Course 3 Finite Automata/Finite State Machines

The structure and the content of the lecture is based on (1) http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm, (2) W. Schreiner Computability and Complexity, Lecture Notes, RISC-JKU, Austria

Excursion: Previous lecture

The Chomsky Hierarchy

We have: $\mathcal{L}_{0} \supseteq \mathcal{L}_{1} \supseteq \mathcal{L}_{2} \supseteq \mathcal{L}_{3}$.
Closure properties of Chomsky families
Let $G_{1}=\left(N_{1}, T_{1}, S_{1}, P_{1}\right), G_{2}=\left(N_{2}, T_{2}, S_{2}, P_{2}\right)$.

Closure of Chomsky families under union

The families $\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ are closed under union.
Key idea in the proof

$$
G_{\cup}=\left(N_{1} \cup N_{2} \cup S, T_{1} \cup T_{2}, P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}\right)
$$

Closure of Chomsky families under product
The families $\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ are closed under product.
Key ideas in the proof
For $\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}$

$$
G_{p}=\left(N_{1} \cup N_{2} \cup S, T_{1} \cup T_{2}, P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}\right)
$$

For \mathcal{L}_{3}

$$
G_{p}=\left(V_{N_{1} \cup N_{2}}, V_{T_{1} \cup T_{2}}, S_{1}, P_{1}^{\prime} \cup P_{2}\right)
$$

where $P_{1}{ }^{\prime}$ is obtained from P_{1} by replacing the rules $A \rightarrow p$ with $A \rightarrow p S_{2}$

Closure properties of Chomsky families (cont'd)

Closure of Chomsky families under Kleene closure
The families $\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ are closed under Kleene closure operation.
Key ideas in the proof
For $\mathcal{L}_{0}, \mathcal{L}_{1}$

$$
G^{*}=\left(V_{N} \cup\left\{S^{*}, X\right\}, V_{T}, S^{*}, P \cup\left\{S^{*} \rightarrow \lambda|S| X S, X i \rightarrow \operatorname{Si|} \mid X S i, \quad i \in V_{T}\right\}\right)
$$

The new introduced rules are of type 1 , so G^{*} does not modify the type of G.
For \mathcal{L}_{2}

$$
G^{*}=\left(V_{N} \cup\left\{S^{*}\right\}, V_{T}, S^{*}, P \cup\left\{S^{*} \rightarrow S^{*} S \mid \lambda\right\}\right)
$$

For \mathcal{L}_{3}

$$
G^{*}=\left(V_{N} \cup\left\{S^{*}\right\}, V_{T}, S^{*}, P \cup P^{\prime} \cup\left\{S^{*} \rightarrow S \mid \lambda\right\}\right)
$$

where P^{\prime} is obtained with category II rules, from P, namely if $A \rightarrow p \in P$ then $A \rightarrow p S \in P$.

Finite Automata

Finite Automaton (FA)

Finite state machines are everywhere!

https://www.youtube.com/watch?v=t8YKCItVDlg

Why finite automata are important?
https://www.quora.com/Why-is-it-so-important-to-have-a-good-understanding-of-automata-theory

Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols.
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
- The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
- The machine can exist in multiple states at the same time

Deterministic Finite Automata - Definition

- A Deterministic Finite Automaton (DFA) consists of:
- Q - a finite set of states
- \sum - a finite set of input symbols (alphabet)
- q_{0} - a start state (one of the elements from Q)
- F - set of accepting states
- $\delta: Q \times \Sigma \rightarrow \mathrm{Q}$ - a transition function which takes a state and an input symbol as an argument and returns a state.
- A DFA is defined by the 5 -tuple: $\left\{Q, \Sigma, q_{0}, F, \delta\right\}$

Example \#1

- Build a DFA for the following language:
- $L=\{w \mid w$ is a binary string that contains 01 as a substring $\}$ same as
- $L=\{w \mid w$ is of the form $x 01 y$ where x, y are binary strings $\}$ same as
- $L=\{x 01 y \mid x, y$ are binary strings $\}$
- Examples: 01, 010, 011, 0011, etc.
- Counterexamples: $\varepsilon, 0,1,111000$
- Steps for building a DFA to recognize L:
- $\Sigma=\{0,1\}$
- Decide on the non-final (non-accepting) states: Q
- Designate start state and final (accepting) state(s): F
- Decide on the transitions: δ

Regular expression: (01)*01(01)*

DFA for strings containing 01

Example \#2

- Build a DFA for the following language:
- $L=\{w \mid w$ is a binary string that has exactly length 2\}
See whiteboard

What does a DFA do on reading an input string?

- Input: a word win \sum^{*}
- Question: Is w acceptable by the DFA?
- Steps:
- Start at the "start state" q_{0}
- For every input symbol in the sequence w do:
- Compute the next state from the current state, given the current input symbol in w and the transition function
- If after all symbols in w are consumed, the current state is one of the accepting states (F) then accept W;
- Otherwise, reject w.

Regular Languages

- Let $\mathrm{L}(\mathrm{A})$ be a language recognized by a DFA A.
- Then $\mathrm{L}(\mathrm{A})$ is called a "Regular Language".

The Chomsky Hierachy

Location regular languages in the Chomsky Hierarchy

Example \#3: Clamping Logic

- Problem: A clamping circuit (https://en.wikipedia.org/wiki/Clamper_(electronics)) waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we'll design a DFA that waits for two consecutive 1 s in a row before clamping on.
- Solution: build a DFA for the following language:
$L=\{w \mid w$ is a bit string which contains the substring 11\}
- State Design:
- q_{0} : start state (initially off), also means the most recent input was not a 1
- q_{1} : has never seen 11 but the most recent input was a 1
- q_{2} : has seen 11 at least once

Example \#4: Even Number of Digits

- Consider the program which reads symbols from an input stream and returns true if the stream contains an even number of ' 0 ' and an even number of '1' (and no other symbol).
function EvenZerosAndOnes()
$e_{0}, e_{1} \leftarrow$ true, true
while input stream is not empty do read input
case input of
0: $e_{0} \leftarrow \neg e_{0}$
1: $e_{1} \leftarrow \neg e_{1}$
default: return false end case
end while
return $e_{0} \wedge e_{1}$
end function

	e_{0}	e_{1}
q_{0}	true	true
q_{1}	true	false
q_{2}	false	true
q_{2}	false	false

Example \#3: Even Number of Digits (cont'd)

Summary

- Deterministic Finite Automata

