Pushdown Automata (PDA)

The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/index.htm

Excursion

- Context-free grammar $G=(V_N, V_T, S, P)$, where:
 - V_N : set of non-terminals
 - V_T : set of terminals
 - P: set of *productions*, each of which is of the form
 V ==> α₁ | α₂ | ...
 - Where each α_i is an arbitrary string of nonterminals and terminals
 - S: starting symbol

PDA - the automata for CFLs

- What is?
 - What FA is to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata -Definition

• A PDA P := ($Q, \sum, \Gamma, \delta, q_0, Z_0, F$):

- Q: states of the ε-NFA
- ∑: input alphabet
- Γ : stack symbols
- δ: transition function
- q₀: start state
- Z₀: Initial stack top symbol
- F: Final/accepting states

old state input symb. stack top new state(s) new Stack top(s)

δ: Q x Σ x Γ => Q x Γ δ: The Transition Function

$\delta(q,a,X) = \{(p,Y), ...\}$

- state transition from q to p 1.
- a is the next input symbol 2.
- X is the current stack *top* symbol 3.
- Y is the replacement for X; 4. it is in Γ^* (a string of stack symbols)
 - Set Y = ε if Pop(X) i.
 - If Y=X then stack top is ii. unchanged
 - If $Y=Z_1Z_2...Z_k$ then X is popped iii. and is replaced by Y in reverse order (i.e., Z_1 will be the new stack top)

	Y = ?	Action
i)	Y=ε	Pop(X)
ii)	Y=X	Pop(X) Push(X)
iii)	Y=Z ₁ Z ₂ Z _k	$\begin{array}{l} Pop(X) \\ Push(Z_k) \\ Push(Z_{k-1}) \\ \dots \\ Push(Z_2) \\ Push(Z_1) \end{array}$

Example (palindrome)

Let $L_{wwr} = \{ww^{R} | w \text{ is in } \{0,1\}^*\}$

- CFG for L_{wwr}: S --> 0S0 | 1S1 | ε
- PDA for L_{wwr} :
- P := (Q,Σ, Γ, δ,q₀,Z₀,F)

= ({q₀, q₁, q₂}, {0,1}, {0,1,Z₀}, δ , q₀, Z₀, {q₂}) Mark the botom of the stack

Initial state of the PDA:

1.	$\delta(q_0,0, Z_0) = \{(q_0,0Z_0)\}$	•
2.	$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$	-

PDA for L_{wwr}

First symbol push on stack

- 3. $\delta(q_0, 0, 0) = \{(q_0, 00)\}$
- 4. $\delta(q_0, 0, 1) = \{(q_0, 01)\}$ 5. $\delta(q_0, 1, 0) = \{(q_0, 10)\}$
- 6. $\delta(q_0, 1, 1) = \{(q_0, 11)\}$

7. $\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$

9.
$$\delta(q_0, \varepsilon, T) = \{(q_1, T)\}$$

 $\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}$

$$0(\mathbf{q}_0, c, \mathbf{z}_0)^{-1}(\mathbf{q}_1, \mathbf{z}_0))$$

10. $\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.
$$\delta(\mathbf{q}_1, \varepsilon, Z_0) = \{(\mathbf{q}_2, Z_0)\}$$

Grow the stack by pushing new symbols on top of old (*w*-part)

Switch to popping mode, nondeterministically (boundary between w and w^R)

Shrink the stack by popping matching symbols (*w*^{*R*}-part)

Enter acceptance state

PDA as a state diagram

 $\delta(q_i,a, X) = \{(q_j,Y)\}$

Example 2: language of balanced paranthesis

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

There are two types of PDAs that one can design: those that accept by final state or by empty stack

PDAs that accept by final state:

 For a PDA P, the language accepted by P, denoted by L(P) by *final state*, is: Checklist:

• {w | (q_0, w, Z_0) |---* (q, ε, A) }, s.t., $q \in F$

- input exhausted?
- in a final state?

PDAs that accept by <u>empty stack</u>:

For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:

• {w | (q_0, w, Z_0) |---* $(q, \varepsilon, \varepsilon)$ }, for any $q \in Q$.

Q) Does a PDA that accepts by empty stack **Checklist:** need any final state specified in the design?

- input exhausted?
- 13 - is the stack empty?

Example: L of balanced parenthesis

How will these two PDAs work on the input: ((())()) ()

Equivalence of PDAs and CFGs

CFGs == PDAs ==> CFLs

This is same as: "implementing a CFG using a PDA"

Converting CFG to PDA

<u>Main idea:</u> The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by <u>empty stack</u>) or non-acceptance.

Converting a CFG into a PDA

<u>Main idea:</u> The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by <u>empty stack</u>) or non-acceptance.

Steps:

- 1. Push the right hand side of the production onto the stack, with leftmost symbol at the stack top
 - If stack top is the leftmost variable, then replace it by all its productions (each possible substitution will represent a <u>distinct</u> path taken by the non-deterministic PDA)
 - 3. If stack top has a terminal symbol, and if it matches with the next symbol in the input string, then pop it.

- Note: Initial stack symbol (S) same as the start variable in the grammar
- <u>Given:</u> $G = (V_N, V_T, S, P)$
- <u>Output:</u> $P_N = (\{q\}, V_T, V_N \cup V_T, \delta, q, S)$
- δ:

Before:

• For all $A \in V_N$, add the following transition(s) in the PDA:

■ δ(q, ε, A) = { (q, α) | "A -->α" ∈ P}

Before:

■ For all a ∈ V_T, add the following transition(s) in the PDA:

• δ(q,a,a)= { (q, ε) }

Example: CFG to PDA

G = ({S,A}, {0,1}, P, S)

P:

PDA = ({q}, {0,1}, {0,1,A,S}, δ, q, S)
Σ.

• δ:

- δ(q, ε, S) = { (q, AS), (q, ε)}
- $\delta(q, \epsilon, A) = \{ (q, 0A1), (q, A1), (q, 01) \}$
- $\delta(q, 0, 0) = \{ (q, \varepsilon) \}$
- $\delta(q, 1, 1) = \{ (q, \epsilon) \}$

How will this new PDA work? Lets simulate string 0011

1,1/ε

0,0 / ε ε,Α / 01 ε,Α / Α1

ε,Α/ 0Α1 ε,S / ε ε,<u>S</u> / AS

ε,S/S

Summary

- PDA
 - Definition
 - With acceptance by final state
 - With acceptance by empty stack
- PDA (by final state) = PDA (by empty stack) <== CFG</p>