Calculus - Lecture 5

Power Series.
Taylor Polynomials and Taylor Series.

EVA KASLIK

Power series

A series of functions of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is called power series.
The general term of this series is the function

$$
f_{n}(x)=a_{n} x^{n}
$$

where $\left(a_{n}\right)$ is sequence of real numbers, called sequence of coefficients.
Variation: power series centered at the point x_{0} :

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

The Abel-Cauchy-Hadamard theorem

Consider the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$.
Denoting

$$
\omega=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\varlimsup_{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \in[0,+\infty]
$$

and the radius of convergence

$$
R= \begin{cases}\frac{1}{\omega}, & \text { if } \omega \neq 0 \\ +\infty, & \text { if } \omega=0\end{cases}
$$

the power series is

- absolutely convergent for $|x|<R$.
- divergent for $|x|>R$.
- uniformly convergent on any closed interval $[-r, r] \subset(-R, R)$.
!!! this theorem does not provide information about convergence at $x= \pm R$.

Example

Let us consider the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)}$.
The sequence of coefficients is $a_{n}=\frac{1}{n(n+1)}$. We compute:

$$
\omega=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n(n+1)}{(n+1)(n+2)}=1 \quad \Longrightarrow \quad R=\frac{1}{\omega}=1
$$

- The power series is absolutely convergent for $|x|<1$.
- The power series is divergent for $|x|>1$.

For $x=1$, we have $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \sim \sum_{n=1}^{\infty} \frac{1}{n^{2}} \rightarrow$ convergent! (harmonic series).
For $x=-1$, we have $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+1)} \rightarrow$ convergent! (alternating series).
The set of convergence is $[-1,1]$.

Arithmetics of power series

Consider the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ with radii of convergence R_{1} and R_{2}, where $0 \leq R_{1} \leq R_{2}$.

Then the following power series have radii of convergence at least R_{1} :

- the sum $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}$
- the scalar product $\sum_{n=0}^{\infty} k \cdot a_{n} x^{n}$
- the Cauchy product $\sum_{n=0}^{\infty} c_{n} x^{n}$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Arithmetics of power series

Moreover, if we denote the sums of the two series by

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=f(x) \quad \text { and } \quad \sum_{n=0}^{\infty} b_{n} x^{n}=g(x)
$$

then, for any $x \in\left(-R_{1}, R_{1}\right)$, we have:

- $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}=f(x)+g(x)$
- $\sum_{n=0}^{\infty} k \cdot a_{n} x^{n}=k \cdot f(x)$
- $\sum_{n=0}^{\infty} c_{n} x^{n}=f(x) g(x)$

Continuity and differentiability of a power series' sum

Theorem (Continuity)

The sum $f(x)$ of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a continuous function on $(-R, R)$, where R denotes the radius of convergence.

Theorem (Differentiability)

The sum $f(x)$ of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with radius of convergence $R>0$ is k-times differentiable, for any $k \in \mathbb{N}$ and

$$
f^{(k)}(x)=\sum_{n=k}^{\infty} a_{n} n(n-1) \ldots(n-k+1) x^{n-k} \quad, \forall x \in(-R, R) .
$$

For $x=0$, it follows that $f^{(k)}(0)=a_{k} \cdot k!\Longrightarrow a_{k}=\frac{f^{(k)}(0)}{k!}$

Continuity and differentiability of a power series' sum

Therefore, the following representation is valid:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \quad, \forall x \in(-R, R) .
$$

Hence, if $|x|$ is sufficiently small, we can estimate

$$
f(x) \simeq \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^{n}
$$

Similarly, for power series centered at x_{0}, we have:

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \quad, \forall x \in\left(x_{0}-R, x_{0}+R\right) .
$$

Hence, if x is sufficiently close to x_{0}, we can estimate

$$
f(x) \simeq \sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Example

Considering $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)}$, for $x \in[-1,1]$, we have:

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{\left(x^{n}\right)^{\prime}}{n(n+1)}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n+1} .
$$

Hence, multiplying by x^{2} and differentiating once more, we obtain:

$$
\left(x^{2} f^{\prime}(x)\right)^{\prime}=\left(\sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}\right)^{\prime}=\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x}=\frac{1}{1-x}-1 \quad, \forall x \in(-1,1)
$$

Integrating, we obtain:

$$
x^{2} f^{\prime}(x)=\int\left(\frac{1}{1-x}-1\right) d x=-\ln (1-x)-x
$$

and therefore:

$$
f(x)=-\int\left(\frac{\ln (1-x)}{x^{2}}+\frac{1}{x}\right)=\frac{(1-x) \ln (1-x)}{x}+1 \quad, \forall x \in(-1,1)
$$

Taylor polynomials

Motivating Problem. Find a practical method for calculating $e^{x}, \sin (x)$, etc. Often you have an accuracy in mind (e.g. "to five decimal places").

Let f be an n-times continuously differentiable function on an open interval containing the point a.

The n-th degree Taylor polynomial to the function f at the point a is defined by:

$$
T_{n, a} f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Question. Can we approximate the value of the function f at a point x by the value of the Taylor polynomial $T_{n, a} f(x)$?

Taylor polynomials - simplest cases

- $T_{0, a} f(x)=f(a) \rightarrow$ a constant;
- linear approximation: $T_{1, a} f(x)=f(a)+f^{\prime}(a)(x-a)$

Taylor polynomials - example

Find the Taylor polynomial of order $n=6$ of the function $f(x)=\cos (x)$ at the point $a=0$.

$$
\begin{array}{ccc}
k & f^{(k)}(x) & f^{(k)}(0) \\
\hline 0 & \cos (x) & 1 \\
1 & -\sin (x) & 0 \\
2 & -\cos (x) & -1 \\
3 & \sin (x) & 0 \\
4 & \cos (x) & 1 \\
5 & -\sin (x) & 0 \\
6 & -\cos (x) & -1
\end{array}
$$

$$
T_{6,0} f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots+\frac{f^{(6)}(0)}{6!} x^{6}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

Taylor polynomials - example

Taylor polynomials for $f(x)=\cos (x)$, up to order $n=6$

Applications

Numerical approximation of functions.
(If you want a tadpole, do you need the DNA for the entire frog?)

Applications

Example: Approximate $\cos (0.1)$.
An approximate value is given by the Taylor polynomial of order 6 :

$$
T_{6,0}(0.1)=1-\frac{(0.1)^{2}}{2!}+\frac{(0.1)^{4}}{4!}-\frac{(0.1)^{6}}{6!}=0.995004
$$

What is the accuracy of this approximation?

The first remainder theorem

Theorem

Let f be $(n+1)$ times continuously differentiable on an open interval containing the points a and x. Then the difference between $f(x)$ and $T_{n, a} f(x)$ is given by

$$
f(x)-T_{n, a} f(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

for some c between a and x.

The error in approximating $f(x)$ by the value of the polynomial $T_{n, a} f(x)$ is the remainder term:

$$
R_{n, a} f(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

Taylor's formula of degree n :

$$
f(x)=T_{n, a} f(x)+R_{n, a} f(x)
$$

The first remainder theorem: application

Example: Find the error of approximating $\cos (0.1)$ by $T_{6,0}(0.1)=0.995004$.

$$
R_{6,0} f(x)=\frac{x^{7}}{7!} f^{(7)}(c)=\frac{x^{7}}{7!} \sin (c)
$$

Hence:

$$
R_{6,0} f(0.1)=\frac{(0.1)^{7}}{7!} \sin (c) \quad \text { where } c \in(0,0.1)
$$

Therefore, the absolute error of approximation is:

$$
\epsilon_{a}=\left|R_{6,0} f(0.1)\right| \leq \frac{(0.1)^{7}}{7!}=\frac{10^{-7}}{5040} \leq \frac{10^{-7}}{5000}=2 \cdot 10^{-11}
$$

\rightarrow accuracy of at least 10 digits

Taylor series representation

Suppose that the function f has derivatives of all orders on some interval containing the point a and also that

$$
\lim _{n \rightarrow \infty} R_{n, a}(x)=0
$$

for each x in that interval. Then for any x in that interval, we have:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

This is called Taylor series representation of the function $f(x)$ at the point a. When $a=0$, the above series is also called MacLaurin series.

Taylor series representation: examples

$$
\begin{gathered}
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+(-1)^{k} \frac{x^{2 k}}{(2 k)!}+\ldots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}, \forall x \in \mathbb{R} \\
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}+\ldots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}, \forall x \in \mathbb{R} \\
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots \frac{x^{n}}{n!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \forall x \in \mathbb{R} \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, x \in(-1,1]
\end{gathered}
$$

