Calculus - Lecture 5

Power Series.
Taylor Polynomials and Taylor Series.
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Power series

A series of functions of the form

o0
> "
n=0

is called power series.

The general term of this series is the function
fn(x) = a,z"

where (a,,) is sequence of real numbers, called sequence of coefficients.

Variation: power series centered at the point z:
Z an(z — zo)"
n=0
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The Abel-Cauchy-Hadamard theorem

o0
Consider the power series » _ a,z".

n=0
Denoting

w= Tm Ve = im 9l ¢ o 1o

n—oo n—oo | n |

and the radius of convergence

1 -
rR={ o ifw#0
+o00, ifw=0
the power series is
@ absolutely convergent for |z| < R.
@ divergent for |z| > R.

@ uniformly convergent on any closed interval [—r,r] C (=R, R).

I this theorem does not provide information about convergence at © = +R.
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Example
Let us consider the power series _
P z:l n(n+1)
1
The sequence of coefficients is a,, = —— . We compute:
n(n+1)
1
w= lim M:hmﬂzl — R=-=1

@ The power series is absolutely convergent for |z| < 1.
@ The power series is divergent for |z| > 1.

o0

1 . .
For = = 1, we have Z 71) > — — convergent! (harmonic series).
n=1
For 2 = —1, we have Z j) —» convergent! (alternating series).

The set of convergence is [—1, 1].
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Arithmetics of power series

Consider the power series Z a,z™ and Z b,z" with radii of convergence
n=0 n=0
R; and Ry, where 0 < Ry < Rs.

Then the following power series have radii of convergence at least R;:

o the sum » (an + by)z"

n=0

(o]
o the scalar product ) k- ana”
n=0

o the Cauchy product  _ c,a", where ¢, = > axby
n=0 k=0
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Arithmetics of power series

Moreover, if we denote the sums of the two series by
Z apnz™ = f(z) and Z bz = g(x),
n=0 n=0

then, for any = € (—Ry, R;), we have:

° Z(an + bn)xn = f(:L’) + g(iL’)
n=0

° Zk-anmn =k- f(x)
n=0

0 > coa™ = f(x)g(w)
n=0
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Continuity and Differentiabily
Continuity and differentiability of a power series’ sum

Theorem (Continuity)
The sum f(x) of the power series Z anx" is a continuous function on

n=0

(—R, R), where R denotes the radius of convergence.

Theorem (Differentiability)

The sum f(x) of the power series Z anz™ with radius of convergence R > 0

n=0
is k-times differentiable, for any k € N and

f®)(z) = iann(n ~1)...(n—k+1)2"* Vze(-RR).
n=k

f*(0)

For z = 0, it follows that f*)(0) = a, - k! = a; = ° 5
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Continuity and Differentiability
Continuity and differentiability of a power series’ sum

Therefore, the following representation is valid:

oo o0 n)
fz) = Zanaz" = Z %x" ,Vaz e (—R,R).
n=0 n=0 ’

Hence, if |z| is sufficiently small, we can estimate

N r(n)
flx) ~ Z ! '(0) z".
n=0 :

n

Similarly, for power series centered at z(, we have:

e | pn) (4
flx) = Zan(a:—xo)” = Z Dt O)(x—xo)" Ve (rg— R,z0 + R).
n=0

n!
n=0

Hence, if x is sufficiently close to x4, we can estimate

N

() (5
f(l')ﬁzf ( 0)(x_x0)n.

n!

n=0
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Example
Considering f(z Z Iy for 2 € [-1, 1], we have:
n:l

B el (xn)l > -1
'@ _Z:: (n+1) Zn+1

Hence, multiplying by =2 and differentiating once more, we obtain:

oo

($2f/($))/=<zn+1> Zx 1i$—1 Ve (-1,1).

n=1

Integrating, we obtain:

x2f/(x)—/<1ix—1>dm——ln(1—x)—x

and therefore:

ﬂ@:-/(m“_”+1>=“_”m“_”+1,vxe@Lu

X
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.
Taylor polynomials

Motivating Problem. Find a practical method for calculating e*, sin(z), etc.
Often you have an accuracy in mind (e.g. "to five decimal places").

Let f be an n-times continuously differentiable function on an open interval
containing the point a.

The n-th degree Taylor polynomial to the function f at the point a is defined by:

f'(a) f®(a) f™(a)
1! 2! n!

Tnof(z) = f(a) + (r—a)+ (x—a)*+... + (x —a)

Question. Can we approximate the value of the function f at a point = by the
value of the Taylor polynomial T, . f (x)?
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Taylor polynomials - simplest cases

@ T, f(z) = f(a) — a constant;

@ linear approximation: Ty . f(z) = f(a) + f'(a)(z — a)
f(a) + f’(a)(x—a)
U f(x)
=
-~
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Taylor polynomials and Taylor series Definition and examples

Taylor polynomials - example

Find the Taylor polynomial of order n = 6 of the function f(x) = cos(x) at the

point a = 0.

Tsof (z) = f(0) +

EVA KASLIK

10

1!

k_ fW)  f™(0)
0  cos(x) 1
1 —sin(z) 0
2 —cos(z) -1
3 sin(z) 0
4 cos(x) 1
5 —sin(x) 0
6 —cos(z) -1
" (6) 2 4
x—|—fT(!0):E2—|—...—|— ! 6'(0)I6:1_%+%
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Taylor polynomials - example

Taylor polynomials for f(x) = cos(x), up to order n = 6

n
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Applications

Numerical approximation of functions.
(If you want a tadpole, do you need the DNA for the entire frog?)

O & W™

| / 7~—£
‘ ‘ : \4\5/5/ ' ’ .
-

D <o -
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L
Applications

Example: Approximate cos(0.1).

An approximate value is given by the Taylor polynomial of order 6:

(0.1)2  (0.1)* (0.1)°
To0(01) = 1 — 5=+~ — 7 = 0.995004

What is the accuracy of this approximation?
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The first remainder theorem

Theorem

Let f be (n + 1) times continuously differentiable on an open interval
containing the points a and z. Then the difference between f(x) and T,, . f(z)
is given by

( T — a)n+1

1) ()

f(x) - Tn,af(x) =

for some c between a and x.

The error in approximating f(x) by the value of the polynomial T,, . f(z) is the
remainder term: o
(@ =)™ i)

Ry of(z) = (n+1) -

Taylor’s formula of degree n:
f(x) = Tn,af(x) + Rn,af(x)
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The first remainder theorem: application

Example: Find the error of approximating cos(0.1) by T ¢(0.1) = 0.995004.

7 7
Roof(x) = 2 f7(c) = 5 sin(e)

Hence:

R0 f(0.1) = (071')7 sin(c) where ¢ € (0,0.1)

Therefore, the absolute error of approximation is:

7 -7 -7
(0.7 1077 _ 10

- 1) < -
€ |Re,0f(0.1)] < 71 5040 — 5000

=2.107 1"

— accuracy of at least 10 digits
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Taylor series representation

Suppose that the function f has derivatives of all orders on some interval
containing the point a and also that

lim R, q(z)=0

n—oo

for each z in that interval. Then for any x in that interval, we have:

x_ )y
fa) =3 D gy

n!
n=0

This is called Taylor series representation of the function f(z) at the point a.

When a = 0, the above series is also called MacLaurin series.
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Taylor series representation: examples

) 1.2 1.4 l’6 1kx2k: 0 1k: 2k y R
=l-=t+—=—=+...+(- =) (- €
cos(x) TR T TR e CTA T ;)( T

IJ’JS 5135 IL’7 x2k+1 e $2k+1
in(z) = 2t oo (1) =S (-1 VzeR
sin(e) = e—grt gt D gt kg( Varr e E

v _q 22 z" _ S v R

e’ = +F+§+ F'F nzz:o T x e

£C2 1'3 X > X
In(1 —r—— 4+ - 1t = nrte -1,1
n(l4a) =o— 45—+ (-1 ;( )i we (1]
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