Course 6 Finite Automata/Finite State Machines

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

FA with ε-Transitions

- We can allow <u>explicit</u> ϵ -transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol (then an NFA is allowed to make a transition spontaneously, without receiving an input symbol).
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

ε -NFAs have one more column in their transition table

Example of an ε-NFA

 $L = \{w \mid w \text{ is empty, } \underline{or} \text{ if non-empty will end in } 01\}$

ε-closure of a state q, **ECLOSE(q)**, is the set of all states (including itself) that can be *reached* from q by repeatedly making an arbitrary number of ϵ transitions (all states reached by making an ε transition). 3

 $L = \{w \mid w \text{ is empty, or if non-empty will end in } 01\}$

To simulate any transition: Step 1) Go to all immediate destination states. Step 2) From there go to all their ε-closure states as well.

Example of another ε-NFA

Equivalency of DFA, NFA, ϵ -NFA

• <u>Theorem:</u> A language L is accepted by some ε -NFA if and only if L is accepted by some DFA ($L(DFA) = L(\varepsilon$ -NFA)).

- We have:
 - DFA \equiv NFA $\equiv \varepsilon$ -NFA
 - (all accept Regular Languages)

Equivalency of DFA, NFA, ε-NFA (cont'd)

- **Direction**: $L(DFA) \subseteq L(\varepsilon NFA)$. We turn a DFA into a εNFA by adding transitions $\delta(q, \varepsilon) = \emptyset$ for each $q \in Q$ (states of the DFA).
- **Direction**: $L(DFA) \supseteq L(\epsilon NFA)$ (see next slide).

Eliminating ε -transitions

Let $E = \{Q_F, \Sigma, \delta_F, q_0, F_F\}$ be an ε -NFA <u>Goal</u>: To build DFA D={ $Q_D, \sum, \delta_D, \{q_D\}, F_D$ } s.t. L(D) = L(E)

Construction:

- $Q_{\rm D}$ = all reachable subsets of $Q_{\rm F}$ factoring in ε -closures 1.
- 2. $q_D = ECLOSE(q_0)$
- 3. F_D = subsets S in Q_D s.t. $S \cap F_F \neq \Phi$
- 4. $\delta_{\rm D}$: for each subset S of Q_F and for each input symbol $a \in \Sigma$:
 - Let $R = U \delta_E(p,a)$ // go to destination states p in s

 $\delta_{D}(S,a) = U ECLOSE(r) // from there, take a union$ of all their ε -closures

Eliminating *ɛ*-transitions (cont'd)

In other words:

- 1. Compute all ϵ -closures of all states of the ϵ -NFA
- 2. Compute a transition table T of the ε -NFA
- 3. From T compute the DFA transition table from the first state and take the resulting states as the next state in each step.

Example 1: ε-NFA → DFA

 $L = \{w \mid w \text{ is empty, or if non-empty will end in } 01\}$

	δ_{E}	0	1	3
\rightarrow	*q' ₀	Ø	Ø	${q'_0, q_0}$
	\mathbf{q}_0	${q_0,q_1}$	{q ₀ }	{q ₀ }
	q ₁	Ø	{q ₂ }	{q₁}
	*q ₂	Ø	Ø	{q ₂ }

δ_{D}	0	1
<pre>*{q'0,q0}</pre>	$\emptyset \cup \{q_0,q_1\}$	Ø∪{q₀}
${q_0, q_1}$	{q₀,q₁}∪Ø	${q_0}U{q_2}$
{q ₀ }	${q_0, q_1}$	{q ₀ }
*{ q_0, q_2 }	{q₀,q₁}∪Ø	{q₀}∪Ø

Example 2: ε-NFA → DFA

Summary

- ε-NFA conversion
- **Expresive** power of ε-NFAs and DFAs.