
Calculus - Lecture 9
Differentiability of functions of several real variables.
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Partial derivatives Example

Partial derivatives - example
Heat index I depends on temperature T and relative humidity H: I = f(T,H).

Fixing H = 70%, consider g(T ) = f(T, 70) - describes how the heat index I
increases as the temperature T increases when the relative humidity is 70%.
Rate of change:

g′(96) = lim
h→0

g(96 + h)− g(96)

h
= lim

h→0

f(96 + h, 70)− f(96, 70)

h
=

∂f

∂T
(96, 70)
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Partial derivatives Example

Partial derivatives - example

For h = 2 we obtain: g′(96) ' f(98, 70)− f(96, 70)

2
=

133− 125

2
= 4.

For h = −2 we obtain: g′(96) ' f(94, 70)− f(96, 70)

−2
=

118− 125

−2
= 3.5.

Therefore, taking the mean value, we obtain the following approximation:

∂f

∂T
(96, 70) = g′(96) ' 3.75

=⇒ When the actual temperature is 96◦F and the relative humidity is 70%,
the heat index rises by about 3.75◦F for every degree that the actual
temperature rises.

Similarly,
∂f

∂H
(96, 70) ' 0.9

=⇒ When the actual temperature is 96◦F and the relative humidity is 70%,
the heat index rises by about 0.9◦F for every percent that the relative humidity
rises.
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Partial derivatives Definition

Partial derivatives - definition

Let f : A ⊂ Rn → R1 be a real valued function of n variables and
a = (a1, a2, ..., an) ∈ Int(A).

The function f is said to be partially differentiable with respect to xi at a if the
following limit exists and is finite

lim
h→0

f(a1, ..., ai−1, ai + h, ai+1, ..., an)− f(a1, ..., ai−1, ai, ai+1, ..., an)

h

The value of this limit is denoted by
∂f

∂xi
(a) and is called the partial derivative

of f with respect to xi at a.

The vector

∇f(a) =
(

∂f

∂x1
(a),

∂f

∂x2
(a), ...,

∂f

∂xn
(a)

)
is called gradient vector of f at a.
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Partial derivatives Definition

Remarks

To calculate partial derivatives, one has to differentiate (in the normal
manner) with respect to xi keeping all the other variables fixed.

All obvious rules for partially differentiating sums, products and quotients
can be used.

The partial differentiability of a vector valued function of n real variables is
equivalent to the partial differentiability of all the scalar components.

For a function of two variables f(x, y) the partial derivatives are:

∂f

∂x
= fx(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

∂f

∂y
= fy(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
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Partial derivatives Example

Example
Consider the function

f(x, y) =


x3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

This function is continuous, as:

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x · x2

x2 + y2︸ ︷︷ ︸
∈[0,1]

= 0 = f(0, 0).

The partial derivatives at (0, 0) are computed as:

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h− 0

h
= 1

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0
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Partial derivatives Example

Example
The partial derivatives at (x, y) 6= (0, 0) are computed using the usual
derivative formulas:

∂f

∂x
= fx(x, y) =

(
x3

x2 + y2

)′
x

=
3x2(x2 + y2)− 2x · x3

(x2 + y2)2
=

x4 + 3x2y2

(x2 + y2)2

∂f

∂y
= fy(x, y) =

(
x3

x2 + y2

)′
y

=
−2x3y

(x2 + y2)2

Therefore, the partial derivatives are:

∂f

∂x
(x, y) =


x4 + 3x2y2

(x2 + y2)2
if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0)

∂f

∂y
(x, y) =


−2x3y

(x2 + y2)2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
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Partial derivatives Interpretation

Interpretation of partial derivatives

Rates of change: If z = f(x, y) then:
∂f

∂x
represents the rate of change of z with respect to x when y is fixed;

∂f

∂y
represents the rate of change of z with respect to y when x is fixed.

Slopes: z = f(x, y) is a surface S in R3.

P (a, b, c) a point on this surface: c = f(a, b).

∂f

∂x
(a, b) = fx(a, b) and

∂f

∂y
(a, b) = fy(a, b)

represent slopes of the tangent lines at
P (a, b, c) to the traces C1 and C2 of the sur-
face S in the planes y = b and x = a.
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Partial derivatives Example

Partial derivatives - example

The body mass index of a person is defined as

B(m,h) =
m

h2
, where m and h are the mass and height of a person.

∂B

∂m
=

1

h2
=⇒ ∂B

∂m
(64, 1.68) =

1

(1.68)2
' 0.35 (kg/m2)/kg

This is the rate at which the person’s BMI increases with respect to his weight
when he weighs 64 kg and his height is 1.68 m. If his weight increases by 1 kg,
and his height remains unchanged, then his BMI will increase by about 0.35.

∂B

∂h
=
−2m
h3

=⇒ ∂B

∂h
(64, 1.68) = − 128

(1.68)3
' −27 (kg/m2)/m2

This is the rate at which the person’s BMI increases with respect to his height
when he weighs 64 kg and his height is 1.68 m. If the man is still growing and
his weight stays unchanged while his height increases by a small amount, say
1 cm, then his BMI will decrease by about 27(0.01) = 0.27.
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Partial derivatives Tangent planes

Tangent planes and partial derivatives
If the function f : R2 → R has continuous partial derivatives, an equation of
the tangent plane to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Example. The equation of the tangent plane to the elliptic paraboloid
z = 2x2 + y2 at the point P (1, 1, 3) is:

z − 3 = 4(x− 1) + 2(y − 1) =⇒ z = 4x+ 2y − 3
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Directional derivatives Definition

Directional derivatives
Let f : A ⊂ Rn → R1 be a real valued function of n variables and a ∈ Int(A)
and u ∈ Rn s.t. ‖u‖ = 1.

If the following limit exists and is a finite real number

lim
h→0

f(a+ h · u)−f(a)
h

= lim
h→0

f(a1 + hu1, a2 + hu2, ..., an + hun)−f(a1, a2, ..., an)
h

it is called the directional derivative in the direction u of f at the point a and it
is denoted by ∇uf(a).

! Partial derivatives are special cases of directional derivatives:
The directional derivative of f at a in the direction ei = (0, ..., 0, 1, 0, ..., 0) is

∇eif(a) =
∂f

∂xi
(a) i = 1, n

! Relationship between directional derivative and gradient:

∇uf(a) = ∇f(a) · u (where ‖u‖ = 1)
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Directional derivatives Examples

Directional derivative - example

Example. Compute the directional derivative of the function

f(x, y, z) = x2+xy+ z2 in the direction u =

(
1

3
,
2

3
,
2

3

)
at the point a = (1, 2, 3)

First, we compute the gradient vector:

∇f = (2x+ y, x, 2z) =⇒ ∇f(a) = (4, 1, 6)

Therefore, the directional derivative is:

∇uf(a) = ∇f(a) · u = (4, 1, 6) ·
(
1

3
,
2

3
,
2

3

)
= 4 · 1

3
+ 1 · 2

3
+ 6 · 2

3
= 6.
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Directional derivatives Examples

Directional derivative - example

Example. Temperature map.

The unit vector directed toward
the southeast:

u =

(
1√
2
,− 1√

2

)

The rate of change of tempera-
ture when we travel southeast:

∇uT '
60− 50

75
' 0.13◦F/mi
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Differentiability Introduction

Differentiability

Theorem

Let f : A ⊂ Rn → R1 be a real valued function of n variables, and a ∈ Int(A).

If the partial derivatives
∂f

∂xi
, i = 1, n exist in a neighborhood of a and they are

continuous at a, then the following equality holds:

lim
h→0

f(a+ h)− f(a)−∇f(a) · h
‖h‖

= 0

Consequence: In a neighborhood of the point a (i.e. when ‖h‖ is small), the
following linear approximation holds:

f(a+ h) ' f(a) +∇f(a) · h (for ‖h‖ small)
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Differentiability Definition

Differentiability - definition

A real valued function of n variables f : A ⊂ Rn → R1 is said to be
differentiable at a if the following conditions hold:

it is partially differentiable at a with respect to every variable xi

lim
h→0

f(a+ h)− f(a)−∇f(a) · h
‖h‖

= 0.

The Fréchet derivative of f at a: the function daf : Rn → R1 defined by

daf(h) = ∇f(a) · h =

n∑
i=1

∂f

∂xi
(a) · hi

The Fréchet derivative daf : Rn → R1 is a linear function on Rn (it is a
first degree polynomial of h1, h2, ..., hn).
For ‖h‖ = 1, we have daf(h) = ∇hf(a).

If f :⊂ Rn → R1 is differentiable at a ∈ A, then it is continuous at a.
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Differentiability Definition

Differentiability - definition

A vector valued function of n variables f = (f1, . . . , fm) : A ⊂ Rn → Rm is
differentiable at a ∈ Int(A) if every scalar component fj , j = 1,m of f is
differentiable at a.

The Fréchet derivative of f at a is the function daf : Rn → Rm defined by

daf(h) =

m∑
j=1

(
n∑

i=1

∂fi
∂xi

(a) · hi

)
· ej where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm.

The matrix of the linear function daf is called the Jacobi matrix of f at a:

Ja(f) =

(
∂fi
∂xj

(a)

)
m×n

We have daf(h) = Ja(f) · h.
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Differentiability Examples

Differentiability - examples
Example 1. For the real valued function f(x, y, z) = x2 + xy + z2, the Fréchet
derivative of at the point a = (1, 2, 3) is the function daf : R3 → R given by:

daf(h) = ∇f(1, 2, 3) · (h1, h2, h3) = (4, 1, 6) · (h1, h2, h3) = 4h1 + h2 + 6h3

Example 2. For the vector valued function f(x, y, z) = (x2 + z2, xy), the
Jacobi matrix is:

J(f) =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

 =

(
2x 0 2z
y x 0

)

and hence, the Jacobi matrix at the point a = (1, 2, 3) is

Ja(f) =

(
2 0 6
2 1 0

)
The Fréchet derivative of is the function daf : R3 → R2 given by:

daf(h) = Ja(f) · h =

(
2h1 + 6h3

2h1 + h2

)
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Differentiability Examples

Differentiability - examples
Example 3. For the function

f(x, y) =


x3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

we have see that the partial derivatives at the point (0, 0) are

∂f

∂x
(0, 0) = 1 and

∂f

∂y
(0, 0) = 0 =⇒ ∇f(0, 0) = (1, 0).

Based on the definition, we check if the function is differentiable at (0, 0) by
computing the limit:

L = lim
(h1,h2)→(0,0)

f(h1, h2)− f(0, 0)−∇f(0, 0) · (h1, h2)

‖(h1, h2)‖
=

= lim
(h1,h2)→(0,0)

h3
1

h2
1+h2

2
− 0− (1, 0) · (h1, h2)√

h2
1 + h2

2

= lim
(h1,h2)→(0,0)

h3
1

h2
1+h2

2
− h1√

h2
1 + h2

2
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Differentiability Examples

Differentiability - examples

Hence, simplifying the previous expression leads to:

L = lim
(h1,h2)→(0,0)

−h1h
2
2

(h2
1 + h2

2)
3/2︸ ︷︷ ︸

g(h1,h2)

We observe that in the above limit, we have the ratio of two expressions of
equal order 3, and we show that the limit does not exist:

along the horizontal axis: g(h1, 0) = 0
h1→0−→ 0

along the first bisector: g(h1, h1) =
−h3

1

(2h2
1)

3/2
= − 1

2
√
2

h1→0−→ − 1

2
√
2

Conclusion: The function f is not differentiable at (0, 0).
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Differentiability Properties

Properties
Composite rule.

Let f : A ⊂ Rn → B ⊂ Rm and g : B ⊂ Rm → Rp.

If f is differentiable at a ∈ Int(A) and g is differentiable at f(a) = b ∈ Int(B),
then h = g ◦ f is differentiable at a and

dah = dbg ◦ daf

The Jacobi matrix of h at a is the product of the Jacobi matrix of g at b and the
Jacobi matrix of f at a:

Ja(g ◦ f) = Jb(g)Ja(f).

Inverse rule.

Let f : A ⊂ Rn → B ⊂ Rn be a bijection where A,B are open subsets of Rn.

If f is differentiable at a ∈ A and f−1 is differentiable at b = f(a), then
daf : Rn → Rn is bijective and

(daf)
−1 = df(a)f

−1
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