Course 5
Finite Automata/Finite State

!L Machines

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

1

But, DFAs and NFAs are equivalent in their power to capture languages !!

DFA vs. NFA

= DFA

1, All transitions are
deterministic
. Each transition leads to

exactly one state

2 For each state, transition on
all possible symbols
(alphabet) should be defined

3. Accepts input if the last state
visited is in F

4. Sometimes harder to

construct because of the
number of states

—_—

NFA

Some transitions could be
non-deterministic
n A transition could lead to a
subset of states

Not all symbol transitions
need to be defined explicitly (if
undefined will go to an error
state — this is just a design
convenience, not to be
confused with “non-
determinism”)

Accepts input if one of the last
statesisin F

Generally easier than a DFA
to construct

Finite Automaton (FA)

Construct DFA and NFA for recognizing the language:
L(AF) = {awa |w € {b,c}" }

Solution: see whiteboard.

In many cases it is easier to construct the NFA for a language.

Theorem:
A language L is accepted by a DFA if and only if it is accepted by an NFA.

Proof. later

Examples of NFA for different
types of languages

L(AF) = {ab™ |n = 0} U {ab™ab™| n,m = 0} (Union of languages)

~

2 L(AF) = {IF,FOR,FORK} (Generation of finite language)

5. L(AF) ={a" |n = 1}, L(AF) = {a" | n = 0} (Repetition of symbols)

+ LAF)={w|w €{a,b,c}'}, L(AF) ={w |w € {a,b,c}*} (Mix of letters)
5 L(AF) ={w|w €{0,...,9}", w ends with 0}

6 L(AF) = {a"b™c*|m,n, k = 1}

7 L(AF) = {w|w € {0,1}*,w contains at most one 1 }

s L(AF) = {w |w contains an even number of zeros and any number of 1}

L(AF) = {wabaw |w € {a,b,c}" }

0. L(AF) = {w |w contains an even number of 0's and 1's}
1. L(AF) = {a'b’|i,j > 0}

1z L(AF) ={w € {a, b, c}*| w contains abba}

5. L(AF) = {w integer constant in C with optional sign}
12 L(AF) = {w is divisible by 3} (bonus problem)

5. L(AF) = {w|w = 1 mod 3} (bonus problem)

Homework!

0

Equivalence of DFA & NFA

s |heorem:

Shouldbe w ., A.Ianguage L is accepted. by a DFA if and only if
Uiti3 ey it is accepted by an NFA i.e. L(DFA) = L(NFA).

any L
= Proof:

. Ifparti.e L(DFA) 2 L(NFA) :

= Prove by showing every NFA can be converted to an
equivalent DFA (in the next few slides...)

2. Only-if parti.e L(DFA) € L(NFA) is trivial:
« Every DFA is a special case of an NFA where each
state has exactly one transition for every input symbol.

Therefore, if L is accepted by a DFA, it is accepted by
a corresponding NFA.

L]
5

i Proof for the if-part

s |f-part: Show that L(DFA) 2 L(NFA)

m rephrasing...

= Given any NFA N, we can construct a DFA D
such that L(N)=L(D)

= How to convert an NFA into a DFA?

= Observation: In an NFA, each transition maps to a
subset of states

= |dea: Represent:
each “subset of NFA states” = a single “DFA_state”

Subset construction

i NFA to DFA by subset construction

L] Let N = {QN1216N!qO!FN}
= Goal: Build D={Qp,>,0p,{q0},Fp} s.t.
L(D)=L(N)
= Construction:
1. Qp= all subsets of Qy(i.e., power set)

2. Fp=set of subsets S of Qy s.t. SNFZP

3. Op: for each subset S of Qy and for each
input symbol a in >:
op(S,a) = U oy(p,a)

pPES

NFA to DFA construction: Example 1

= Construct the NFA recognizing the following language, then
transform it into an DFA:

L ={x €{0,1}*|the second symbol from the right is 1},
Solution: see whiteboard.

Idea: To avoid enumerating all of power set, do “lazy
creation of states”

NFA to DFA construction: Example 2

= L={w|wendsin01}

0,1
@@ @ | [azycrEATION
Op 0 1 Op 0 1
oN 0 1 ~ o .
o 0 2 —»[q0] [d0,91] [qo]
—» % {Q0.a1} {0} —[qo] {ao}U{q+} {do} [90,94] [d0,91] [d0,92]
q o {a2) o] & @ = laeq] | lead | [
"0z @ Z “ferd & &
[90,94] {90,01}U0 | {qo}U{qz}
*[00,92] {d0.,a1} {do} 0. Enumerate all possible subsets
191,921 1) 192s 1. Determine transitions
R AR B ECDACECR, 2. Retain only those states reachable
Ugug |UQ from {q}
9

NFA to DFA: Repeating the example
using EAGER CREATION

o Usig EAGE

= L={w|wendsin01} 1 0

ON 0 1
—»% {d0.a1} {do}

Q1 % {2}

*02 %) %)

DFA: _ 1
N9
EAGER CREATION
Op 0 1
—» [90] [9o,q1] [Qo]
[d0,91] [d0,q1] [90,92]
*[d0,92] [90,91] [9o]
Main ldea:

Introduce states as you go (on a need basis)

10

i Correctness of subset construction

Theorem: If D is the DFA constructed
from NFA N by subset construction,

then L(D)=L(N)
s Proof:
= Show that 0}, ({qo},w) = 03 ({qg},w), for all w

= Using induction on w’s length:
« Letw = xa

" 67)({q0}!xa) = BB(BE(Qo,X), a) = 6}kV(qO’W)

11

A bad case where
#states(DFA)>>#states(NFA)

= [ypically (not always) #states(DFA) =
#states(NFA), however a DFA has more
transitions.

= Worst case: #states(DFA)=2", #states(NFA)=n

= Example worst case, L = {w | w is a binary string
s.t., the k" symbol from its end is a 1}
= NFA has k+1 states

= But an equivalent DFA needs to have at least 2k
states

s (See next slide)

12

Automata recogn. the lang. of binary
strings s.t., the ki symbol from its

endis a1

L={ wW|as Lo o L AR A 6. He 4G Ko et
{ [04 ‘w"} ”‘3 St ,cag_j
oA L@-‘ﬁa" &t atades

:f/lw Py A MO —MW NTA4 4o J,L/Jod/ AL, »Ma}'«i»@}:] &:,{M/f
wan fead ;6(,5 et gl i A /EC@JJ o M- A/rmga_t Zﬂwﬂ "ot Lo

A sa ,(%ﬂ Aacuj :fﬂue"y*é- el [wou—Lefeheantro Z0, @4) ff’w *»Lr:a,é_

e

?92&3%2&‘47,A/fa0 &WJ‘ Su_ e T‘fﬂa*’ S len

Cxangle. - Trutaete ie & ot 1,2, Quol clech Lunw He NT4 wlles

Q»-‘L‘ir-tﬁv —auu \:i’fe:?t LA qfl (p/ué A hen ©

b g ? ! Ne (‘- ‘L\g aio&t&; ohe_ -?LQ/OJL'&,Q/W{L‘
lr f p /é ;:“,euvk 2ocdr vAlen |
. { 20) ‘(ioq] Jlﬂo,iﬁ\h AD D oon '
W[Agah Agad Pungy 2 afafis o e DRA-
A Qay| 0 4
‘l 1920 9:]] 090,323 126,9: 92

\)\1.,,1,‘1\\1° 33Y 20,9

Relationship between regular

i lang. and type-3 lang.

= Definition. A type-3 grammar has a
normal form if it has generating rules as
follows: A - iB,C — j, where A, B, C €
Vi, € Vo, or the completing rule S —A
and in this case S does not appear on
the right side of any rule.

m (Parsers for right linear grammars are
much simpler. Why?)

14

Relationship between regular

i lang. and type-3 lang. (cont'd)

= Lemma. Any type-3 grammar admits a normal form.

s Proof sketch. Production rules of type
A - pB, p=i;..i,, are replaced by

A= i174,71 = izZ, e, Zn1 = inB

Z; are newly introduced non-terminals.

= Forarule A - p with |[p| > 1 we do the same except the
last rule which will be Z,, — i,,.

= Transform A — Bp rules (how to convert a left-linear
grammar to a right-linear one).

15

i Left inear grammar
= A left inear grammar is a linear grammar

iIn which the non-terminal symbol always
occurs on the left side.

= Here is a left linear grammar:
S — Aa
A — ab

16

Right linear grammar

= A right linear grammar is a linear grammar
iIn which the non-terminal symbol always
occurs on the right side.

= Here is a right linear grammar:

S — abaA
A— ¢

17

i Left inear grammars are evil

= Consider this rule from a left linear grammar:
A — Babc

= Can that rule be used to recognize this string:
abbabc

= We need to check the rule for B:
B - Cb | D

= Now we need to check the rules for C and D.
= This is very complicated.
= Left linear grammars require complex parsers.

18

Right linear grammars are

i good

= Consider this rule from a right linear grammar:
A — abcB

= Can that rule be used to recognize this string:
abcabb

= \WWe immediately see that the first part of the
string — abc — matches the first part of the rule.
Thus, the problem simplifies to this: can the
rule for B be used to recognize this string :
abb

= Parsers for right linear grammars are much
simpler.

19

Convert left linear to right

i linear
iFsee-an-algorithm for converting

any left linear grammar to its equivalent right
linear grammar.

left linear right linear
S — Aa : S — abaA
A — ab A— €

Both grammars generate this
language: {aba}

20

May need to make a new start

i symbol

The algorithm on the following slides
assume that the left linear grammar doesn’t

have any rules with the start symbol on the
right hand side.

= If the left linear grammar has a rule with the
start symbol S on the right hand side, simply

add this rule:
SO — S

21

Symbols used by the

i algorithm

_et S denote the start symbol
_et A, B denote non-terminal symbols
_et p denote zero or more terminal symbols

_et ¢ denote the empty symbol

22

1)

Algorithm

If the left linear grammar has arule S — p, then
make that a rule in the right linear grammar

If the left linear grammar has arule 2 — p, then
add the following rule to the right linear grammar:
S — pA

If the left linear grammar has arule B - Ap, add
the following rule to the right linear grammar:

If the left linear grammar has arule S - Ap, then
add the following rule to the right linear grammar:
A - ©

23

Convert this left linear

i grammar

left linear

S — Aa
A — ab

24

i Right hand side has terminals

left linear right linear
S — Aa S — abA
A — ab

2) If the left linear grammar has
this rule o - p, then add the

following rule to the right linear
grammar. S - pA

25

Right hand side of S has non-
terminal

left linear right linear
S — Aa S — abA
A — ab A— a

4) If the left linear grammar has
S — Ap, then add the following

rule to the right linear grammar:
A - ©

26

i Equivalent!

left linear right linear
S — Aa S — abA
A — ab A— a

Both grammars generate this
language: {aba}

27

Convert this left linear

i grammar

original grammar left linear
S — Sb S — Ab
A— Aa makea S > Sb
A — 3 new start A — A3
symbol A 3

Convert this

28

i Right hand side has terminals

left linear
Sp— S
S —ADb
S — Sb
A — Aa
A— a

right linear

SO—>aA

2) If the left linear grammar has
this rule o - p, then add the

following rule to the right linear

grammar: S - pA

29

Right hand side has non-

i terminal

left linear right linear

Sp— S Sy — aA
S — Ab A — bS

S —> Sb A — aA

A — Aa S — bS

A— a

3) If the left linear grammar has a rule B
— Ap, add the following rule to the right

linear grammar: A - pB
30

Right hand side of start symbol
has non-terminal

left linear right linear
Sp— S Sy — aA
S — Ab A — bS

S —> Sb A — aA

A — Aa S — bS

A— a S — ¢

4) If the left linear grammar has
S — Ap, then add the following

rule to the right linear grammar:
A - p 31

i Equivalent!

left linear
Sp— S
S —ADb
S — Sb
A — Aa
A— a

right linear

Sy — aA
A — bS
A — aA
S — bS
S —>¢

Both grammars generate this

language: {a*b*}

32

Will the algorithm always

i work?

= We have seen two examples where the
algorithm creates a right linear grammar
that is equivalent to the left linear
grammar.

= But will the algorithm always produce an
equivalent grammar?

s Yes! Check Introduction to Formal

Languages by Gyorgy Revesz for the
proof.

33

Relationship between regular

i lang. and type-3 lang. (cont'd)

= Theorem. The family of type-3
languages is equal to the family of
regular languages.

= Useful for the constructing a type-3
grammar from an automata and
viceversa.

34

Relationship between regular

i lang. and type-3 lang. (cont'd)

= G — (N)T)S)P)5 FA: (Q}Z)CIO)F)6)

For any regular grammar G (in normal form) there exists a
nondeterministic finite automaton A such that L(A) = L(G):

In grammar G In automaton A
T > =T
N Q=NU{f},F={f}
S do =
qg — ap p € 4(q,a)
qg — a feo(qg,a)
IfS — e add S to F

35

Relationship between regular

i lang. and type-3 lang. (cont'd)

=« G=(N,T,S P),FA=(0Q3q,F,05)

For any deterministic finite automaton there exists a regular
grammar G such that L(A) = L(G):

In automaton A | In grammar G
> I =2
Q N = Q
efy S =qo
6(q.a)=p q — ap
6(q,a) € F qg— a

f gy € F add rule gg — €

i Applications

= [ext indexing

= inverted indexing

= For each unique word in the database, store all
locations that contain it using an NFA or a DFA

= Find pattern P intext T

= Example: Google querying
s Extensions of this idea:

= PATRICIA tree, suffix tree

37

A few subtle properties of
DFAs and NFAs

= The machine never really terminates.

= Itis always waiting for the next input symbol or making
transitions.

= The machine decides when to consume the next symbol from
the input and when to ignore it.

= (but the machine can never skip a symbol)

s => A transition can happen even without really consuming an
input symbol (think of consuming ¢ as a free token) — if this
happens, then it becomes an e-NFA (see next lecture).

= A single transition cannot consume more than one (non-¢)
symbol.

38

