Formal Languages and Automata Theory SS2020

Exam, Variant 1 June 17th, 2020

Time Limit: 60 Minutes

Name: ______

This exam contains 4 questions. Total of points is 10.

Grade Table (for teacher use only)

ade rable (for teacher abe en			
Question	Points	Score	
1	1		
2	4		
3	2		
4	3		
Total:	10		

Remarks:

- All subjects are mandatory.
- All the results must be accompanied with detailed solution.
- Carefully read and apply the instructions from the Exam assignment on Google Classroom.
- 1. (1 point) Write a regular expression that validates Social Security numbers of the form 123-45-6789 or 123456789.
- 2. (4 points) (a) (0.5 points) Write a grammar of type 2 which constructs a palindrome from your first name. Example: From *Madalina* one gets *MadalinaaniladaM*.
 - (b) (0.25 points) Formally define a PDA. Explain each notation from the definition.
 - (c) (0.5 points) What are the similarities and dissimilarities of a PDA and a FA? Use the definitions of the two automata in this comparison.
 - (d) (1.25 point) Construct a PDA which accepts the palindrome generated by your first name and rejects any other string.
 - (e) (1.5 point) How does the PDA work on the accepted string? Give 10 instantaneous descriptions and explain the type of acceptance.
- 3. (2 points) Let $\Sigma = \{a, b, ..., z\}$ and L the language of your first and last name.
 - (a) (0.2 points) Write regular expressions for the first, respectively, the last name.
 - (b) (0.8 points) From these regular expressions, construct the corresponding ε -NFA using the Thomson encoding. Apply also the Thomson encoding for constructing the ε -NFA for L.
 - (c) (1 point) Using the eager construction algorithm, transform the ε -NFA into a DFA.
- 4. (3 points) (a) (0.10 + 0.10 points) What is an algorithm for DFA minimization doing and what are its benefits?
 - (b) (0.10 + 0.70 points) Give example of such an algorithm and explain its steps.

(c) (2 points) Minimize the following DFA using the algorithm at (b). Explain all decisions and steps:

	0	1
$\rightarrow A$	B	E
B	C	F
*C	D	H
D	E	H
E	F	I
*F	G	B
G	H	B
H	I	C
*I	A	E