
1

Course 4
Finite Automata/Finite State
Machines

The structure and the content of the lecture is based on (1) http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm,
(2) W. Schreiner Computability and Complexity, Lecture Notes, RISC-JKU, Austria

http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

2

Excursion: Previous lecture

3

Finite Automaton (FA)
n Informally, a state diagram that comprehensively

captures all possible states and transitions that a
machine can take while responding to a stream or
sequence of input symbols.

n Recognizer for “Regular Languages”

n Deterministic Finite Automata (DFA)
n The machine can exist in only one state at any given time

n Non-deterministic Finite Automata (NFA)
n The machine can exist in multiple states at the same time

4

Deterministic Finite Automata
- Definition

n A Deterministic Finite Automaton (DFA) consists of:
n Q - a finite set of states
n ∑ - a finite set of input symbols (alphabet)
n q0 - a start state (one of the elements from Q)
n F - set of accepting states
n δ : Q×Σ → Q - a transition function which takes a state

and an input symbol as an argument and returns a
state.

n A DFA is defined by the 5-tuple: {Q, ∑, q0,F, δ}

5

Example #1
n Build a DFA for the following language:

n L = {w | w is a binary string that contains 01 as a substring} same as
n L = {w | w is of the form x01y where x,y are binary strings} same as
n L = {x01y | x,y are binary strings}
n Examples: 01, 010, 011, 0011, etc.
n Counterexamples: 𝜀, 0, 1, 111000

n Steps for building a DFA to recognize L:
n ∑ = {0,1}
n Decide on the non-final (non-accepting) states: Q
n Designate start state and final (accepting) state(s): F
n Decide on the transitions: δ

6

DFA for strings containing 01

q0
start q1

0

Regular expression: (01)*01(01)*

1 0,10
1

q2
Accepting
state

What if the language allows
empty strings?

• What makes this DFA deterministic? • Q = {q0,q1,q2}

• ∑ = {0,1}

• start state = q0
• F = {q2}

q2q2*q2

q2q1q1

q0q1q0

10
st

at
es

symbols

Start state

Accepting/final state

Transition diagram Transition table

7

Finite Automata (cont’d)

8

Example #2
n Build a DFA for the following language:

n L = { w | w is a binary string that has exactly length
2}

See whiteboard

9

What does a DFA do on
reading an input string?
n Input: a word w in ∑*
n Question: Is w acceptable by the DFA?
n Steps:

n Start at the “start state” q0
n For every input symbol in the sequence w do:

n Compute the next state from the current state, given the
current input symbol in w and the transition function

n If after all symbols in w are consumed, the current
state is one of the accepting states (F) then accept
w;

n Otherwise, reject w.

10

Regular Languages
n Let L(A) be a language recognized by a

DFA A.
n Then L(A) is called a “Regular Language”.

11

The Chomsky Hierachy

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

Location regular languages in the Chomsky Hierarchy

12

Example #3: Clamping Logic
n Problem: A clamping circuit

(https://en.wikipedia.org/wiki/Clamper_(electronics)) waits
for a ”1” input, and turns on forever. However, to avoid
clamping on spurious noise, we’ll design a DFA that waits
for two consecutive 1s in a row before clamping on.

n Solution: build a DFA for the following language:
L = { w | w is a bit string which contains the substring 11}
n State Design:

n q0 : start state (initially off), also means the most recent
input was not a 1

n q1: has never seen 11 but the most recent input was a 1
n q2: has seen 11 at least once

Example #4: Even Number of
Digits
n Consider the

program which
reads symbols from
an input stream and
returns true if the
stream contains an
even number of ‘0’
and an even number
of ‘1’ (and no other
symbol).

13

Example #3: Even Number of
Digits (cont’d)

14

15

Extension of transitions (δ) to
Paths (δ*)

n δ∗ (q,w) = destination state from state q on input
string w; used for determining the language of a
DFA (see next slide)

n Base case: δ∗(q,ε) = q
n Induction: δ∗(q,wa) = δ(δ∗(q,w), a)

n Example: Work out example #3 (Clamping Logic) using
the input sequence
n w=10: δ∗(q0,w) = ?
n w=1110: δ∗(q0,w) = ?

16

Language of a DFA
A DFA A accepts string w if there is a

path from q0 to an accepting (or final)
state that is labeled by w

n i.e., L(A) = { w | δ*(q0,w) Î F }

n i.e., L(A) = all strings that lead to an
accepting state from q0

17

Non-deterministic Finite
Automata (NFA)
n A Non-deterministic Finite Automaton

(NFA)
n is of course “non-deterministic”

n Implying that the machine can exist in more
than one state at the same time

n Transitions could be non-deterministic

qi
1

1

qj

qk

… • Each transition function therefore
maps to a set of states

18

Non-deterministic Finite
Automata (NFA)
n A Non-deterministic Finite Automaton (NFA)

consists of:
n Q: a finite set of states
n ∑: a finite set of input symbols (alphabet)
n Q0: a start state
n F: set of accepting states
n δ: a transition function, which is a mapping

between Q x ∑ and a subset of Q
n An NFA is also defined by the 5-tuple:

n {Q, ∑ , q0,F, δ }

19

How to use an NFA?
n Input: a word w in ∑*
n Question: Is w acceptable by the NFA?
n Steps:

n Start at the “start state” q0
n For every input symbol in the sequence w do

n Determine all possible next states from all current states, given
the current input symbol in w and the transition function

n If after all symbols in w are consumed and if at least one of
the current states is a final state then accept w;

n Otherwise, reject w.

20

NFA for strings containing 01

q0
start q1

0

0,1 0,1

1
q2

Final
state

• Q = {q0,q1,q2}

• S = {0,1}

• start state = q0
• F = {q2}

• Transition table

{q2}{q2}*q2

{q2}Φq1

{q0}{q0,q1}q0

10
st

at
es

symbols

What will happen if at state q1
an input of 0 is received?

Why is this non-deterministic?

Regular expression: (0+1)*01(0+1)*

21

What is an “error state”?
n A DFA for recognizing the key word

“while”

n An NFA for the same purpose:

q0
w

q1
h

q2
i

q3
l

q4
e

q5

qerr

Any other input symbol

q0
w

q1
h

q2
i

q3
l

q4
e

q5

Any symbol

Note: Omitting to explicitly show error states is just a matter of design convenience
(one that is generally followed for NFAs), and
i.e., this feature should not be confused with the notion of non-determinism.

Transitions into a dead state are implicit

22

Further examples
n NFA for the clamping logic example (see whiteboard).
n Build an NFA for the following language:

L = { w | w ends in 01}
Compare them with the corresponding DFA (see
whiteboard).

n Other examples
n Keyword recognizer (e.g., if, then, else, while, for,

include, etc.) @seminar
n Strings where the first symbol is present somewhere

later on at least once @seminar

23

Extension of δ to NFA Paths
n Basis: δ* (q,e) = {q}

n Induction:
n Let δ* (q0,w) = {p1,p2…,pk}
n δ (pi,a) = Si for i=1,2...,k

n Then, δ* (q0,wa) = S1 U S2 U … U Sk

24

Language of an NFA
n An NFA accepts w if there exists at

least one path from the start state to an
accepting (or final) state that is labeled
by w

n L(N) = { w | δ*(q0,w) ∩ F ≠ Φ }

25

Advantages & Caveats for NFA
n Great for modeling regular expressions

n String processing - e.g., grep, lexical analyzer

26

Summary
n DFA
1. All transitions are

deterministic
n Each transition leads to

exactly one state
2. For each state, transition on

all possible symbols
(alphabet) should be defined

3. Accepts input if the last state
visited is in F

4. Sometimes harder to
construct because of the
number of states

5. Practical implementation is
feasible

n NFA
1. Some transitions could be

non-deterministic
n A transition could lead to a

subset of states
2. Not all symbol transitions

need to be defined explicitly (if
undefined will go to an error
state – this is just a design
convenience, not to be
confused with “non-
determinism”)

3. Accepts input if one of the last
states is in F

4. Generally easier than a DFA
to construct

5. Practical implementations
limited but emerging (e.g.,
Micron automata processor)

But, DFAs and NFAs are equivalent in their power to capture langauges !!

