Calculus - Lecture 12
 Line integrals. Green's theorem.

EVA KASLIK

Elementary curves in \mathbb{R}^{2}

An elementary curve in \mathbb{R}^{2} is a set of points $C \subset \mathbb{R}^{2}$ for which there exists a smooth (class C^{1}) function $\varphi:[a, b] \rightarrow C$ which is bijective on $[a, b)$.

The points $A=\varphi(a)$ and $B=\varphi(b)$ are called the end points of the curve.
The function φ is called a parametric representation of the curve.
The vector $\varphi^{\prime}(t)$ is tangent to the curve at the point $\varphi(t)$.

Parametric equations:

$$
C:\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array} \quad, t \in[a, b]\right.
$$

where f and g are the scalar components of φ.

Elementary curves in \mathbb{R}^{2}

An elementary closed curve is a curve with parametric representation φ s.t.

$$
\varphi(a)=\varphi(b) .
$$

Remarks:

- Any elementary curve has an infinity of parametric representations.
- The end points of an elementary curve are independent of the parametric representation of the curve.
Example: A parametric representation of the circle $x^{2}+y^{2}=1$ is

$$
\varphi:[0,2 \pi] \rightarrow \mathbb{R}^{2}, \quad \varphi(t)=(\cos t, \sin t) .
$$

Parametric equations:

$$
C:\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array} \quad, t \in[0,2 \pi]\right.
$$

Closed curve: $\varphi(0)=\varphi(2 \pi)=(1,0)$.

The length of a curve in \mathbb{R}^{2}

The length of the elementary curve $C \subset \mathbb{R}^{2}$ with parametric representation $\varphi:[a, b] \rightarrow \mathbb{R}^{2}$ is given by:

$$
l=\int_{a}^{b}\left\|\varphi^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\varphi_{1}^{\prime}(t)^{2}+\varphi_{2}^{\prime}(t)^{2}} d t
$$

where $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$.
Remark: The curve length is independent of the parametric representation of the curve C !

The arc length of the elementary curve C with representation φ is defined as

$$
d s=\left\|\varphi^{\prime}(t)\right\| d t=\sqrt{\varphi_{1}^{\prime}(t)^{2}+\varphi_{2}^{\prime}(t)^{2}} d t
$$

In the previous Example: the length of the circle $x^{2}+y^{2}=1$ is

$$
\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2}} d t=\int_{0}^{2 \pi} 1 d t=2 \pi
$$

Line integral with respect to arc length in \mathbb{R}^{2}

Consider a curve $C \subset \mathbb{R}^{2}$ with the parametric representation $\varphi:[a, b] \rightarrow C$ and a continuous function $f: C \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Line integral of first type (with respect to arc length):

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t)\right) \sqrt{\varphi_{1}^{\prime}(t)^{2}+\varphi_{2}^{\prime}(t)^{2}} d t
$$

- divide the interval $[a, b]$ into n subintervals $\left[t_{i-1}, t_{i}\right], i=\overline{1, n}$, of equal length
- consider $P_{i}=\varphi\left(t_{i}\right) \in C$
- the points P_{i} divide the curve C into n subarcs with lengths $\Delta s_{1}, \Delta s_{2}, \ldots, \Delta s_{n}$
- choose an intermediate point

$$
\begin{aligned}
& P_{i}^{*}\left(x_{i}^{*}, y_{i}^{*}\right)=\varphi\left(t_{i}^{*}\right), \text { with } t_{i}^{*} \in\left[t_{i-1}, t_{i}\right] \\
& \Longrightarrow \int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
\end{aligned}
$$

Interpretation

The line integral of a positive function $f(x, y) \geq 0,(x, y) \in C$ represents the area of one side of the "curtain" in the figure below, whose base is C and whose height above the point (x, y) is $f(x, y)$.

Example

Compute $\int_{C}\left(2+x^{2} y\right) d s$ where C si the upper half of the unit circle $x^{2}+y^{2}=1$.
Considering the following parametric equations of the curve C :

$$
C:\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array} \quad, t \in[0, \pi]\right.
$$

as the arc length is

$$
d s=\sqrt{\varphi_{1}^{\prime}(t)^{2}+\varphi_{2}^{\prime}(t)^{2}} d t=d t
$$

we obtain:

$$
\int_{C}\left(2+x^{2} y\right) d s=\int_{0}^{\pi}\left(2+(\cos t)^{2} \sin t\right) d t=2 \pi-\left.\frac{1}{3}(\cos t)^{3}\right|_{0} ^{\pi}=2 \pi+\frac{2}{3}
$$

Line integrals on piecewise smooth curves

Assume that the curve C is the union of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$ where the initial point of C_{i} is the terminal point of C_{i-1}, for $i=\overline{1, n}$.

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\ldots+\int_{C_{n}} f(x, y) d s
$$

Line integrals with respect to coordinate variables

Line integrals of f with respect to x and y :

$$
\begin{aligned}
\int_{C} f(x, y) d x & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t)\right) \varphi_{1}^{\prime}(t) d t \\
\int_{C} f(x, y) d y & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t)\right) \varphi_{2}^{\prime}(t) d t
\end{aligned}
$$

Example. Let C_{2} be the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(0,2)$.

$$
C_{2}:\left\{\begin{array}{l}
x=4-t^{2} \\
y=t
\end{array} \quad, t \in[-3,2]\right.
$$

$\Longrightarrow \int_{C_{2}}\left(y^{2} d x+x d y\right)=\int_{-3}^{2} t^{2}(-2 t) d t+\int_{-3}^{2}\left(4-t^{2}\right) d t=\int_{-3}^{2}\left(-2 t^{3}+4-t^{2}\right) d t=\ldots$

Line integrals in \mathbb{R}^{3}

Consider a smooth curve $C \subset \mathbb{R}^{3}$ with the parametric representation $\varphi:[a, b] \rightarrow \mathbb{R}^{3}, \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$, and a continuous function $f: C \rightarrow \mathbb{R}$.

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \sqrt{\varphi_{1}^{\prime}(t)^{2}+\varphi_{2}^{\prime}(t)^{2}+\varphi_{3}^{\prime}(t)^{2}} d t \\
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \varphi_{1}^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \varphi_{2}^{\prime}(t) d t \\
\int_{C} f(x, y, z) d z & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \varphi_{3}^{\prime}(t) d t
\end{aligned}
$$

Example

C is the circular helix with the parametric equations

$$
\begin{aligned}
& C:\left\{\begin{array}{l}
x=\cos t \\
y=\sin t \\
z=t
\end{array} \quad, t \in[0,2 \pi]\right. \\
& \int_{C} y \sin z d s=\int_{0}^{2 \pi}(\sin t)^{2} \sqrt{(-\sin t)^{2}+(\cos t)^{2}+1^{2}} d t \\
&=\sqrt{2} \int_{0}^{2 \pi} \sin ^{2} t d t \\
&=\frac{\sqrt{2}}{2} \int_{0}^{2 \pi}(1-\cos (2 t)) d t \\
&=\frac{\sqrt{2}}{2}\left(2 \pi-\left.\frac{\sin (2 t)}{2}\right|_{0} ^{2 \pi}\right)=\sqrt{2} \pi .
\end{aligned}
$$

Green's theorem

Theorem (Green's theorem)
Let D be a closed bounded region in the plane whose boundary is a piecewise smooth closed curve C.

If f and g are functions of class C^{1} on an open region containing D, then

$$
\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y=\oint_{C} f d x+g d y
$$

where the positive orientation is considered for the curve C.

Positive vs. negative orientation

positive orientation (counterclockwise)

negative orientation (clockwise)

Example

C is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$.
Compute the integral: $\oint_{C} x^{4} d x+x y d y$.

$$
\begin{aligned}
& f(x, y)=x^{4} \quad \Longrightarrow \frac{\partial f}{\partial y}=0 \\
& g(x, y)=x y \quad \Longrightarrow \frac{\partial g}{\partial x}=y \\
& D=\left\{(x, y) \in \mathbb{R}^{2}: x \in[0,1], y \in[0,1-x]\right\} \\
& \oint_{C} x^{4} d x+x y d y=\iint_{D}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y=\iint_{D} y d x d y= \\
&=\int_{0}^{1} \int_{0}^{1-x} y d y d x=\left.\int_{0}^{1} \frac{1}{2} y^{2}\right|_{y=0} ^{y=1-x} d x=\frac{1}{2} \int_{0}^{1}(1-x)^{2} d x= \\
&=-\left.\frac{1}{6}(1-x)^{3}\right|_{0} ^{1}=\frac{1}{6}
\end{aligned}
$$

