Course 5 Finite Automata/Finite State Machines

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

But, DFAs and NFAs are equivalent in their power to capture languages !!

DFA vs. NFA

DFA

- 1. All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- 3. Accepts input if the last state visited is in F
- 4. Sometimes harder to construct because of the number of states

NFA

- 1. Some transitions could be non-deterministic
 - A transition could lead to a subset of states
- 2. Not all symbol transitions need to be defined explicitly (if undefined will go to an error state – this is just a design convenience, not to be confused with "nondeterminism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct

Finite Automaton (FA)

Construct DFA and NFA for recognizing the language: $L(AF) = \{awa | w \in \{b, c\}^*\}$

Solution: see whiteboard.

In many cases it is easier to construct the NFA for a language.

<u>Theorem</u>:

A language L is accepted by a DFA *if and only if* it is accepted by an NFA. <u>Proof</u>. later

Examples of NFA for different types of languages

- $L(AF) = \{ab^n \mid n \ge 0\} \cup \{ab^n a b^m \mid n, m \ge 0\}$ (Union of languages)
- 2. $L(AF) = \{IF, FOR, FORK\}$ (Generation of finite language)
- 3. $L(AF) = \{a^n \mid n \ge 1\}, L(AF) = \{a^n \mid n \ge 0\}$ (**Repetition of symbols**)
- 4. $L(AF) = \{w | w \in \{a, b, c\}^*\}, L(AF) = \{w | w \in \{a, b, c\}^+\}$ (*Mix of letters*)
- 5. $L(AF) = \{w | w \in \{0, ..., 9\}^*, w \text{ ends with } 0\}$
- 6. $L(AF) = \{a^n b^m c^k | m, n, k \ge 1\}$
- *z* $L(AF) = \{w | w \in \{0,1\}^*, w \text{ contains at most one } 1\}$

8.
$$L(AF) = \{w | w \text{ contains an even number of zeros and any number of } 1\}$$

9.
$$L(AF) = \{wabaw | w \in \{a, b, c\}^* \}$$

- 10. $L(AF) = \{w \mid w \text{ contains an even number of } 0's \text{ and } 1's\}$
- 11. $L(AF) = \{a^i b^j | i, j > 0\}$
- 12. $L(AF) = \{w \in \{a, b, c\}^* | w \text{ contains abba}\}$
- 13. $L(AF) = \{w \text{ integer constant in } C \text{ with optional sign}\}$
- 14. $L(AF) = \{w \text{ is divisible by } 3\}$ (bonus problem)
- 15. $L(AF) = \{w | w \equiv 1 \mod 3\}$ (bonus problem)

Homework!

Equivalence of DFA & NFA

Theorem:

Should be true for any L

- A language L is accepted by a DFA *if and only if* it is accepted by an NFA i.e. L(DFA) = L(NFA).
- Proof:
 - I. If part i.e $L(DFA) \supseteq L(NFA)$:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)
- 2. Only-if part i.e $L(DFA) \subseteq L(NFA)$ is trivial:
 - Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- <u>If-part:</u> Show that $L(DFA) \supseteq L(NFA)$
- rephrasing...
- Given any NFA N, we can construct a DFA D such that L(N)=L(D)
- How to convert an NFA into a DFA?
 - <u>Observation</u>: In an NFA, each transition maps to a subset of states
 - Idea: Represent:

each "subset of NFA_states" → a single "DFA_state"

Subset construction

NFA to DFA by subset construction

- Let $N = \{Q_N, \Sigma, \delta_N, q_0, F_N\}$
- <u>Goal</u>: Build $D = \{Q_D, \sum, \delta_D, \{q_0\}, F_D\}$ s.t. L(D)=L(N)
- Construction:
 - 1. $Q_D = all subsets of Q_N (i.e., power set)$
 - 2. F_D = set of subsets S of Q_N s.t. $S \cap F_N \neq \Phi$
 - 3. δ_D : for each subset S of Q_N and for each input symbol a in Σ :

•
$$\delta_{D}(S,a) = \bigcup_{p \in s} \delta_{N}(p,a)$$

NFA to DFA construction: Example 1

 Construct the NFA recognizing the following language, then transform it into an DFA:

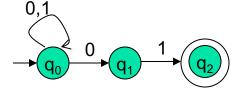
 $L = \{x \in \{0,1\}^* | the second symbol from the right is 1\},\$

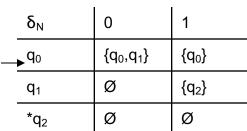
Solution: see whiteboard.

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example 2

DFA:





		(
	LAZY	CREA	TION	
I	δ _D	0	1	δ _D
_	Ø	Ø	Ø	▶ [q₀]
	→ [q ₀]	${q_0}U{q_1}$	{q ₀ }	[q ₀ ,c
	<u>[41]</u>	Ø	{q ₂ }	*[q ₀ ,
	*[q ₂]	Ø	Ø	
	[q ₀ ,q ₁]	{q ₀ ,q ₁ }UØ	${q_0}U{q_2}$	
	*[q ₀ ,q ₂]	${q_0,q_1}$	{q ₀ }	0. Enum
	^[[q ₁ ,q ₂]	Ø	{q ₂ }	1. Deter
	*[q ₀ ,q ₁ ,q ₂]	{q₀}U{q₁} U Ø U Ø	{q₀} U {q₂} U Ø	2. Retain from {q ₀]
		-		

	δ _D	0	1
	▶[q₀]	[q ₀ ,q ₁]	[q ₀]
	[q ₀ ,q ₁]	[q ₀ ,q ₁]	[q ₀ ,q ₂]
>	*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]

0. Enumerate all possible subsets

I. Determine transitions

[**q**₀,**q**₂

2. Retain only those states reachable from $\{q_0\}$

NFA to DFA: Repeating the example using EAGER CREATION

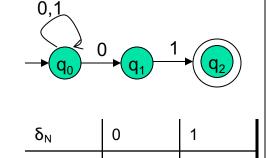
L = {w | w ends in 01}

DFA:

q₀

q1

*q₂



 $\{q_0, q_1\}$

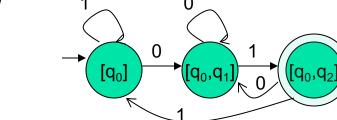
Ø

Ø

 $\{q_0\}$

 $\{q_2\}$

Ø



EAGER CREATION

	δ _D	0	1
→	[q ₀]	[q ₀ ,q ₁]	[q ₀]
	[q ₀ ,q ₁]	[q ₀ ,q ₁]	[q ₀ ,q ₂]
	*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]

Main Idea:

Introduce states as you go (on a need basis)

Correctness of subset construction

<u>Theorem:</u> If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N)

Proof:

- Show that $\delta_D^*(\{q_0\}, w) \equiv \delta_N^*(\{q_0\}, w)$, for all w
- Using induction on w's length:
 - Let w = xa
 - $\delta_D^*(\{q_0\},xa) \equiv \delta_D^*(\delta_N^*(q_0,x), a) \equiv \delta_N^*(q_0,w)$

A bad case where #states(DFA)>>#states(NFA)

- Typically (not always) #states(DFA) = #states(NFA), however a DFA has more transitions.
- Worst case: #states(DFA)=2ⁿ, #states(NFA)=n
- Example worst case, L = {w | w is a binary string s.t., the kth symbol from its end is a 1}
 - NFA has k+1 states
 - But an equivalent DFA needs to have at least 2^k states
 - (see next slide)

Automata recogn. the lang. of binary strings s.t., the kth symbol from its end is a 1

L={ vo | w is a binary string s.t. the k the symb. from the and is 1 3 There is a state go that the NFA is always in Regardless of what it was read; if the next input is 1 there the NFA might "gress" that this 1 is the kthe symb. from the end (non-deterministic 20, 21). My imput from 2i (in1) has effect on moving on the states Example : Instantiale & writh 1,2,... and check how the NFA works. Question: Can I get kid of any states? DFA: No!!! All states are readuable from each other 1 { 20} { 1203 420213 Strugg 2 let states for the DFA. 12,3 1223 192 ϕ 190,91 [20,92] {20,91,22] 120,21 120,25 {20,243

- **Definition**. A type-3 grammar has a normal form if it has generating rules as follows: $A \rightarrow iB, C \rightarrow j$, where $A, B, C \in$ $V_N; i, j \in V_T$, or the completing rule $S \rightarrow \lambda$ and in this case S does not appear on the right side of any rule.
- (Parsers for right linear grammars are much simpler. Why?)

- **Lemma**. Any type-3 grammar admits a normal form.
- Proof sketch. Production rules of type
- $A \rightarrow pB$, $p = i_1 \dots i_n$, are replaced by
- $A \rightarrow i_1 Z_1, Z_1 \rightarrow i_2 Z_2, \dots, Z_{n-1} \rightarrow i_n B$
- Z_i are newly introduced non-terminals.
- For a rule $A \rightarrow p$ with |p| > 1 we do the same except the last rule which will be $Z_k \rightarrow i_n$.
- Transform $A \rightarrow Bp$ rules (how to convert a left-linear grammar to a right-linear one).

Left linear grammar

- A left linear grammar is a linear grammar in which the non-terminal symbol always occurs on the left side.
- Here is a left linear grammar:

$$S \rightarrow Aa$$

 $A \rightarrow ab$

Right linear grammar

- A right linear grammar is a linear grammar in which the non-terminal symbol always occurs on the right side.
- Here is a right linear grammar:

$$S \rightarrow abaA$$

 $A \rightarrow \epsilon$

Left linear grammars are evil

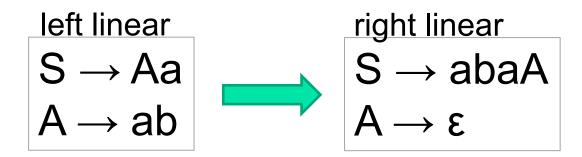
- Consider this rule from a left linear grammar:
 A → Babc
- Can that rule be used to recognize this string: abbabc
- We need to check the rule for B:
 - $B \rightarrow Cb \mid D$
- Now we need to check the rules for C and D.
- This is very complicated.
- Left linear grammars require complex parsers.

Right linear grammars are good

- Consider this rule from a right linear grammar:
 A → abcB
- Can that rule be used to recognize this string: abcabb
- We immediately see that the first part of the string abc matches the first part of the rule. Thus, the problem simplifies to this: can the rule for B be used to recognize this string : abb
- Parsers for right linear grammars are much simpler.

Convert left linear to right linear

Now we will see an algorithm for converting any left linear grammar to its equivalent right linear grammar.



Both grammars generate this language: {aba}

May need to make a new start symbol

The algorithm on the following slides assume that the left linear grammar doesn't have any rules with the start symbol on the right hand side.

- If the left linear grammar has a rule with the start symbol S on the right hand side, simply add this rule:
 - $S_0 \rightarrow S$

Symbols used by the algorithm

- Let S denote the start symbol
- Let A, B denote non-terminal symbols
- Let p denote zero or more terminal symbols
- Let ε denote the empty symbol

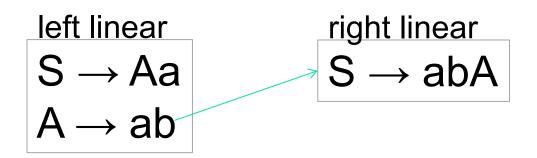
Algorithm

- 1) If the left linear grammar has a rule $S \rightarrow p$, then make that a rule in the right linear grammar
- 2) If the left linear grammar has a rule $A \rightarrow p$, then add the following rule to the right linear grammar: S $\rightarrow pA$
- 3) If the left linear grammar has a rule $B \rightarrow Ap$, add the following rule to the right linear grammar: A $\rightarrow pB$
- 4) If the left linear grammar has a rule S \rightarrow Ap, then add the following rule to the right linear grammar: A \rightarrow p

Convert this left linear grammar

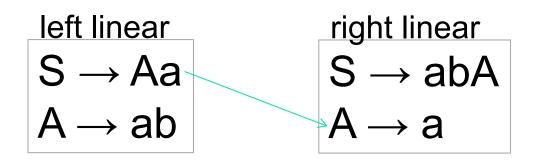
 $\begin{array}{c} \text{left linear} \\ S \rightarrow Aa \\ A \rightarrow ab \end{array}$

Right hand side has terminals



2) If the left linear grammar has this rule $A \rightarrow p$, then add the following rule to the right linear grammar: $S \rightarrow pA$

Right hand side of S has nonterminal

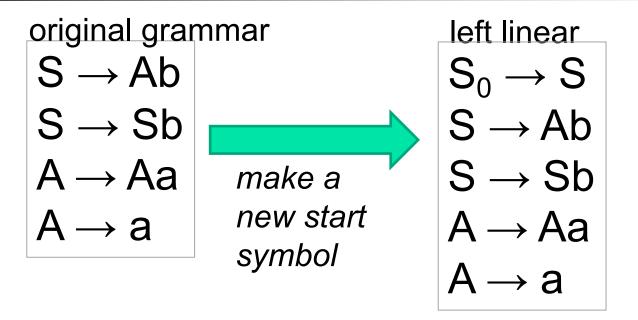


4) If the left linear grammar has
S → Ap, then add the following
rule to the right linear grammar:
A → p

left linearright linear $S \rightarrow Aa$ $S \rightarrow abA$ $A \rightarrow ab$ $A \rightarrow a$

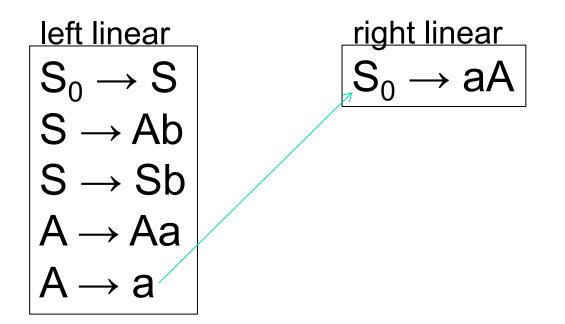
Both grammars generate this language: {aba}

Convert this left linear grammar



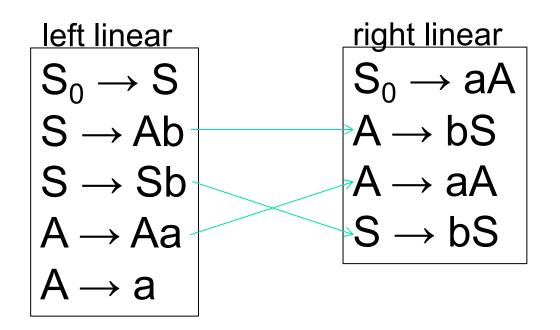
Convert this

Right hand side has terminals



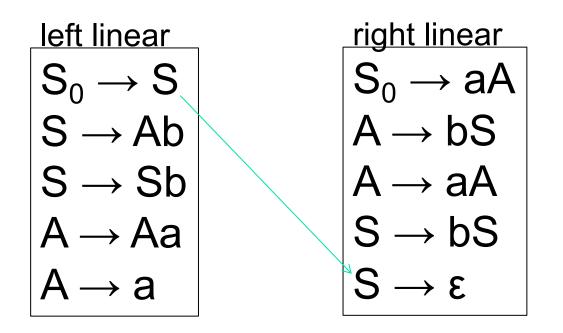
2) If the left linear grammar has this rule $A \rightarrow p$, then add the following rule to the right linear grammar: $S \rightarrow pA$

Right hand side has nonterminal



3) If the left linear grammar has a rule B \rightarrow Ap, add the following rule to the right linear grammar: A \rightarrow pB

Right hand side of start symbol has non-terminal



4) If the left linear grammar has $S \rightarrow Ap$, then add the following rule to the right linear grammar: $A \rightarrow p$

Both grammars generate this language: {a⁺b⁺}

Will the algorithm always work?

- We have seen two examples where the algorithm creates a right linear grammar that is equivalent to the left linear grammar.
- But will the algorithm *always* produce an equivalent grammar?
- Yes! Check Introduction to Formal Languages by Gyorgy Revesz for the proof.

Theorem. The family of type-3 languages is equal to the family of regular languages.

 Useful for the constructing a type-3 grammar from an automata and viceversa.

• $G = (N, T, S, P), FA = (Q, \Sigma, q_0, F, \delta)$

For any regular grammar G (in normal form) there exists a nondeterministic finite automaton A such that L(A) = L(G):

In grammar G	In automaton A
Т	$\Sigma = T$
N	$Q = N \cup \{f\}, F = \{f\}$
S	$q_0 = S$
$oldsymbol{q} ightarrow oldsymbol{a} oldsymbol{p}$	$oldsymbol{p}\in\delta(oldsymbol{q},oldsymbol{a})$
q ightarrow a	$oldsymbol{f}\in\delta(oldsymbol{q},oldsymbol{a})$
$if \ S \to \epsilon$	add S to F

• G = (N, T, S, P), FA = $(Q, \Sigma, q_0, F, \delta)$ For any deterministic finite automaton there exists a regular grammar *G* such that L(A) = L(G):

In automaton A	In grammar G
Σ	$T = \Sigma$
Q	N = Q
q_0	$S = q_0$
$\delta(q, a) = p$	q ightarrow ap
$\delta(oldsymbol{q},oldsymbol{a})\in oldsymbol{F}$	$oldsymbol{q} ightarrow oldsymbol{a}$
if $oldsymbol{q}_0\in oldsymbol{F}$	add rule $q_0 \rightarrow \epsilon$

Applications

- Text indexing
 - inverted indexing
 - For each unique word in the database, store all locations that contain it using an NFA or a DFA
- Find pattern P in text T
 - Example: Google querying
- Extensions of this idea:
 - PATRICIA tree, suffix tree

A few subtle properties of DFAs and NFAs

- The machine never really terminates.
 - It is always waiting for the next input symbol or making transitions.
- The machine decides when to <u>consume</u> the next symbol from the input and when to <u>ignore</u> it.
 - (but the machine can never <u>skip</u> a symbol)
- => A transition can happen even without really consuming an input symbol (think of consuming ε as a free token) if this happens, then it becomes an ε-NFA (see next lecture).
- A single transition *cannot* consume more than one (non-ε) symbol.