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Pushdown Automata (PDA)

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm



Excursion
n Context-free grammar G=(𝑉! , 𝑉" , 𝑆, 𝑃), where:

n 𝑉!: set of non-terminals
n 𝑉" : set of terminals
n P: set of productions, each of which is of the form

V ==> a1 | a2 | …
n Where each ai is an arbitrary string of nonterminals and 

terminals
n S: starting symbol
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Context-
free

(PDA/CFG)

Regular
(FA/RE)
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PDA - the automata for CFLs
n What is?

n What FA is to Reg Lang, PDA is to CFL
n PDA == [ e -NFA + “a stack” ]
n Why a stack?

e-NFA

A stack filled with “stack symbols”

Input
string

Accept/reject
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Pushdown Automata -
Definition
n A PDA P := ( Q,∑,G, δ,q0,Z0,F ):

n Q: states of the e-NFA
n ∑: input alphabet
n G : stack symbols 
n δ: transition function
n q0: start state
n Z0: Initial stack top symbol
n F: Final/accepting states



δ : The Transition Function
δ(q,a,X) = {(p,Y), …} 
1. state transition from q to p
2. a is the next input symbol
3. X is the current stack top symbol
4. Y is the replacement for X;

it is in G* (a string of stack 
symbols)

i. Set Y = e if Pop(X) 
ii. If Y=X then stack top is 

unchanged
iii. If Y=Z1Z2…Zk then X is popped 

and is replaced by Y in reverse 
order (i.e., Z1 will be the new 
stack top)
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old state stack top input symb. new state(s) new Stack top(s)

δ : Q x ∑ x  G => Q x G

q
a X

p
Y

Y = ? Action

i) Y=e Pop(X)

ii) Y=X Pop(X)
Push(X)

iii) Y=Z1Z2..Zk Pop(X)
Push(Zk)
Push(Zk-1)
…
Push(Z2)
Push(Z1)
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Example (palindrome)
Let Lwwr = {wwR | w is in {0,1}*}
n CFG for Lwwr : S --> 0S0 | 1S1 | e
n PDA for Lwwr :
n P := ( Q,∑, G, δ,q0,Z0,F ) 

= ( {q0, q1, q2},{0,1},{0,1,Z0},δ,q0,Z0,{q2})

Mark the botom of the stack
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PDA for Lwwr
1. δ(q0,0, Z0)={(q0,0Z0)}
2. δ(q0,1, Z0)={(q0,1Z0)}

3. δ(q0,0, 0)={(q0,00)}
4. δ(q0,0, 1)={(q0,01)}
5. δ(q0,1, 0)={(q0,10)}
6. δ(q0,1, 1)={(q0,11)}

7. δ(q0, e, 0)={(q1, 0)}
8. δ(q0, e, 1)={(q1, 1)}
9. δ(q0, e, Z0)={(q1, Z0)}

10. δ(q1,0, 0)={(q1, e)}
11. δ(q1,1, 1)={(q1, e)}

12. δ(q1, e, Z0)={(q2, Z0)}

First symbol push on stack

Grow the stack by pushing 
new symbols on top of old
(𝑤-part)

Switch to popping mode, nondeterministically
(boundary between 𝑤 and 𝑤𝑅)

Shrink the stack by popping matching 
symbols (𝑤𝑅-part)

Enter acceptance state

Z0

Initial state of the PDA:

q0Stack
top
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PDA as a state diagram

qi qj

a, X   /  Y 

Next 
input 
symbolCurrent

state

Current
stack
top

Stack
Top
Replacement
(w/ string Y)

Next
state

δ(qi,a, X)={(qj,Y)}
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PDA for Lwwr: Transition Diagram

q0 q1 q2

0, Z0/0Z0
1, Z0/1Z0
0, 0/00
0, 1/01
1, 0/10
1, 1/11

0, 0/ e
1, 1/ e

e, Z0/Z0
e, 0/0 
e, 1/1 

e, Z0/Z0

Grow stack

Switch to
popping mode

Pop stack for 
matching symbols

Go to acceptance

∑ = {0, 1}
G= {Z0, 0, 1}
Q = {q0,q1,q2}

e, Z0/Z0

Non-deterministic PDA: 2 output transitions i.e.
(q0, 0, 0) = (q0, 0), (q0, e, 0) = (q1, 0):

• Push input symbols onto the stack
• Non-deterministically move to a popping 

state (with or without consuming a single 
input symbol)

• If next input symbol is same as top of 
stack, pop

• If Z0 on top of stack move to accept state



10

How does the PDA for Lwwr
work on input “1111”?

(q0,1111,Z0)

(q0,111,1Z0)

(q0,11,11Z0)

(q0,1,111Z0)

(q0,e,1111Z0)

(q1, e,1111Z0) (q1, e,11Z0)

(q1,1,111Z0)

(q1,11,11Z0)

(q1,111,1Z0)

(q1,1111,Z0) Path dies…

Path dies…

(q1,1,1Z0)

(q1, e,Z0)

(q2, e,Z0)

Acceptance by 
final state:

= empty input
AND
final state

All moves made by the non-deterministic PDA

Path dies…Path dies…

Instantaneous 
Description (ID)
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Example 2: language of 
balanced paranthesis

q0 q1 q2

(, Z0 / ( Z0

e, Z0 / Z0

e, Z0 / Z0

Grow stack

Switch to
popping mode

Pop stack for 
matching symbols

Go to acceptance (by final state)
when you see the stack bottom symbol

∑ = { (, ) }
G= {Z0, ( }
Q = {q0,q1,q2}

(, ( / ( (

), ( /  e

), ( / e

To allow adjacent
blocks of nested paranthesis

(, ( / ( ( 
(, Z0 / ( Z0

e, Z0 / Z0

On seeing a ( push it onto the stack
On seeing a ) pop if a ( is in the stack
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Example 2: language of balanced 
paranthesis (another design)

∑ = { (, ) }
G= {Z0, ( }
Q = {q0,q1}

q0

(,Z0 / ( Z0
(,( / ( (
), ( / e

start
q1

e,Z0/ Z0

e,Z0/ Z0
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Acceptance by…
n PDAs that accept by final state:

n For a PDA P, the language accepted by P, 
denoted by L(P) by final state, is:

n {w | (q0,w,Z0) |---* (q,e, A) }, s.t., q Î F 

n PDAs that accept by empty stack:
n For a PDA P, the language accepted by P, 

denoted by N(P) by empty stack, is:
n {w | (q0,w,Z0) |---* (q, e, e) }, for any q Î Q. 

Checklist:
- input exhausted?
- in a final state?

Checklist:
- input exhausted?
- is the stack empty?

There are two types of PDAs that one can design: 
those that accept by final state or by empty stack

Q) Does a PDA that accepts by empty stack
need any final state specified in the design?



Example: L of balanced 
parenthesis
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q0

(,Z0 / ( Z0
(,( / ( (
), ( / e

start
q1

e,Z0/ Z0

e,Z0/ Z0

PDA that accepts by final state

q0

start

(,Z0 / ( Z0
(, ( / ( (
), ( / e
e,Z0 / e

An equivalent PDA that 
accepts by empty stack

e,Z0/ Z0

PF: PN:

How will these two PDAs work on the input: ( ( ( ) ) ( ) )  ( ) 
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Equivalence of PDAs and 
CFGs
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CFGs == PDAs ==> CFLs

CFG

PDA by 
final state

PDA by
empty stack

?

≡
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Converting CFG to PDA
Main idea: The PDA simulates the leftmost derivation on a given 

w, and upon consuming it fully it either arrives at acceptance (by 
empty stack) or non-acceptance.

This is same as: “implementing a CFG using a PDA”

PDA
(acceptance 
by empty 
stack)

CFG

w
accept

reject

implements

IN
PU

T

O
U

TP
U

T
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Converting a CFG into a PDA
Main idea: The PDA simulates the leftmost derivation on a given w, 

and upon consuming it fully it either arrives at acceptance (by 
empty stack) or non-acceptance.

Steps:
1. Push the right hand side of the production onto the stack, 

with leftmost symbol at the stack top
2. If stack top is the leftmost variable, then replace it by all its 

productions (each possible substitution will represent a 
distinct path taken by the non-deterministic PDA)

3. If stack top has a terminal symbol, and if it matches with the 
next symbol in the input string, then pop it.

This is same as: “implementing a CFG using a PDA”
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Formal construction of PDA 
from CFG
n Given: G= (𝑉!,𝑉", S, P)
n Output: PN = ({q}, 𝑉", 𝑉!U 𝑉", δ, q, S)
n δ:

n For all A Î 𝑉! , add the following 
transition(s) in the PDA:

n δ(q, e ,A) = { (q, a) | “A -->a” Î P}
n For all a Î 𝑉", add the following 

transition(s) in the PDA:
n δ(q,a,a)= { (q, e ) } 

A

Before:

…

a

Before:

…

a

After:

…

a

After:

…
Note: Initial stack symbol (S)
same as the start variable
in the grammar

pop

a…

PDA by final state: ( Q, ∑, G, δ, q0, Z0, F )
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Example: CFG to PDA
n G = ( {S,A}, {0,1}, P, S)
n P: 

n S --> AS | e
n A --> 0A1 | A1 | 01

n PDA = ({q}, {0,1}, {0,1,A,S}, δ, q, S)
n δ: 

n δ(q, e , S) = { (q, AS), (q, e )}
n δ(q, e , A) = { (q,0A1), (q,A1), (q,01) }
n δ(q, 0, 0) = { (q, e ) }
n δ(q, 1, 1) = { (q, e ) } How will this new PDA work?

Lets simulate string 0011

q
e,S / S

1,1 / e
0,0 / e
e,A / 01
e,A / A1
e,A / 0A1
e,S / e
e,S / AS



Simulating string 0011 on the 
new PDA …
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PDA (δ): 
δ(q, e , S) = { (q, AS), (q, e )}
δ(q, e , A) = { (q,0A1), (q,A1), (q,01) }
δ(q, 0, 0) = { (q, e ) }
δ(q, 1, 1) = { (q, e ) }

S

Stack moves (shows only the successful path):

S
A

S
1
A
0

S
1
A

0

S
1
1
0

S
1
1

0
S
1

1
S

1 e

Accept by 
empty stack

q
e,S / S

1,1 / e
0,0 / e
e,A / 01
e,A / A1
e,A / 0A1
e,S / e
e,S / AS

S => AS
=> 0A1S
=> 0011S
=> 0011

Leftmost deriv.:

S          =>AS  =>0A1S     =>0011S                            => 0011



Summary
n PDA

n Definition
n With acceptance – by final state
n With acceptance – by empty stack

n PDA (by final state) = PDA (by empty 
stack) <== CFG
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