} b(\{a, b, c\})^{*}$
11. $R=b(b|a| b) c$. Then $L(R)=b\{b, a\} c=\{b b, b a\} c=\{b b c, b a c\}$

Examples: language to RE

- $\mathrm{L}(\mathrm{R})=\{w$ ends with b and contains at least one $a\}$.

$$
R=(a \mid b)^{*} a(a \mid b)^{*} b
$$

- $\mathrm{L}(\mathrm{R})=\left\{w\right.$ word of a^{\prime} s and b^{\prime} s even length $\}$.

$$
R=((a \mid b)(a \mid b))^{*}
$$

- $\mathrm{L}(\mathrm{R})=\left\{w\right.$ word of $a^{\prime} s$ and $b^{\prime} s$ with odd number of $\left.b^{\prime} s\right\}$.

$$
R=(a \mid b)((a \mid b)(a \mid b))^{*}
$$

- $\mathrm{L}(\mathrm{R})=\{w \in\{a, b\}, w$ ends with a a or $b b\}$.

$$
R=(a \mid b)^{*}(a a \mid b b)
$$

- $\mathrm{L}(\mathrm{R})=\left\{w \in\{1,0\}^{*}, w\right.$ has alternating 0^{\prime} s and $\left.1^{\prime} s\right\}$. (Bonus)
- $\mathrm{L}(\mathrm{R})=\{w \in\{a, b\},|w| \equiv 1 \bmod 4\}$. (Bonus)

Precedence of Operators

- Highest to lowest
- * operator (star)
- . (concatenation)
- | operator
- Example:
- 01* $\left|1=\left(0 .\left((1)^{*}\right)\right)\right| 1$

Finite Automata (FA) \& Regular Expressions

- To show that they are interchangeable, consider the following theorems:

Proofs
in the book Introduction to Automata Theory Languages and Computation by Hopcrof, Motwani, Ullman

- Kleene Theorem part 1: For every DFA A there exists a r.e. R such that $L(R)=L(A)$.
- Kleene Theorem part 2: For every r. e. R there exists an ε-NFA E such that $L(E)=L(R)$.

Kleene Theorem

Theorem 1

DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once) from the start state to each of the final states and enumerate all the expressions along the way

Example:

Q) What is the language?

Reg Ex

RE to ε-NFA construction

- Given a r.e., we can always built an ε-NFA recognizing L(r.e.) using the following diagrams.

ε-NFA recogn. lang. ε

ε-NFA recogn. word. a ε-NFA recogn. lang. \varnothing

ε-NFA recogn. lang. $R \mid S ; R, S$ - r.e.

Reg Ex

RE to ε-NFA construction

Example: $\quad(0+1)^{*} 01(0+1)^{*}$
(0|1)*
01
(0|1) ${ }^{*}$

Other examples

Construct ε-NFA for the following r.e.:

- a|b|c
- io|ma
- (a*b)|c*
- (a|b)b*
(see whiteboard)

Summary

- Regular expressions
- Equivalence to finite automata
- DFA to regular expression conversion
- Regular expression to ε-NFA conversion

