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Power series Introduction

Power series

A series of functions of the form

∞∑
n=0

anx
n

is called power series.

The general term of this series is the function

fn(x) = anx
n

where (an) is sequence of real numbers, called sequence of coefficients.

Variation: power series centered at the point x0:

∞∑
n=0

an(x− x0)n
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Power series The Abel-Cauchy-Hadamard theorem

The Abel-Cauchy-Hadamard theorem

Consider the power series
∞∑

n=0

anx
n.

Denoting

ω = lim
n→∞

n
√
|an| = lim

n→∞

|an+1|
|an|

∈ [0,+∞]

and the radius of convergence

R =

{
1

ω
, if ω 6= 0

+∞, if ω = 0

the power series is
absolutely convergent for |x| < R.
divergent for |x| > R.

uniformly convergent on any closed interval [−r, r] ⊂ (−R,R).

!!! this theorem does not provide information about convergence at x = ±R.
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Power series The Abel-Cauchy-Hadamard theorem

Example

Let us consider the power series
∞∑

n=1

xn

n(n+ 1)
.

The sequence of coefficients is an =
1

n(n+ 1)
. We compute:

ω = lim
n→∞

|an+1|
|an|

= lim
n→∞

n(n+ 1)

(n+ 1)(n+ 2)
= 1 =⇒ R =

1

ω
= 1

The power series is absolutely convergent for |x| < 1.
The power series is divergent for |x| > 1.

For x = 1, we have
∞∑

n=1

1

n(n+ 1)
∼
∞∑

n=1

1

n2
→ convergent! (harmonic series).

For x = −1, we have
∞∑

n=1

(−1)n

n(n+ 1)
→ convergent! (alternating series).

The set of convergence is [−1, 1].
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Power series Arithmetics of power series

Arithmetics of power series

Consider the power series
∞∑

n=0

anx
n and

∞∑
n=0

bnx
n with radii of convergence

R1 and R2, where 0 ≤ R1 ≤ R2.

Then the following power series have radii of convergence at least R1:

the sum
∞∑

n=0

(an + bn)x
n

the scalar product
∞∑

n=0

k · anxn

the Cauchy product
∞∑

n=0

cnx
n, where cn =

n∑
k=0

akbn−k
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Power series Arithmetics of power series

Arithmetics of power series

Moreover, if we denote the sums of the two series by

∞∑
n=0

anx
n = f(x) and

∞∑
n=0

bnx
n = g(x),

then, for any x ∈ (−R1, R1), we have:
∞∑

n=0

(an + bn)x
n = f(x) + g(x)

∞∑
n=0

k · anxn = k · f(x)

∞∑
n=0

cnx
n = f(x)g(x)
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Power series Continuity and Differentiability

Continuity and differentiability of a power series’ sum

Theorem (Continuity)

The sum f(x) of the power series
∞∑

n=0

anx
n is a continuous function on

(−R,R), where R denotes the radius of convergence.

Theorem (Differentiability)

The sum f(x) of the power series
∞∑

n=0

anx
n with radius of convergence R > 0

is k-times differentiable, for any k ∈ N and

f (k)(x) =

∞∑
n=k

ann(n− 1) . . . (n− k + 1)xn−k , ∀ x ∈ (−R,R).

For x = 0, it follows that f (k)(0) = ak · k! =⇒ ak =
f (k)(0)

k!
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Power series Continuity and Differentiability

Continuity and differentiability of a power series’ sum
Therefore, the following representation is valid:

f(x) =

∞∑
n=0

anx
n =

∞∑
n=0

f (n)(0)

n!
xn ,∀ x ∈ (−R,R).

Hence, if |x| is sufficiently small, we can estimate

f(x) '
N∑

n=0

f (n)(0)

n!
xn.

Similarly, for power series centered at x0, we have:

f(x) =

∞∑
n=0

an(x− x0)n =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n ,∀ x ∈ (x0 −R, x0 +R).

Hence, if x is sufficiently close to x0, we can estimate

f(x) '
N∑

n=0

f (n)(x0)

n!
(x− x0)n.
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Power series Continuity and Differentiability

Example

Considering f(x) =
∞∑

n=1

xn

n(n+ 1)
, for x ∈ [−1, 1], we have:

f ′(x) =

∞∑
n=1

(xn)′

n(n+ 1)
=

∞∑
n=1

xn−1

n+ 1
.

Hence, multiplying by x2 and differentiating once more, we obtain:

(
x2f ′(x)

)′
=

( ∞∑
n=1

xn+1

n+ 1

)′
=
∞∑

n=1

xn =
x

1− x
=

1

1− x
− 1 , ∀ x ∈ (−1, 1).

Integrating, we obtain:

x2f ′(x) =

∫ (
1

1− x
− 1

)
dx = − ln(1− x)− x

and therefore:

f(x) = −
∫ (

ln(1− x)
x2

+
1

x

)
=

(1− x) ln(1− x)
x

+ 1 , ∀ x ∈ (−1, 1).
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Taylor polynomials and Taylor series Definition and examples

Taylor polynomials

Motivating Problem. Find a practical method for calculating ex, sin(x), etc.
Often you have an accuracy in mind (e.g. "to five decimal places").

Let f be an n-times continuously differentiable function on an open interval
containing the point a.

The n-th degree Taylor polynomial to the function f at the point a is defined by:

Tn,af(x) = f(a) +
f ′(a)

1!
(x− a) + f (2)(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n

Question. Can we approximate the value of the function f at a point x by the
value of the Taylor polynomial Tn,af(x)?
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Taylor polynomials and Taylor series Definition and examples

Taylor polynomials - simplest cases

T0,af(x) = f(a)→ a constant;

linear approximation: T1,af(x) = f(a) + f ′(a)(x− a)
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Taylor polynomials and Taylor series Definition and examples

Taylor polynomials - example

Find the Taylor polynomial of order n = 6 of the function f(x) = cos(x) at the
point a = 0.

k f (k)(x) f (k)(0)
0 cos(x) 1
1 − sin(x) 0
2 − cos(x) −1
3 sin(x) 0
4 cos(x) 1
5 − sin(x) 0
6 − cos(x) −1

T6,0f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + . . .+

f (6)(0)

6!
x6 = 1− x2

2!
+
x4

4!
− x6

6!
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Taylor polynomials and Taylor series Definition and examples

Taylor polynomials - example

Taylor polynomials for f(x) = cos(x), up to order n = 6
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Taylor polynomials and Taylor series Applications

Applications

Numerical approximation of functions.
(If you want a tadpole, do you need the DNA for the entire frog?)
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Taylor polynomials and Taylor series Applications

Applications

Example: Approximate cos(0.1).

An approximate value is given by the Taylor polynomial of order 6:

T6,0(0.1) = 1− (0.1)2

2!
+

(0.1)4

4!
− (0.1)6

6!
= 0.995004

What is the accuracy of this approximation?
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Taylor polynomials and Taylor series The first remainder theorem

The first remainder theorem

Theorem

Let f be (n+ 1) times continuously differentiable on an open interval
containing the points a and x. Then the difference between f(x) and Tn,af(x)
is given by

f(x)− Tn,af(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(c)

for some c between a and x.

The error in approximating f(x) by the value of the polynomial Tn,af(x) is the
remainder term:

Rn,af(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(c)

Taylor’s formula of degree n:

f(x) = Tn,af(x) +Rn,af(x)
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Taylor polynomials and Taylor series The first remainder theorem

The first remainder theorem: application

Example: Find the error of approximating cos(0.1) by T6,0(0.1) = 0.995004.

R6,0f(x) =
x7

7!
f (7)(c) =

x7

7!
sin(c)

Hence:

R6,0f(0.1) =
(0.1)7

7!
sin(c) where c ∈ (0, 0.1)

Therefore, the absolute error of approximation is:

εa = |R6,0f(0.1)| ≤
(0.1)7

7!
=

10−7

5040
≤ 10−7

5000
= 2 · 10−11

→ accuracy of at least 10 digits
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Taylor polynomials and Taylor series Taylor series representation

Taylor series representation

Suppose that the function f has derivatives of all orders on some interval
containing the point a and also that

lim
n→∞

Rn,a(x) = 0

for each x in that interval. Then for any x in that interval, we have:

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

This is called Taylor series representation of the function f(x) at the point a.

When a = 0, the above series is also called MacLaurin series.
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Taylor polynomials and Taylor series Taylor series representation

Taylor series representation: examples

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .+ (−1)k x2k

(2k)!
+ . . . =

∞∑
k=0

(−1)k x2k

(2k)!
, ∀x ∈ R

sin(x) = x−x
3

3!
+
x5

5!
−x

7

7!
+. . .+(−1)k x2k+1

(2k + 1)!
+. . . =

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
, ∀x ∈ R

ex = 1 +
x

1!
+
x2

2!
+ . . .

xn

n!
+ . . . =

∞∑
n=0

xn

n!
, ∀x ∈ R

ln(1+x) = x− x
2

2
+
x3

3
− . . .+(−1)n−1x

n

n
+ . . . =

∞∑
n=1

(−1)n−1x
n

n
, x ∈ (−1, 1]
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