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Course 5
Finite Automata/Finite State 
Machines

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm
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DFA vs. NFA
n DFA
1. All transitions are 

deterministic
n Each transition leads to 

exactly one state
2. For each state, transition on 

all possible symbols 
(alphabet) should be defined

3. Accepts input if the last state 
visited is in F

4. Sometimes harder to 
construct because of the 
number of states

n NFA
1. Some transitions could be 

non-deterministic
n A transition could lead to a 

subset of states
2. Not all symbol transitions 

need to be defined explicitly (if 
undefined will go to an error 
state – this is just a design 
convenience, not to be 
confused with “non-
determinism”)

3. Accepts input if one of the last 
states is in F

4. Generally easier than a DFA 
to construct

But, DFAs and NFAs are equivalent in their power to capture languages !!
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Finite Automaton (FA)
Construct DFA and NFA for recognizing the language:

𝐿 𝐴𝐹 = 𝑎𝑤𝑎 𝑤 ∈ {𝑏, 𝑐}∗ }
Solution: see whiteboard.

In many cases it is easier to construct the NFA for a language.

Theorem:
A language L is accepted by a DFA if and only if it is accepted by an NFA.
Proof. later
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Examples of NFA for different 
types of languages

1. 𝐿 𝐴𝐹 = {𝑎𝑏! 𝑛 ≥ 0 ∪ {𝑎𝑏!𝑎𝑏" 𝑛,𝑚 ≥ 0 (Union of languages)
2. 𝐿 𝐴𝐹 = 𝐼𝐹, 𝐹𝑂𝑅, 𝐹𝑂𝑅𝐾 (Generation of finite language)
3. 𝐿 𝐴𝐹 = {𝑎! | 𝑛 ≥ 1}, 𝐿 𝐴𝐹 = {𝑎! 𝑛 ≥ 0 (Repetition of symbols)
4. 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗ , 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 𝑎, 𝑏, 𝑐 $ (Mix of letters)
5. 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 0,… , 9 ∗, 𝑤 𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 0
6. 𝐿 𝐴𝐹 = 𝑎!𝑏"𝑐%|𝑚, 𝑛, 𝑘 ≥ 1
7. 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 0,1 ∗, 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑜𝑛𝑒 1
8. 𝐿 𝐴𝐹 = 𝑤 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑠 𝑎𝑛𝑑 𝑎𝑛𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1
9. 𝐿 𝐴𝐹 = 𝑤𝑎𝑏𝑎𝑤 𝑤 ∈ {𝑎, 𝑏, 𝑐}∗ }
10. 𝐿 𝐴𝐹 = 𝑤 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0′𝑠 𝑎𝑛𝑑 1&𝑠
11. 𝐿 𝐴𝐹 = 𝑎'𝑏(|𝑖, 𝑗 > 0
12. 𝐿 𝐴𝐹 = 𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗ 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑏𝑏𝑎}
13. 𝐿 𝐴𝐹 = {𝑤 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛 𝐶 𝑤𝑖𝑡ℎ 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑖𝑔𝑛}
14. 𝐿 𝐴𝐹 = 𝑤 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3 (bonus problem)
15. 𝐿 𝐴𝐹 = {𝑤|𝑤 ≡ 1 𝑚𝑜𝑑 3} (bonus problem)

Homework!
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Equivalence of DFA & NFA
n Theorem:

n A language L is accepted by a DFA if and only if
it is accepted by an NFA i.e. 𝐿 𝐷𝐹𝐴 = 𝐿(𝑁𝐹𝐴).

n Proof:
1. If part i.e 𝐿 𝐷𝐹𝐴 ⊇ 𝐿(𝑁𝐹𝐴) :

n Prove by showing every NFA can be converted to an 
equivalent DFA (in the next few slides…)

2. Only-if part i.e 𝐿 𝐷𝐹𝐴 ⊆ 𝐿(𝑁𝐹𝐴) is trivial:
n Every DFA is a special case of an NFA where each 

state has exactly one transition for every input symbol. 
Therefore, if L is accepted by a DFA, it is accepted by 
a corresponding NFA.

Should be 
true for 
any L
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Proof for the if-part
n If-part: Show that 𝐿 𝐷𝐹𝐴 ⊇ 𝐿(𝑁𝐹𝐴)
n rephrasing…
n Given any NFA N, we can construct a DFA D 

such that L(N)=L(D)
n How to convert an NFA into a DFA?

n Observation: In an NFA, each transition maps to a 
subset of states 

n Idea: Represent:
each “subset of NFA_states” è a single “DFA_state”

Subset construction
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NFA to DFA by subset construction

n Let N = {QN,∑,δN,q0,FN}
n Goal: Build D={QD,∑,δD,{q0},FD} s.t. 

L(D)=L(N)
n Construction:

1. QD= all subsets of QN (i.e., power set)
2. FD=set of subsets S of QN s.t. S∩FN≠Φ
3. δD: for each subset S of QN and for each 

input symbol a in ∑: 
n δD(S,a) = U δN(p,a)

p ∈ s
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NFA to DFA construction: Example 1
n Construct the NFA recognizing the following language, then 

transform it into an DFA:
𝐿 = 𝑥 ∈ 0,1 ∗ 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑦𝑚𝑏𝑜𝑙 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑖𝑠 1}, 
Solution: see whiteboard.
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NFA to DFA construction: Example 2
n L = {w | w ends in 01}

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

Ø Ø Ø

[q0] {q0}U{q1} {q0}

[q1] Ø {q2}

*[q2] Ø Ø

[q0,q1] {q0,q1}U∅ {q0}U{q2}

*[q0,q2] {q0,q1} {q0}

*[q1,q2] Ø {q2}

*[q0,q1,q2] {q0}U{q1}
U Ø U Ø

{q0} U {q2} 
U Ø

1. Determine transitions

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Idea: To avoid enumerating all of power set, do “lazy 
creation of states”

2. Retain only those states reachable 
from {q0}

0. Enumerate all possible subsets

LAZY CREATION
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NFA to DFA: Repeating the example 
using EAGER CREATION
n L = {w | w ends in 01}

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Main Idea:
Introduce states as you go (on a need basis)

EAGER CREATION
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Correctness of subset construction

Theorem: If D is the DFA constructed 
from NFA N by subset construction, 
then L(D)=L(N)

n Proof:
n Show that δ>∗ ({q0},w) ≡ δ@∗ ({q0},w), for all w
n Using induction on w’s length:

n Let w = xa
n δQ∗ ({q0},xa) ≡ δQ∗ (δS∗ (q0,x), a ) ≡ δS∗ (q0,w)
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A bad case where 
#states(DFA)>>#states(NFA)

n Typically (not always) #states(DFA) = 
#states(NFA), however a DFA has more 
transitions.

n Worst case: #states(DFA)=2A, #states(NFA)=𝑛
n Example worst case, L = {w | w is a binary string 

s.t., the kth symbol from its end is a 1}
n NFA has k+1 states
n But an equivalent DFA needs to have at least 2k

states
n (see next slide)



Automata recogn. the lang. of binary 
strings s.t., the kth symbol from its 
end is a 1
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Relationship between regular 
lang. and type-3 lang.
n Definition. A type-3 grammar has a 

normal form if it has generating rules as 
follows: 𝐴 → 𝑖𝐵, 𝐶 → 𝑗, where A, 𝐵, 𝐶 ∈
𝑉!; 𝑖, 𝑗 ∈ 𝑉", or the completing rule S →λ 
and in this case S does not appear on 
the right side of any rule.

n (Parsers for right linear grammars are 
much simpler. Why?)
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Relationship between regular 
lang. and type-3 lang. (cont’d)

n Lemma. Any type-3 grammar admits a normal form. 

n Proof sketch. Production rules of type 
𝐴 → 𝑝𝐵, 𝑝 = 𝑖T… 𝑖U, are replaced by 
𝐴 → 𝑖T𝑍T, 𝑍T → 𝑖V𝑍V, … , 𝑍UWT → 𝑖U𝐵
𝑍X are newly introduced non-terminals.
n For a rule 𝐴 → 𝑝 with 𝑝 > 1 we do the same except the 

last rule which will be 𝑍Y → 𝑖U.
n Transform 𝐴 → 𝐵𝑝 rules (how to convert a left-linear 

grammar to a right-linear one).
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Left linear grammar
n A left linear grammar is a linear grammar 

in which the non-terminal symbol always 
occurs on the left side.

n Here is a left linear grammar:
S → Aa
A → ab

16



Right linear grammar
n A right linear grammar is a linear grammar 

in which the non-terminal symbol always 
occurs on the right side.

n Here is a right linear grammar:
S → abaA
A → ε

17



Left linear grammars are evil
n Consider this rule from a left linear grammar:

A → Babc
n Can that rule be used to recognize this string:

abbabc
n We need to check the rule for B:

B → Cb | D
n Now we need to check the rules for C and D.
n This is very complicated. 
n Left linear grammars require complex parsers. 

18



Right linear grammars are 
good
n Consider this rule from a right linear grammar:

A → abcB
n Can that rule be used to recognize this string:

abcabb
n We immediately see that the first part of the 

string – abc – matches the first part of the rule. 
Thus, the problem simplifies to this: can the 
rule for B be used to recognize this string : 
abb

n Parsers for right linear grammars are much 
simpler. 
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Convert left linear to right 
linear

Now we will see an algorithm for converting 
any left linear grammar to its equivalent right 
linear grammar.

S → Aa
A → ab

left linear

Both grammars generate this 
language: {aba}

S → abaA
A → ε

right linear

20



May need to make a new start 
symbol

The algorithm on the following slides 
assume that the left linear grammar doesn’t 
have any rules with the start symbol on the 
right hand side.

n If the left linear grammar has a rule with the 
start symbol S on the right hand side, simply 
add this rule:
S0 → S

21



Symbols used by the 
algorithm

n Let S denote the start symbol
n Let A, B denote non-terminal symbols
n Let p denote zero or more terminal symbols
n Let ε denote the empty symbol

22



Algorithm
1) If the left linear grammar has a rule S → p, then 

make that a rule in the right linear grammar
2) If the left linear grammar has a rule A → p, then 

add the following rule to the right linear grammar: 
S → pA

3) If the left linear grammar has a rule B → Ap, add 
the following rule to the right linear grammar: 
A → pB

4) If the left linear grammar has a rule S → Ap, then 
add the following rule to the right linear grammar: 
A → p

23



Convert this left linear 
grammar

24

S → Aa
A → ab

left linear



Right hand side has terminals
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S → Aa
A → ab

left linear

2) If the left linear grammar has 
this rule A → p, then add the 
following rule to the right linear 
grammar: S → pA

S → abA
right linear



Right hand side of S has non-
terminal
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S → Aa
A → ab

left linear

4) If the left linear grammar has 
S → Ap, then add the following 
rule to the right linear grammar: 
A → p

S → abA
A → a

right linear



Equivalent!
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S → Aa
A → ab

left linear

Both grammars generate this 
language: {aba}

S → abA
A → a

right linear



Convert this left linear 
grammar

28

left linear
S0 → S
S → Ab
S → Sb
A → Aa
A → a

S → Ab
S → Sb
A → Aa
A → a

original grammar

make a 
new start 
symbol

Convert this



Right hand side has terminals
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S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
right linear

2) If the left linear grammar has 
this rule A → p, then add the 
following rule to the right linear 
grammar: S → pA



Right hand side has non-
terminal
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S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
A → bS
A → aA
S → bS

right linear

3) If the left linear grammar has a rule B 
→ Ap, add the following rule to the right 
linear grammar: A → pB



Right hand side of start symbol 
has non-terminal
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S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
A → bS
A → aA
S → bS
S → ε

right linear

4) If the left linear grammar has 
S → Ap, then add the following 
rule to the right linear grammar: 
A → p



Equivalent!
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S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
A → bS
A → aA
S → bS
S → ε

right linear

Both grammars generate this 
language: {a+b+}



Will the algorithm always 
work?
n We have seen two examples where the 

algorithm creates a right linear grammar 
that is equivalent to the left linear 
grammar.

n But will the algorithm always produce an 
equivalent grammar?

n Yes! Check Introduction to Formal 
Languages by Gyorgy Revesz for the 
proof.
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Relationship between regular 
lang. and type-3 lang. (cont’d)
n Theorem. The family of type-3 

languages is equal to the family of 
regular languages.

n Useful for the constructing a type-3 
grammar from an automata and 
viceversa.
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Relationship between regular 
lang. and type-3 lang. (cont’d)
n 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 , FA = (𝑄, Σ, 𝑞#, 𝐹, 𝛿)
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Relationship between regular 
lang. and type-3 lang. (cont’d)
n 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃), FA = (𝑄, Σ, 𝑞#, 𝐹, 𝛿)

36
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Applications 
n Text indexing 

n inverted indexing
n For each unique word in the database, store all 

locations that contain it using an NFA or a DFA
n Find pattern P in text T

n Example: Google querying
n Extensions of this idea:

n PATRICIA tree, suffix tree 



A few subtle properties of 
DFAs and NFAs
n The machine never really terminates. 

n It is always waiting for the next input symbol or making 
transitions.

n The machine decides when to consume the next symbol from 
the input and when to ignore it.
n (but the machine can never skip a symbol)

n => A transition can happen even without really consuming an 
input symbol (think of consuming e as a free token) – if this 
happens, then it becomes an e-NFA (see next lecture).

n A single transition cannot consume more than one (non-e) 
symbol.
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