Calculus - Lecture 6 Integrals and primitives.

A partition P of the interval [a,b] is a finite set of points $\{x_0,x_1,..,x_n\}$ satisfying

$$a = x_0 < x_1 < \dots < x_n = b.$$

Consider a bounded function f defined on [a, b].

Riemann sum of f related to P:

$$R_f(P) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1})$$
 where $x_i^* \in [x_{i-1}, x_i]$

Upper Darboux sum of f related to P:

$$U_f(P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
 where $M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$

Lower Darboux sum of f related to P:

$$L_f(P) = \sum_{i=1}^n m_i (x_i - x_{i-1}) \quad \text{where} \quad m_i = \inf_{\substack{x_{i-1} \leq x \leq x_i \\ \text{where}}} f(x)$$

EVA KASLIK Calculus - Lecture 6 2/27

Consider

$$M=\sup\{f(x)\,|\,a\leq x\leq b\}\quad\text{and}\quad m=\inf\{f(x)\,|\,a\leq x\leq b\}.$$

For any partition P of [a,b] we have:

$$m(b-a) \le L_f(P) \le R_f(P) \le U_f(P) \le M(b-a).$$

The following sets are bounded:

$$L_f = \{L_f(P) \mid P \text{ is a partition of } [a, b]\}$$

$$U_f = \{U_f(P) \mid P \text{ is a partition of } [a, b]\}$$

So $\mathcal{L}_f = \sup L_f$ and $\mathcal{U}_f = \inf U_f$ exist. Moreover:

$$\mathcal{L}_f \leq \mathcal{U}_f$$
.

A bounded function defined on [a,b] is Riemann-Darboux integrable on [a,b] if

$$\mathcal{L}_f = \mathcal{U}_f$$
.

This common value is denoted by

$$\int_{a}^{b} f(x) dx = \mathcal{L}_{f} = \mathcal{U}_{f} = \lim_{n \to \infty} R_{f}(P).$$

EVA KASLIK

Calculus - Lecture 6

Example

Evaluate the Riemann sum for $f(x) = x^3 - x$ over the interval [0,3], taking the sample points x_i^* to be the right endpoints of the intervals $[x_{i-1},x_i]$, where

$$x_i = \frac{3i}{n}$$
. Compute $\int_0^3 f(x)dx$.

$$R_f(P) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}) = \sum_{i=1}^n f(x_i) \frac{3}{n} = \frac{3}{n} \sum_{i=1}^n \left[\left(\frac{3i}{n} \right)^3 - \frac{3i}{n} \right]$$
$$= \frac{3^4}{n^4} \sum_{i=1}^n i^3 - \frac{3^2}{n^2} \sum_{i=1}^n i = \frac{3^4}{n^4} \frac{n^2(n+1)^2}{4} - \frac{3^2}{n^2} \frac{n(n+1)}{2}$$
$$= \frac{81}{4} \left(1 + \frac{1}{n} \right)^2 - \frac{9}{2} \left(1 + \frac{1}{n} \right) \xrightarrow{n \to \infty} \frac{81}{4} - \frac{9}{2} = \frac{63}{4}.$$

Therefore:

$$\int_0^3 f(x)dx = \frac{63}{4}.$$

Properties of the Riemann-Darboux integral

If f and g are Riemann-Darboux integrable on [a,b] then all the integrals below exist and

$$\int_a^b (\alpha\,f(x)+\beta\,g(x))\,dx = \alpha \int_a^b f(x)\,dx + \beta \int_a^b g(x)\,dx \quad \text{for any } \alpha,\beta \in \mathbb{R}.$$

$$\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx \quad \text{for any } a \le c \le b.$$
 If $f(x) \le g(x)$ on $[a,b]$ then
$$\int_a^b f(x)\,dx \le \int_a^b g(x)\,dx.$$

$$\left|\int_a^b f(x)\,dx\right| \le \int_a^b |f(x)|\,dx.$$

Classes of Riemann-Darboux integrable functions

If f is continuous on [a, b], then f is Riemann-Darboux integrable on [a, b].

A function f is called piecewise continuous on [a,b] if there exists a partition $P=\{x_0,x_1,\ldots,x_n\}$ of [a,b] and continuous functions f_i defined on $[x_{i-1},x_i]$, such that $f(x)=f_i(x)$ for $x\in (x_{i-1},x_i),\ i=1,2,\ldots,n$.

A piecewise continuous function is Riemann-Darboux integrable and

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f_i(x) dx.$$

The integral mean value theorem

If f and g are continuous on [a,b] and $g(x)\geq 0$ for $x\in [a,b]$, then there exists an intermediate point c between a and b such that

$$\int_a^b f(x) \cdot g(x) \, dx = f(c) \int_a^b g(x) \, dx$$

The Fundamental Theorem of Calculus

Theorem

If $f:[a,b]\to\mathbb{R}$ is Riemann-Darboux integrable on [a,b] and

$$F(x) = \int_{a}^{x} f(t) dt$$

then F is continuous on [a,b].

Furthermore, if f is continuous on [a,b], then F is differentiable on [a,b] and

$$F'=f$$
.

Any function Φ such that $\Phi' = f$ is called a primitive (antiderivative) of f.

- Two primitives of the same function f differ by a constant.
- If F is a primitive of f, then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Integration by parts

If the functions f and g are continuously differentiable on $\left[a,b\right]$, then

$$\int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx$$

where $\int f(x)g'(x)dx$ and $\int f'(x)g(x)dx$ represent the set of primitives of the functions fg' and f'g, respectively.

Consequence for definite integrals:

$$\int_a^b f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) \bigg|_a^b - \int_a^b f'(x) \cdot g(x) \, dx.$$

Change of variables (substitution)

If the function $g:[\alpha,\beta]\to [a,b]$ is a continuously differentiable bijection with the property $g(\alpha)=a,\,g(\beta)=b$ and $f:[a,b]\to\mathbb{R}^1$ is continuous, then

$$\left(\int f(x) dx\right) \circ g = \int (f \circ g)(t) \cdot g'(t) dt$$

where $\int f(x)dx$ and $\int (f\circ g)(t)\cdot g'(t)\,dt$ represent the set of primitives of the functions f and $(f\circ g)\cdot g'$, respectively.

Consequence for definite integrals:

$$\int_{g(\alpha)}^{g(\beta)} f(x) dx = \int_{\alpha}^{\beta} (f \circ g)(t) \cdot g'(t) dt$$

Definition

Consider a bounded function $f:[a,\infty)\to\mathbb{R}$ which is Riemann-Darboux integrable on every closed interval of the form [a,b], with b>a.

The improper integral of type I $\int_{a}^{\infty} f(x)dx$ is called convergent if the limit

$$\lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

exists (as a finite number). In this case: $\int_a^\infty f(x)dx = \lim_{b\to\infty} \int_a^b f(x)\,dx$.

If the above limit does not exist (or is infinite), the improper integral is called divergent.

In a similar manner, the improper integral of type I over the interval $(-\infty, b]$ is defined as:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

(provided that the above limit exists, as a finite number).

If both improper integrals $\int_{-\infty}^a f(x)dx$ and $\int_a^{\infty} f(x)dx$ are convergent, then we define:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx.$$

Example. Study the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$, where p > 0.

Assume that $p \neq 1$ and let b > 1. We have:

$$\int_{1}^{b} \frac{1}{x^{p}} dx = \left. \frac{x^{1-p}}{1-p} \right|_{1}^{b} = \frac{b^{1-p}-1}{1-p} \; .$$

On the other hand, if p = 1, we have:

$$\int_{1}^{b} \frac{1}{x} dx = \ln(x)|_{1}^{b} = \ln(b) .$$

We take the limit as $b \to \infty$ in the above relations:

- if $p \in (0,1]$ we have $\lim_{b \to \infty} \int_1^b \frac{1}{x^p} dx = \infty \implies \int_1^\infty \frac{1}{x^p} dx$ is divergent
- if $p \in (1, \infty)$ we have $\lim_{b \to \infty} \int_1^b \frac{1}{x^p} dx = \frac{1}{p-1} \implies \int_{1}^\infty \frac{1}{x^p} dx$ is convergent

EVA KASLIK Calculus - Lecture 6 18/2

Definition

Consider the function $f:(a,b]\to\infty$ with a vertical asymptote at a, which is Riemann-Darboux integrable on any interval $[a+\epsilon,b]$, with $\epsilon\in(0,b-a)$.

The improper integral of type II $\int_a^b f(x) dx$ is called convergent if the limit

$$\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) \, dx$$

exists (as a finite number). In this case: $\int_a^b f(x)dx = \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x)\,dx$.

If the above limit does not exist (or is infinite), the improper integral is called divergent.

40 40 40 40 40 40 40

In a similar manner, the improper integral of type II over the interval [a, b) is defined as:

$$\int_a^b f(x) dx = \lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, dx$$

(provided that the above limit exists, as a finite number).

If the function f has a vertical asymptote at $c\in(a,b)$ and if both improper integrals $\int_a^c f(x)dx$ and $\int_c^b f(x)dx$ are convergent, then we define:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Example. Study the convergence of the integral $\int_0^1 \frac{1}{x^p} dx$, where p > 0.

Assume that $p \neq 1$ and let $\epsilon > 0$. We have:

$$\int_{\epsilon}^{1} \frac{1}{x^{p}} dx = \left. \frac{x^{1-p}}{1-p} \right|_{\epsilon}^{1} = \frac{1-\epsilon^{1-p}}{1-p} \ .$$

On the other hand, if p = 1, we have:

$$\int_{\epsilon}^{1} \frac{1}{x} dx = \ln(x)|_{\epsilon}^{1} = -\ln(\epsilon) .$$

We take the limit as $\epsilon \to 0^+$ in the above relations:

- if $p \in [1, \infty)$ we have $\lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \frac{1}{x^p} dx = \infty \implies \int_0^1 \frac{1}{x^p} dx$ is divergent
- $\bullet \ \, \text{if} \, \, p \in (0,1) \, \, \text{we have} \, \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \frac{1}{x^p} dx = \frac{1}{1-p} \, \Longrightarrow \int_0^1 \frac{1}{x^p} dx \, \, \text{is convergent} \, \,$

Example summary

Let a > 0.

The improper integral of type I:

$$\int_a^\infty \frac{1}{x^p} dx \text{ is convergent} \iff p \in (1, \infty)$$

The improper integral of type II:

$$\int_0^a \frac{1}{x^p} dx \text{ is convergent} \iff p \in (0,1)$$

Comparison test for improper integrals

Theorem

Suppose that the functions f and g defined on $[a, \infty)$ are Riemann-Darboux integrable on every closed interval of the form [a, b], with b > a, and

$$0 \le g(x) \le f(x) \quad , \ \forall x \ge a$$

- If $\int_a^\infty f(x) \, dx$ is convergent then $\int_a^\infty g(x) \, dx$ is convergent.
- If $\int_a^\infty g(x) dx$ is divergent then $\int_a^\infty f(x) dx$ is divergent.

Remark: A similar theorem is true for improper integrals of type II as well.

Comparison test for improper integrals

Comparison test for improper integrals

Example. Show that the Gaussian integral $\int_{-\infty}^{\infty} e^{-x^2} dx$ is convergent.

The following inequality holds (check using derivatives!):

$$e^x \ge x + 1$$
 , $\forall x \ge 0$.

Therefore:

$$0 \le e^{-x^2} = \frac{1}{e^{x^2}} \le \frac{1}{x^2 + 1}$$
, $\forall x \in \mathbb{R}$.

The following type I improper integral is convergent:

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx = \arctan(x)|_{-\infty}^{\infty} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi$$

Based on the comparison test, it follows that $\int_{-\infty}^{\infty} e^{-x^2} dx$ is also convergent. (in fact, it's exact value is $\sqrt{\pi}$, shown by multivariable calculus methods)