Pushdown Automata (PDA)

Excursion

- Context-free grammar $\mathrm{G}=\left(V_{N}, V_{T}, S, P\right)$, where:
- V_{N} : set of non-terminals
- V_{T} : set of terminals
- P: set of productions, each of which is of the form $V==>\alpha_{1}\left|\alpha_{2}\right| \ldots$
- Where each α_{i} is an arbitrary string of nonterminals and terminals
- S: starting symbol

Context-
free
(PDA/CFG)

PDA - the automata for CFLs

- What is?
- What FA is to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata -
 Definition

- A PDA P := (Q, $\left.\Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$:
- Q: states of the ε-NFA
- $\Sigma: \quad$ input alphabet
- Г: stack symbols
- δ : transition function
- q_{0} : start state
- Z_{0} : Initial stack top symbol
- F: Final/accepting states
old state input symb. stack top new state(s) new Stack top(s)
$\delta: Q \times \sum \times \Gamma=>Q \times \Gamma$

δ : The Transition Function

$\delta(q, a, X)=\{(p, Y), \ldots\}$

1. \quad state transition from q to p
2. a is the next input symbol
3. X is the current stack top symbol
4. $\quad \mathrm{Y}$ is the replacement for X ; it is in Γ^{*} (a string of stack symbols)
i. \quad Set $Y=\varepsilon$ if $\operatorname{Pop}(X)$
ii. If $\mathrm{Y}=\mathrm{X}$ then stack top is unchanged
ii. If $Y=Z_{1} Z_{2} \ldots Z_{k}$ then X is popped and is replaced by Y in reverse order (i.e., Z_{1} will be the new stack top)

Example (palindrome)

Let $L_{w w r}=\left\{w w^{R} \mid w\right.$ is in $\left.\{0,1\}^{*}\right\}$

- CFG for $\mathrm{L}_{\text {wwr }}$: S --> 0 S0| $1 \mathrm{~S} 1 \mid \varepsilon$
- PDA for $L_{\text {wur }}$:
- P := ($\left.Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$
$=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\left\{0,1, Z_{q}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right)$
Mark the botom of the stack

Initial state of the PDA:

PDA for $\mathrm{L}_{\text {wwr }}$

$\left.\begin{array}{ll}\text { 1. } & \delta\left(q_{0}, 0, Z_{0}\right)=\left\{\left(q_{0}, 0 Z_{0}\right)\right\} \\ \text { 2. } & \delta\left(q_{0}, 1, Z_{0}\right)=\left\{\left(q_{0}, 1 Z_{0}\right)\right\}\end{array}\right\}$

First symbol push on stack

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode, nondeterministically (boundary between w and w^{R})

Shrink the stack by popping matching symbols (w^{R}-part)

Enter acceptance state

PDA as a state diagram

$$
\delta\left(q_{i}, a, X\right)=\left\{\left(q_{\mathrm{j}}, Y\right)\right\}
$$

PDA for $\mathrm{L}_{\text {wwr }}$: Transition Diagram

Grow stack
(

Switch to
popping mode

$$
\begin{aligned}
& \sum=\{0,1\} \\
& \Gamma=\left\{Z_{0}, 0,1\right\} \\
& Q=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}
\end{aligned}
$$

Non-deterministic PDA: 2 output transitions i.e: $\left(\mathrm{q}_{0}, 0,0\right)=\left(\mathrm{q}_{0}, 0\right),\left(\mathrm{q}_{0}, \varepsilon, 0\right)=\left(\mathrm{q}_{1}, 0\right)$:

- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
If next input symbol is same as top of stack, pop
- If Z_{0} on top of stack move to accept state

How does the PDA for $L_{w w r}$ work on input "1111"?

Example 2: language of balanced paranthesis

Grow stack
Pop stack for
matching symbols
(l)

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

There are two types of PDAs that one can design: those that accept by final state or by empty stack

Acceptance by...

- PDAs that accept by final state:
- For a PDA P, the language accepted by P, denoted by $L(P)$ by final state, is:
- $\left\{w\left|\left(q_{0}, w, Z_{0}\right)\right|--{ }^{*}(q, \varepsilon, A)\right\}$, s.t., $q \in F$

Checklist:

- input exhausted?
- in a final state?
- PDAs that accept by empty stack:
- For a PDA P, the language accepted by P, denoted by $N(P)$ by empty stack, is:
- $\left\{\mathrm{w}\left|\left(\mathrm{q}_{0}, \mathrm{w}, \mathrm{Z}_{0}\right)\right|--\right.$ - $\left.^{*}(\mathrm{q}, \varepsilon, \varepsilon)\right\}$, for any $\mathrm{q} \in \mathrm{Q}$.
Q) Does a PDA that accepts by empty stack need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Example: L of balanced parenthesis

PDA that accepts by final state

An equivalent PDA that accepts by empty stack

Equivalence of PDAs and CFGs

CFGs == PDAs ==> CFLs

This is same as: "implementing a CFG using a PDA"

Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given w , and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

This is same as: "implementing a CFG using a PDA"

Converting a CFG into a PDA

Main idea: The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

Steps:

1. Push the right hand side of the production onto the stack, with leftmost symbol at the stack top
2. If stack top is the leftmost variable, then replace it by all its productions (each possible substitution will represent a distinct path taken by the non-deterministic PDA)
3. If stack top has a terminal symbol, and if it matches with the next symbol in the input string, then pop it.

PDA by final state: (Q, $\left.\Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ Formal construction of PDA

 from CFGNote: Initial stack symbol (S) same as the start variable in the grammar

- Given: $\mathrm{G}=\left(V_{N}, V_{T}, \mathrm{~S}, \mathrm{P}\right)$
- Output: $\mathrm{P}_{\mathrm{N}}=\left(\{\mathrm{q}\}, V_{T}, V_{N} \mathrm{U} V_{T}, \delta, \mathrm{q}, \mathrm{S}\right)$
- δ :

Before:

\rightarrow| A |
| ---: |
| \vdots |

- For all $\mathrm{A} \in V_{N}$, add the following transition(s) in the PDA:
$-\delta(q, \varepsilon, A)=\{(q, \alpha) \mid " A->\alpha " \in P\}$

Before:

\rightarrow| a |
| :---: |
| \vdots |

- For all $a \in V_{T}$, add the following transition(s) in the PDA:
- $\delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=\{(\mathrm{q}, \varepsilon)\}$

Example: CFG to PDA

- $G=(\{S, A\},\{0,1\}, P, S)$
- P :
- S --> AS | ε
- A --> 0A1|A1|01
- $P D A=(\{q\},\{0,1\},\{0,1, A, S\}, \delta, q, S) \backslash$

- ठ:
- $\delta(\mathrm{q}, \varepsilon, \mathrm{S})=\{(\mathrm{q}, \mathrm{AS}),(\mathrm{q}, \varepsilon)\}$
- $\delta(\mathrm{q}, \varepsilon, \mathrm{A})=\{(\mathrm{q}, 0 \mathrm{~A} 1),(\mathrm{q}, \mathrm{A} 1),(\mathrm{q}, 01)\}$
- $\delta(q, 0,0)=\{(q, \varepsilon)\}$
- $\delta(\mathrm{q}, 1,1)=\{(\mathrm{q}, \varepsilon)\}$

Simulating string 0011 on the

 new PDA ...Leftmost deriv.:

$$
\begin{aligned}
& \frac{\operatorname{PDA}(\delta):}{\delta(q, \varepsilon, S)}=\{(\mathrm{q}, \mathrm{AS}),(\mathrm{q}, \varepsilon)\} \\
& \bar{\delta}(\mathrm{q}, \varepsilon, \mathrm{~A})=\{(\mathrm{q}, 0 \mathrm{~A} 1),(\mathrm{q}, \mathrm{~A} 1),(\mathrm{q}, 01)\} \\
& \bar{\delta}(\mathrm{q}, 0,0)=\{(\mathrm{q}, \varepsilon)\} \\
& \delta(\mathrm{q}, 1,1)=\{(\mathrm{q}, \varepsilon)\}
\end{aligned}
$$

Stack moves (shows only the successful path):

0

0

$$
S=>A S
$$

=> 0A1S
=> 0011S

$$
\text { => } 0011
$$

Accept by empty stack
S $\quad=>A S=>0 A 1 S \quad=>0011 S$
=> 0011

Summary

- PDA
- Definition
- With acceptance - by final state
- With acceptance - by empty stack
- PDA (by final state) = PDA (by empty stack) <== CFG

