
1

Course 3
Finite Automata/Finite State
Machines

The structure and the content of the lecture is based on (1) http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm,
(2) W. Schreiner Computability and Complexity, Lecture Notes, RISC-JKU, Austria

http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

2

Excursion: Previous lecture

3

The Chomsky Hierarchy
We have: ℒ! ⊇ ℒ" ⊇ ℒ# ⊇ ℒ$.
Closure properties of Chomsky families
Let 𝐺" = 𝑁", 𝑇", 𝑆", 𝑃" , 𝐺# = 𝑁#, 𝑇#, 𝑆#, 𝑃# .
Closure of Chomsky families under union
The families ℒ!, ℒ", ℒ#, ℒ$ are closed under union.
Key idea in the proof

𝐺∪ = 𝑁" ∪ 𝑁# ∪ 𝑆, 𝑇"∪ 𝑇#, 𝑃" ∪ 𝑃# ∪ 𝑆 → 𝑆"|𝑆#
Closure of Chomsky families under product
The families ℒ!, ℒ", ℒ#, ℒ$ are closed under product.
Key ideas in the proof
For ℒ!, ℒ", ℒ#

𝐺& = 𝑁" ∪ 𝑁# ∪ 𝑆, 𝑇"∪ 𝑇#, 𝑃"∪ 𝑃# ∪ 𝑆 → 𝑆"𝑆#
For ℒ$

𝐺& = 𝑉'!∪'" , 𝑉(!∪(" , 𝑆", 𝑃"′ ∪ 𝑃#
where 𝑃"′ is obtained from 𝑃" by replacing the rules 𝐴 → 𝑝 with 𝐴 → 𝑝𝑆#

4

Closure properties of Chomsky
families (cont’d)

Closure of Chomsky families under Kleene closure
The families ℒ!, ℒ", ℒ#, ℒ$ are closed under Kleene closure operation.
Key ideas in the proof
For ℒ!, ℒ"
𝐺∗ = 𝑉& ∪ 𝑆∗, 𝑋 , 𝑉' , 𝑆∗, 𝑃 ∪ 𝑆∗ → 𝜆 𝑆 𝑋𝑆, 𝑋𝑖 → 𝑆𝑖|𝑋𝑆𝑖, 𝑖∈𝑉'

The new introduced rules are of type 1, so 𝐺∗ does not modify the type of 𝐺.
For ℒ#

𝐺∗ = 𝑉& ∪ 𝑆∗ , 𝑉' , 𝑆∗, 𝑃 ∪ 𝑆∗ → 𝑆∗𝑆|𝜆

For ℒ$
𝐺∗ = 𝑉& ∪ 𝑆∗ , 𝑉' , 𝑆∗, 𝑃 ∪ 𝑃(∪ 𝑆∗ → 𝑆|𝜆

where 𝑃(is obtained with category II rules, from 𝑃, namely if 𝐴 → 𝑝 ∈ 𝑃
then 𝐴 → 𝑝𝑆 ∈ 𝑃.

5

Finite Automata

6

Finite Automaton (FA)

Finite state machines are everywhere!

https://www.youtube.com/watch?v=t8YKCItVDlg

Why finite automata are important?

https://www.quora.com/Why-is-it-so-important-to-have-a-
good-understanding-of-automata-theory

https://www.youtube.com/watch%3Fv=t8YKCItVDlg

7

Finite Automaton (FA)
n Informally, a state diagram that comprehensively

captures all possible states and transitions that a
machine can take while responding to a stream or
sequence of input symbols.

n Recognizer for “Regular Languages”

n Deterministic Finite Automata (DFA)
n The machine can exist in only one state at any given time

n Non-deterministic Finite Automata (NFA)
n The machine can exist in multiple states at the same time

8

Deterministic Finite Automata
- Definition

n A Deterministic Finite Automaton (DFA) consists of:
n Q - a finite set of states
n ∑ - a finite set of input symbols (alphabet)
n q0 - a start state (one of the elements from Q)
n F - set of accepting states
n δ : Q×Σ → Q - a transition function which takes a state

and an input symbol as an argument and returns a
state.

n A DFA is defined by the 5-tuple: {Q, ∑, q0,F, δ}

9

Example #1
n Build a DFA for the following language:

n L = {w | w is a binary string that contains 01 as a substring} same as
n L = {w | w is of the form x01y where x,y are binary strings} same as
n L = {x01y | x,y are binary strings}
n Examples: 01, 010, 011, 0011, etc.
n Counterexamples: 𝜀, 0, 1, 111000

n Steps for building a DFA to recognize L:
n ∑ = {0,1}
n Decide on the non-final (non-accepting) states: Q
n Designate start state and final (accepting) state(s): F
n Decide on the transitions: δ

10

DFA for strings containing 01

q0
start q1

0

Regular expression: (01)*01(01)*

1 0,10
1

q2
Accepting
state

What if the language allows
empty strings?

• What makes this DFA deterministic? • Q = {q0,q1,q2}

• ∑ = {0,1}

• start state = q0

• F = {q2}

q2q2*q2

q2q1q1

q0q1q0

10
st

at
es

symbols

Start state

Accepting/final state

Transition diagram Transition table

11

Example #2
n Build a DFA for the following language:

n L = { w | w is a binary string that has exactly length
2}

See whiteboard

12

What does a DFA do on
reading an input string?
n Input: a word w in ∑*
n Question: Is w acceptable by the DFA?
n Steps:

n Start at the “start state” q0
n For every input symbol in the sequence w do:

n Compute the next state from the current state, given the
current input symbol in w and the transition function

n If after all symbols in w are consumed, the current
state is one of the accepting states (F) then accept
w;

n Otherwise, reject w.

13

Regular Languages
n Let L(A) be a language recognized by a

DFA A.
n Then L(A) is called a “Regular Language”.

14

The Chomsky Hierachy

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

Location regular languages in the Chomsky Hierarchy

15

Example #3: Clamping Logic
n Problem: A clamping circuit

(https://en.wikipedia.org/wiki/Clamper_(electronics)) waits
for a ”1” input, and turns on forever. However, to avoid
clamping on spurious noise, we’ll design a DFA that waits
for two consecutive 1s in a row before clamping on.

n Solution: build a DFA for the following language:
L = { w | w is a bit string which contains the substring 11}
n State Design:

n q0 : start state (initially off), also means the most recent
input was not a 1

n q1: has never seen 11 but the most recent input was a 1
n q2: has seen 11 at least once

Example #4: Even Number of
Digits
n Consider the

program which
reads symbols from
an input stream and
returns true if the
stream contains an
even number of ‘0’
and an even number
of ‘1’ (and no other
symbol).

16

Example #3: Even Number of
Digits (cont’d)

17

Summary
n Deterministic Finite Automata

18

