
1

Course 5
Finite Automata/Finite State 
Machines

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm



2

DFA vs. NFA
n DFA
1. All transitions are 

deterministic
n Each transition leads to 

exactly one state
2. For each state, transition on 

all possible symbols 
(alphabet) should be defined

3. Accepts input if the last state 
visited is in F

4. Sometimes harder to 
construct because of the 
number of states

n NFA
1. Some transitions could be 

non-deterministic
n A transition could lead to a 

subset of states
2. Not all symbol transitions 

need to be defined explicitly (if 
undefined will go to an error 
state – this is just a design 
convenience, not to be 
confused with “non-
determinism”)

3. Accepts input if one of the last 
states is in F

4. Generally easier than a DFA 
to construct

But, DFAs and NFAs are equivalent in their power to capture languages !!



3

Finite Automaton (FA)
Construct DFA and NFA for recognizing the language:

𝐿 𝐴𝐹 = 𝑎𝑤𝑎 𝑤 ∈ {𝑏, 𝑐}∗ }
Solution: see whiteboard.

In many cases it is easier to construct the NFA for a language.

Theorem:
A language L is accepted by a DFA if and only if it is accepted by an NFA.
Proof. later



4

Examples of NFA for different 
types of languages

1. 𝐿 𝐴𝐹 = {𝑎𝑏! 𝑛 ≥ 0 ∪ {𝑎𝑏!𝑎𝑏" 𝑛,𝑚 ≥ 0 (Union of languages)
2. 𝐿 𝐴𝐹 = 𝐼𝐹, 𝐹𝑂𝑅, 𝐹𝑂𝑅𝐾 (Generation of finite language)
3. 𝐿 𝐴𝐹 = {𝑎! | 𝑛 ≥ 1}, 𝐿 𝐴𝐹 = {𝑎! 𝑛 ≥ 0 (Repetition of symbols)
4. 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗ , 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 𝑎, 𝑏, 𝑐 $ (Mix of letters)
5. 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 0,… , 9 ∗, 𝑤 𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 0
6. 𝐿 𝐴𝐹 = 𝑎!𝑏"𝑐%|𝑚, 𝑛, 𝑘 ≥ 1
7. 𝐿 𝐴𝐹 = 𝑤 𝑤 ∈ 0,1 ∗, 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑜𝑛𝑒 1
8. 𝐿 𝐴𝐹 = 𝑤 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑠 𝑎𝑛𝑑 𝑎𝑛𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1
9. 𝐿 𝐴𝐹 = 𝑤𝑎𝑏𝑎𝑤 𝑤 ∈ {𝑎, 𝑏, 𝑐}∗ }
10. 𝐿 𝐴𝐹 = 𝑤 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 0′𝑠 𝑎𝑛𝑑 1&𝑠
11. 𝐿 𝐴𝐹 = 𝑎'𝑏(|𝑖, 𝑗 > 0
12. 𝐿 𝐴𝐹 = 𝑤 ∈ 𝑎, 𝑏, 𝑐 ∗ 𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑏𝑏𝑎}
13. 𝐿 𝐴𝐹 = {𝑤 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛 𝐶 𝑤𝑖𝑡ℎ 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑖𝑔𝑛}
14. 𝐿 𝐴𝐹 = 𝑤 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3 (bonus problem)
15. 𝐿 𝐴𝐹 = {𝑤|𝑤 ≡ 1 𝑚𝑜𝑑 3} (bonus problem)

Homework!



5

Equivalence of DFA & NFA
n Theorem:

n A language L is accepted by a DFA if and only if
it is accepted by an NFA i.e. 𝐿 𝐷𝐹𝐴 = 𝐿(𝑁𝐹𝐴).

n Proof:
1. If part i.e 𝐿 𝐷𝐹𝐴 ⊇ 𝐿(𝑁𝐹𝐴) :

n Prove by showing every NFA can be converted to an 
equivalent DFA (in the next few slides…)

2. Only-if part i.e 𝐿 𝐷𝐹𝐴 ⊆ 𝐿(𝑁𝐹𝐴) is trivial:
n Every DFA is a special case of an NFA where each 

state has exactly one transition for every input symbol. 
Therefore, if L is accepted by a DFA, it is accepted by 
a corresponding NFA.

Should be 
true for 
any L



6

Proof for the if-part
n If-part: Show that 𝐿 𝐷𝐹𝐴 ⊇ 𝐿(𝑁𝐹𝐴)
n rephrasing…
n Given any NFA N, we can construct a DFA D 

such that L(N)=L(D)
n How to convert an NFA into a DFA?

n Observation: In an NFA, each transition maps to a 
subset of states 

n Idea: Represent:
each “subset of NFA_states” è a single “DFA_state”

Subset construction



7

NFA to DFA by subset construction

n Let N = {QN,∑,δN,q0,FN}
n Goal: Build D={QD,∑,δD,{q0},FD} s.t. 

L(D)=L(N)
n Construction:

1. QD= all subsets of QN (i.e., power set)
2. FD=set of subsets S of QN s.t. S∩FN≠Φ
3. δD: for each subset S of QN and for each 

input symbol a in ∑: 
n δD(S,a) = U δN(p,a)

p ∈ s



8

NFA to DFA construction: Example 1
n Construct the NFA recognizing the following language, then 

transform it into an DFA:
𝐿 = 𝑥 ∈ 0,1 ∗ 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑦𝑚𝑏𝑜𝑙 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑖𝑠 1}, 
Solution: see whiteboard.



9

NFA to DFA construction: Example 2
n L = {w | w ends in 01}

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

Ø Ø Ø

[q0] {q0}U{q1} {q0}

[q1] Ø {q2}

*[q2] Ø Ø

[q0,q1] {q0,q1}U∅ {q0}U{q2}

*[q0,q2] {q0,q1} {q0}

*[q1,q2] Ø {q2}

*[q0,q1,q2] {q0}U{q1}
U Ø U Ø

{q0} U {q2} 
U Ø

1. Determine transitions

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Idea: To avoid enumerating all of power set, do “lazy 
creation of states”

2. Retain only those states reachable 
from {q0}

0. Enumerate all possible subsets

LAZY CREATION



10

NFA to DFA: Repeating the example 
using EAGER CREATION
n L = {w | w ends in 01}

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Main Idea:
Introduce states as you go (on a need basis)

EAGER CREATION



11

Correctness of subset construction

Theorem: If D is the DFA constructed 
from NFA N by subset construction, 
then L(D)=L(N)

n Proof:
n Show that δ>∗ ({q0},w) ≡ δ@∗ ({q0},w), for all w
n Using induction on w’s length:

n Let w = xa
n δQ∗ ({q0},xa) ≡ δQ∗ (δS∗ (q0,x), a ) ≡ δS∗ (q0,w)



12

A bad case where 
#states(DFA)>>#states(NFA)

n Typically (not always) #states(DFA) = 
#states(NFA), however a DFA has more 
transitions.

n Worst case: #states(DFA)=2A, #states(NFA)=𝑛
n Example worst case, L = {w | w is a binary string 

s.t., the kth symbol from its end is a 1}
n NFA has k+1 states
n But an equivalent DFA needs to have at least 2k

states
n (see next slide)



Automata recogn. the lang. of binary 
strings s.t., the kth symbol from its 
end is a 1

13



Relationship between regular 
lang. and type-3 lang.
n Definition. A type-3 grammar has a 

normal form if it has generating rules as 
follows: 𝐴 → 𝑖𝐵, 𝐶 → 𝑗, where A, 𝐵, 𝐶 ∈
𝑉!; 𝑖, 𝑗 ∈ 𝑉", or the completing rule S →λ 
and in this case S does not appear on 
the right side of any rule.

n (Parsers for right linear grammars are 
much simpler. Why?)

14



Relationship between regular 
lang. and type-3 lang. (cont’d)

n Lemma. Any type-3 grammar admits a normal form. 

n Proof sketch. Production rules of type 
𝐴 → 𝑝𝐵, 𝑝 = 𝑖T… 𝑖U, are replaced by 
𝐴 → 𝑖T𝑍T, 𝑍T → 𝑖V𝑍V, … , 𝑍UWT → 𝑖U𝐵
𝑍X are newly introduced non-terminals.
n For a rule 𝐴 → 𝑝 with 𝑝 > 1 we do the same except the 

last rule which will be 𝑍Y → 𝑖U.
n Transform 𝐴 → 𝐵𝑝 rules (how to convert a left-linear 

grammar to a right-linear one).

15



Left linear grammar
n A left linear grammar is a linear grammar 

in which the non-terminal symbol always 
occurs on the left side.

n Here is a left linear grammar:
S → Aa
A → ab

16



Right linear grammar
n A right linear grammar is a linear grammar 

in which the non-terminal symbol always 
occurs on the right side.

n Here is a right linear grammar:
S → abaA
A → ε

17



Left linear grammars are evil
n Consider this rule from a left linear grammar:

A → Babc
n Can that rule be used to recognize this string:

abbabc
n We need to check the rule for B:

B → Cb | D
n Now we need to check the rules for C and D.
n This is very complicated. 
n Left linear grammars require complex parsers. 

18



Right linear grammars are 
good
n Consider this rule from a right linear grammar:

A → abcB
n Can that rule be used to recognize this string:

abcabb
n We immediately see that the first part of the 

string – abc – matches the first part of the rule. 
Thus, the problem simplifies to this: can the 
rule for B be used to recognize this string : 
abb

n Parsers for right linear grammars are much 
simpler. 

19



Convert left linear to right 
linear

Now we will see an algorithm for converting 
any left linear grammar to its equivalent right 
linear grammar.

S → Aa
A → ab

left linear

Both grammars generate this 
language: {aba}

S → abaA
A → ε

right linear

20



May need to make a new start 
symbol

The algorithm on the following slides 
assume that the left linear grammar doesn’t 
have any rules with the start symbol on the 
right hand side.

n If the left linear grammar has a rule with the 
start symbol S on the right hand side, simply 
add this rule:
S0 → S

21



Symbols used by the 
algorithm

n Let S denote the start symbol
n Let A, B denote non-terminal symbols
n Let p denote zero or more terminal symbols
n Let ε denote the empty symbol

22



Algorithm
1) If the left linear grammar has a rule S → p, then 

make that a rule in the right linear grammar
2) If the left linear grammar has a rule A → p, then 

add the following rule to the right linear grammar: 
S → pA

3) If the left linear grammar has a rule B → Ap, add 
the following rule to the right linear grammar: 
A → pB

4) If the left linear grammar has a rule S → Ap, then 
add the following rule to the right linear grammar: 
A → p

23



Convert this left linear 
grammar

24

S → Aa
A → ab

left linear



Right hand side has terminals

25

S → Aa
A → ab

left linear

2) If the left linear grammar has 
this rule A → p, then add the 
following rule to the right linear 
grammar: S → pA

S → abA
right linear



Right hand side of S has non-
terminal

26

S → Aa
A → ab

left linear

4) If the left linear grammar has 
S → Ap, then add the following 
rule to the right linear grammar: 
A → p

S → abA
A → a

right linear



Equivalent!

27

S → Aa
A → ab

left linear

Both grammars generate this 
language: {aba}

S → abA
A → a

right linear



Convert this left linear 
grammar

28

left linear
S0 → S
S → Ab
S → Sb
A → Aa
A → a

S → Ab
S → Sb
A → Aa
A → a

original grammar

make a 
new start 
symbol

Convert this



Right hand side has terminals

29

S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
right linear

2) If the left linear grammar has 
this rule A → p, then add the 
following rule to the right linear 
grammar: S → pA



Right hand side has non-
terminal

30

S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
A → bS
A → aA
S → bS

right linear

3) If the left linear grammar has a rule B 
→ Ap, add the following rule to the right 
linear grammar: A → pB



Right hand side of start symbol 
has non-terminal

31

S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
A → bS
A → aA
S → bS
S → ε

right linear

4) If the left linear grammar has 
S → Ap, then add the following 
rule to the right linear grammar: 
A → p



Equivalent!

32

S0 → S
S → Ab
S → Sb
A → Aa
A → a

left linear
S0 → aA
A → bS
A → aA
S → bS
S → ε

right linear

Both grammars generate this 
language: {a+b+}



Will the algorithm always 
work?
n We have seen two examples where the 

algorithm creates a right linear grammar 
that is equivalent to the left linear 
grammar.

n But will the algorithm always produce an 
equivalent grammar?

n Yes! Check Introduction to Formal 
Languages by Gyorgy Revesz for the 
proof.

33



Relationship between regular 
lang. and type-3 lang. (cont’d)
n Theorem. The family of type-3 

languages is equal to the family of 
regular languages.

n Useful for the constructing a type-3 
grammar from an automata and 
viceversa.

34



Relationship between regular 
lang. and type-3 lang. (cont’d)
n 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 , FA = (𝑄, Σ, 𝑞#, 𝐹, 𝛿)

35



Relationship between regular 
lang. and type-3 lang. (cont’d)
n 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃), FA = (𝑄, Σ, 𝑞#, 𝐹, 𝛿)

36



37

Applications 
n Text indexing 

n inverted indexing
n For each unique word in the database, store all 

locations that contain it using an NFA or a DFA
n Find pattern P in text T

n Example: Google querying
n Extensions of this idea:

n PATRICIA tree, suffix tree 



A few subtle properties of 
DFAs and NFAs
n The machine never really terminates. 

n It is always waiting for the next input symbol or making 
transitions.

n The machine decides when to consume the next symbol from 
the input and when to ignore it.
n (but the machine can never skip a symbol)

n => A transition can happen even without really consuming an 
input symbol (think of consuming e as a free token) – if this 
happens, then it becomes an e-NFA (see next lecture).

n A single transition cannot consume more than one (non-e) 
symbol.

38


