
1

Course 1
Introduction to Automata 
Theory

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

https://www.dropbox.com/referrer_cleansing_redirect%3Fhmac=fgVwQrggH6Gbxke%252BOgORX6k0yz4xd6Xp8wSrCEwTjKg%253D&url=http:/www.eecs.w
https://www.dropbox.com/referrer_cleansing_redirect%3Fhmac=AFWceeuD5pU07LmJ8pNE3BH3nLa32uCTacsnvT0a8ME%253D&url=http:/su.edu/~ananth/CptS317/Lectures/index.htm
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Major Notions
1. Automata Theory and Formal 

Languages
2. Context-Free Grammars
3. Turing Machines
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Why Study Automata Theory
and Formal Languages?
n Regular expressions (REs) are used in 

many systems.
n E.g., UNIX, Linux, OS X,… a.*b.
n E.g., Document Type Definitions describe 

XML tags with a RE format like person 
(name, addr, child*).
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Why Study Automata Theory
and Formal Languages? (cont’d)
n Finite automata model protocols, 

electronic circuits.
n Theory is used in model-checking.



5

Why Context-Free Grammars?
n Context-free grammars (CFGs) are 

used to describe the syntax of 
essentially every modern programming 
language.

n Every modern complier uses CFG 
concepts to parse programs.
n Role in describing natural languages.

n Document Type Definitions are CFG’s.
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Why Turing Machines?
n When developing solutions to real 

problems, we encounter situations that 
software can not do.
n Undecidable things – no program can do it 

100% of the time with 100% accuracy.
n Intractable things – there are programs, but 

no fast programs.
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What is Automata Theory?
n Study of abstract computing devices, or 

“machines”
n Automaton = an abstract computing device

n Note: A “device” need not even be a physical 
hardware!

n A fundamental question in computer science: 
n Find out what different models of machines can do 

and cannot do
n The theory of computation

n Computability vs. Complexity
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Alan Turing (1912-1954)
n Father of Modern Computer 

Science
n English mathematician
n Studied abstract machines called 

Turing machines even before 
computers existed

n Heard of the Turing test?

(A pioneer of automata theory)
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Turing Test

https://en.wikipedia.org

FYI: Ex Machina (movie)
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Theory of Computation: A 
Historical Perspective

1930s • Alan Turing studies Turing machines
• Decidability
• Halting problem

1940-1950s • “Finite automata” machines studied
• Noam Chomsky proposes the 

“Chomsky Hierarchy” for formal 
languages

1969 Cook introduces “intractable” problems
or “NP-Hard” problems

1970- Modern computer science: compilers, 
computational & complexity theory evolve
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Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002 

n Languages: “A language is a 
collection of sentences of 
finite length all constructed 
from a finite alphabet of 
symbols”

n Grammars: “A grammar can 
be regarded as a device that 
enumerates the sentences of 
a language” - nothing more, 
nothing less

n N. Chomsky, Information 
and Control, Vol 2, 1959



12

The Chomsky Hierachy

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive 

(LBA)

Recursively-
enumerable 

(TM)

• A containment hierarchy of classes of formal languages
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The Central Concepts of 
Automata Theory
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Alphabet
An alphabet is a finite, non-empty set of 

symbols
n We use the symbol ∑ (sigma) to denote an 

alphabet
n Examples:

n Binary: ∑ = {0,1} 
n All lower case letters: ∑ = {a,b,c,..z}
n Alphanumeric: ∑ = {a-z, A-Z, 0-9}
n DNA molecule letters: ∑ = {a,c,g,t}
n …
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Strings
A string or word is a finite sequence of symbols 

chosen from ∑
n Empty string is e (or “epsilon”)

n Length of a string w, denoted by “|w|”, is 
equal to the number of (non- e) characters in the 
string
n E.g., x = 010100  |x| = 6
n x = 01 e 0 e 1 e 00 e |x| = ?

n xy = concatenation of two strings x and y 
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Powers of an alphabet 
Let ∑ be an alphabet.

n ∑k = the set of all strings of length k

n ∑* = ∑0 U ∑1 U ∑2 U …

n ∑+ = ∑1 U ∑2 U ∑3 U …
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Languages
L is a said to be a language over alphabet ∑, only if L Í ∑*

è this is because ∑* is the set of all strings (of all possible 
length including 0) over the given alphabet ∑

Examples:
1. Let L be the language of all strings consisting of n 0’s 

followed by n 1’s: 
L = {e, 01, 0011, 000111,…}

2. Let L be the language of all strings of with equal number of 
0’s and 1’s: 

L = {e, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language
n Let L = {e}; Is L=Ø? NO

Canonical ordering of strings in the language
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The Membership Problem
Given a string w Î∑*and a language L 

over ∑, decide whether or not w ÎL.

Example:
Let w = 100011
Q) Is w Î the language of strings with 
equal number of 0s and 1s?
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Finite Automata
n Some Applications

n Software for designing and checking the behavior 
of digital circuits

n Lexical analyzer of a typical compiler
n Software for scanning large bodies of text (e.g., 

web pages) for pattern finding
n Software for verifying systems of all types that 

have a finite number of states (e.g., stock market 
transaction, communication/network protocol)
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Finite Automata : Examples
n On/Off switch

n Modeling recognition of the word “then”

Start state Final stateTransition Intermediate 
state

action

state



21

Structural expressions
n Grammars
n Regular expressions

n E.g., unix style to capture city names such 
as “Palo Alto CA”:

n [A-Z][a-z]*([ ][A-Z][a-z]*)*[ ][A-Z][A-Z]

Start with a letter

A string of other 
letters (possibly
empty)

Other space delimited words
(part of city name)

Should end w/ 2-letter state code
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The Chomsky Hierarchy 



The Chomsky Hierarchy
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Recursively-
enumerable

Context-
sensitive 

Context-
freeRegular

Grammar Languages Automaton Production
Rules

Type-0 Recursively 
enumerable

Turing machine 𝛼 → 𝛽

Type-1 Context sensitive Linear-bounded 
non-deterministic 
Turing machine

𝛼𝐴𝛽 → 𝛼𝛾𝛽

Type-2 Context-free Non-
deterministic push
down automaton

𝐴 → 𝛾

Type-3 Regular Finite state 
automaton

𝐴 → 𝑎 and 
𝐴 → 𝑎𝐵

ℒ!

ℒ"

ℒ#

ℒ$
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The Chomsky Hierarchy (cont’d)
Classification using the structure of their rules:

n Type-0 grammars: there are no restriction on the rules; 

n Type-1 grammars/Context sensitive grammars: the rules for this 
type have the next form:

𝑢𝐴𝑣 → 𝑢𝑝𝑣, 𝑢, 𝑝, 𝑣 ∈ 𝑉!∗, 𝑝 ≠ 𝜆, A ∈ 𝑉#
or 𝐴 → 𝜆 and in this case 𝐴 does not belong to any right side of a 

rule. 
Remark. The rules of the second form have sense only if A is the 

start symbol.



The Chomsky Hierarchy (cont’d)
Remarks
1. A grammar is Type 1 monotonic if it contains no rules in which 

the left-hand side consists of more symbols than the right-hand 
side. This forbids, for instance, the rule , . 𝑁𝐸 → 𝑎𝑛𝑑 𝑁, where 
𝑁, 𝐸 are non-term. symb.; 𝑎𝑛𝑑 is a terminal symb (3 = .𝑁𝐸 ≥
𝑎𝑛𝑑 𝑁 = 2).
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The Chomsky Hierarchy (cont’d)
Remarks
n A grammar is Type 1 context-sensitive if all of its rules are 

context-sensitive. A rule is context-sensitive if actually only one 
(non-terminal) symbol in its left-hand side gets replaced by other 
symbols, while we find the others back undamaged and in the 
same order in the right-hand side. 

n Example: 𝑁𝑎𝑚𝑒 𝐶𝑜𝑚𝑚𝑎 𝑁𝑎𝑚𝑒 𝐸𝑛𝑑 → 𝑁𝑎𝑚𝑒 𝑎𝑛𝑑 𝑁𝑎𝑚𝑒 𝐸𝑛𝑑
meaning that the rule 𝐶𝑜𝑚𝑚𝑎 → 𝑎𝑛𝑑 may be applied if the left 
context is 𝑁𝑎𝑚𝑒 and the right context is 𝑁𝑎𝑚𝑒 𝐸𝑛𝑑. The 
contexts themselves are not affected. The replacement must be 
at least one symbol long; this means that context-sensitive 
grammars are always monotonic.
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The Chomsky Hierarchy (cont’d)
Classification using the structure of their rules:
n Type-2 grammars/Context free grammars: the rules for this type are of the 

form:
𝐴 → 𝑝, 𝑝 ∈ 𝑉!∗, A ∈ 𝑉#

n Type-3 grammars/regular grammars: the rules for this type have one of the 
next two forms:

n Rule 𝐴 → 𝜆 is allowed if 𝐴 does not belongs to any right side of a rule. 

𝐴 → 𝐵𝑝
C → 𝑞

or

A, 𝐵, 𝐶 ∈ 𝑉#, 𝑝, 𝑞 ∈ 𝑉$∗

𝐴 → 𝑝𝐵
C → 𝑞

Cat. I rules
Cat. II rules
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Summary
n Automata theory & a historical perspective
n Chomsky hierarchy 
n Finite automata
n Alphabets, strings/words/sentences, languages
n Membership problem
n Chomsky hierarchy


