CALCULUS HANDOUT 9-PARTIAL AND DIRECTIONAL DERIVATIVES. DIFFERENTIABILITY. FRÉCHET DERIVATIVE - definitions

PARTIAL DERIVATIVES

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ be a real valued function of n variables and $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \operatorname{Int}(A)$. The function f is said to be partially differentiable with respect to x_{i} at a if the following limit exists and is finite

$$
\lim _{t \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{i-1}, a_{i}+t, a_{i+1}, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n}\right)}{t}
$$

The value of this limit is denoted by $\frac{\partial f}{\partial x_{i}}(a)$ and is called the partial derivative of f with respect to x_{i} at a.
The vector $\nabla f(a)=\left(\frac{\partial f}{\partial x_{1}}(a), \frac{\partial f}{\partial x_{2}}(a), \ldots, \frac{\partial f}{\partial x_{n}}(a)\right)$ is called gradient vector of f at a.
! To calculate partial derivatives, one has to differentiate (in the normal manner) with respect to x_{i} keeping all the other variables fixed.
! All obvious rules for partially differentiating sums, products and quotients can be used.
! The partial differentiability of a vector valued function of n real variables is equivalent to the partial differentiability of all the scalar components.

DIRECTIONAL DERIVATIVES

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ be a real valued function of n variables and $a \in \operatorname{Int}(A)$ and $u \in \mathbb{R}^{n}$ s.t. $\|u\|=1$.
If the following limit exists and is finite

$$
\lim _{t \rightarrow 0} \frac{f(a+t \cdot u)-f(a)}{t}
$$

it is called the directional derivative in the direction u of f at the point a and it is denoted by $\nabla_{u} f(a)$.
! If $e_{i}=(0, \ldots, 0, \underbrace{1}_{i}, 0, \ldots, 0)$ then $\nabla_{e_{i}} f(a)=\frac{\partial f}{\partial x_{i}}(a), i=\overline{1, n}$.
! Partial derivatives are special cases of directional derivatives.
! Relationship between directional derivative and gradient vector: $\nabla_{u} f(a)=\nabla f(a) \cdot u($ where $\|u\|=1)$
Theorem. Let f be a real valued function of n variables, $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, and $a \in \operatorname{Int}(A)$. If the partial derivatives $\frac{\partial f}{\partial x_{i}}, i=\overline{1, n}$ exist in a neighborhood of a and they are continuous at a, then the following equality holds:

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-\nabla f(a) \cdot h}{\|h\|}=0 .
$$

DIFFERENTIABILITY. FRÉCHET DERIVATIVE.

A real valued function of n variables $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ is said to be differentiable at a if it is partially differentiable at a with respect to every variable x_{i} and

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-\nabla f(a) \cdot h}{\|h\|}=0
$$

Fréchet derivative of f at a : the function $d_{a} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ defined by

$$
d_{a} f(h)=\nabla f(a) \cdot h=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(a) \cdot h_{i}
$$

! The Fréchet derivative $d_{a} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ is a linear function on \mathbb{R}^{n}. It is a polynomial of first degree in $h_{1}, h_{2}, \ldots, h_{n}$. ! For $\|h\|=1$, we have $d_{a}(h)=\nabla_{h} f(a)$.
! If the function $f: \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ is differentiable at $a \in A$, then it is continuous at a.
A vector valued function of n variables $f=\left(f_{1}, \ldots, f_{m}\right): A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $a \in \operatorname{Int}(A)$ if every scalar component $f_{j}, j=\overline{1, m}$ of f is differentiable at a.
The Fréchet derivative of f at a is the function $d_{a} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
d_{a} f(h)=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}(a) \cdot h_{i}\right) \cdot e_{j} \quad \text { where } e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{m}
$$

The matrix of the linear function $d_{a} f$ is called the Jacobi matrix of f at $a: J_{a}(f)=\left(\frac{\partial f_{i}}{\partial x_{j}}(a)\right)_{m \times n}$ We have $d_{a} f(h)=J_{a}(f) \cdot h$.

Composite rule:

Let $f: A \subset \mathbb{R}^{n} \rightarrow B \subset \mathbb{R}^{m}$ and $g: B \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$. If f is differentiable at $a \in \operatorname{Int}(A)$ and g is differentiable at $f(a)=b \in \operatorname{Int}(B)$, then $h=g \circ f$ is differentiable at a and $d_{a} h=d_{b} g \circ d_{a} f$.
The Jacobi matrix of h at a is the product of the Jacobi matrix of g at b and the Jacobi matrix of f at a :

$$
\frac{\partial h_{i}}{\partial x_{j}}(a)=\sum_{k=1}^{m} \frac{\partial g_{i}}{\partial y_{k}}(b) \cdot \frac{\partial f_{k}}{\partial x_{j}}(a), \quad i=\overline{1, p}, j=\overline{1, n} .
$$

Inverse rule:
Let $f: A \subset \mathbb{R}^{n} \rightarrow B \subset \mathbb{R}^{n}$ be a bijection where A, B are open subsets of \mathbb{R}^{n}. If f is differentiable at $a \in A$ and f^{-1} is differentiable at $b=f(a)$, then $d_{a} f$ is a bijection of \mathbb{R}^{n} on \mathbb{R}^{n} and $\left(d_{a} f\right)^{-1}=d_{f(a)} f^{-1}$.

Continuously differentiable functions:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a differentiable function on the open set A. If the partial derivatives $A \ni x \mapsto \frac{\partial f_{i}}{\partial x_{j}}$ are continuous, $i=\overline{1, m}, j=\overline{1, n}$, then f is said to be continuously differentiable.

Ex. 1 Compute the first order partial derivatives and the Fréchet derivative for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $f(x, y)=3 x^{2} y+e^{x y} \cdot \ln \left(x^{2}+y^{2}\right)$.
Solution:
Partial derivatives:

$$
\begin{aligned}
\frac{\partial f}{\partial x}(x, y) & =3 y \cdot\left(x^{2}\right)_{x}^{\prime}+\left(e^{x y}\right)_{x}^{\prime} \cdot \ln \left(x^{2}+y^{2}\right)+e^{x y} \cdot\left(\ln \left(x^{2}+y^{2}\right)\right)_{x}^{\prime} \\
& =3 y \cdot 2 x+e^{x y} \cdot(x y)_{x}^{\prime} \cdot \ln \left(x^{2}+y^{2}\right)+e^{x y} \cdot \frac{\left(x^{2}+y^{2}\right)_{x}^{\prime}}{x^{2}+y^{2}} \\
& =6 x y+y e^{x y} \ln \left(x^{2}+y^{2}\right)+\frac{2 x}{x^{2}+y^{2}} \cdot e^{x y} \\
\frac{\partial f}{\partial y}(x, y) & =3 x^{2} \cdot(y)_{y}^{\prime}+\left(e^{x y}\right)_{y}^{\prime} \cdot \ln \left(x^{2}+y^{2}\right)+e^{x y} \cdot\left(\ln \left(x^{2}+y^{2}\right)\right)_{y}^{\prime} \\
& =3 x^{2} \cdot 1+e^{x y} \cdot(x y)_{y}^{\prime} \cdot \ln \left(x^{2}+y^{2}\right)+e^{x y} \cdot \frac{\left(x^{2}+y^{2}\right)_{y}^{\prime}}{x^{2}+y^{2}} \\
& =3 x^{2}+x e^{x y} \ln \left(x^{2}+y^{2}\right)+\frac{2 y}{x^{2}+y^{2}} \cdot e^{x y}
\end{aligned}
$$

Fréchet derivative:
$d_{\left(a_{1}, a_{2}\right)} f\left(h_{1}, h_{2}\right)=\frac{\partial f}{\partial x}\left(a_{1}, a_{2}\right) \cdot h_{1}+\frac{\partial f}{\partial y}\left(a_{1}, a_{2}\right) \cdot h_{2}$
$=\left(6 a_{1} a_{2}+a_{2} e^{a_{1} a_{2}} \ln \left(a_{1}^{2}+a_{2}^{2}\right)+\frac{2 a_{1}}{a_{1}^{2}+a_{2}^{2}} \cdot e^{a_{1} a_{2}}\right) h_{1}+\left(3 a_{1}^{2}+a_{1} e^{a_{1} a_{2}} \ln \left(a_{1}^{2}+a_{2}^{2}\right)+\frac{2 a_{2}}{a_{1}^{2}+a_{2}^{2}} \cdot e^{a_{1} a_{2}}\right) h_{2}$
$=3 a_{1}\left(2 a_{2} h_{1}+a_{1} h_{2}\right)+e^{a_{1} a_{2}} \ln \left(a_{1}^{2}+a_{2}^{2}\right)\left(a_{2} h_{1}+a_{1} h_{2}\right)+\frac{2 e^{a_{1} a_{2}}}{a_{1}^{2}+a_{2}^{2}}\left(a_{1} h_{1}+a_{2} h_{2}\right)$
Ex. 2 Compute the directional derivative in the direction $u=\frac{v}{\|v\|}$, where $v=(1,1)$ at $a=(2,1)$ for the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{2}+2 x y+3 y^{2} .
$$

Solution:
Method I: Using the definition $\nabla_{u} f(a)=\lim _{t \rightarrow 0} \frac{f(a+t \cdot u)-f(a)}{t}$.
$\|v\|=\sqrt{1^{2}+1^{2}}=\sqrt{2} \Rightarrow u=\frac{v}{\|v\|}=\frac{1}{\sqrt{2}}(1,1)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

$$
\begin{aligned}
f(a+t \cdot u) & =f\left((2,1)+t\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)\right)=f\left(2+\frac{\sqrt{2}}{2} t, 1+\frac{\sqrt{2}}{2} t\right) \\
& =\left(2+\frac{\sqrt{2}}{2} t\right)^{2}+2\left(2+\frac{\sqrt{2}}{2} t\right)\left(1+\frac{\sqrt{2}}{2} t\right)+3\left(1+\frac{\sqrt{2}}{2} t\right)^{2} \\
& =4+2 \cdot 2 \cdot \frac{\sqrt{2}}{2} t+\frac{2}{4} t^{2}+2\left(2+2 \cdot \frac{\sqrt{2}}{2} t+\frac{\sqrt{2}}{2} t+\frac{2}{4} t^{2}\right)+3\left(1+2 \cdot \frac{\sqrt{2}}{2} t+\frac{2}{4} t^{2}\right) \\
& =4+2 \sqrt{2} t+\frac{1}{2} t^{2}+4+2 \sqrt{2} t+\sqrt{2} t+t^{2}+3+3 \sqrt{2} t+\frac{3}{2} t^{2} \\
& =11+8 \sqrt{2} t+3 t^{2}
\end{aligned}
$$

$f(a)=f(2,1)=2^{2}+2 \cdot 2 \cdot 1+3 \cdot 1^{2}=4+4+3=11$
$\Rightarrow \nabla_{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)} f(2,1)=\lim _{t \rightarrow 0} \frac{11+8 \sqrt{2} t+3 t^{2}-11}{t}=\lim _{t \rightarrow 0} \frac{t(8 \sqrt{2}+3 t)}{t}=\lim _{t \rightarrow 0}(8 \sqrt{2}+3 t)=8 \sqrt{2}$.
Method II: Using the formula $\nabla_{u} f(a)=\nabla f(a) \cdot u$.
$\frac{\partial f}{\partial x}(x, y)=\left(x^{2}+2 x y+3 y^{2}\right)_{x}^{\prime}=\left(x^{2}\right)_{x}^{\prime}+2 y \cdot(x)_{x}^{\prime}+\left(3 y^{2}\right)_{x}^{\prime}=2 x+2 y \cdot 1+0=2 x+2 y$
$\frac{\partial f}{\partial y}(x, y)=\left(x^{2}+2 x y+3 y^{2}\right)_{y}^{\prime}=\left(x^{2}\right)_{y}^{\prime}+2 x \cdot(y)_{y}^{\prime}+3\left(y^{2}\right)_{y}^{\prime}=0+2 x \cdot 1+3 \cdot 2 y=2 x+6 y$
$\Rightarrow \frac{\partial f}{\partial x}(2,1)=2 \cdot 2+2 \cdot 1=4+2=6$ and $\frac{\partial f}{\partial y}(2,1)=2 \cdot 2+6 \cdot 1=4+6=10$
$\Rightarrow \nabla_{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)} f(2,1)=(6,10) \cdot\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)=6 \cdot \frac{\sqrt{2}}{2}+10 \cdot \frac{\sqrt{2}}{2}=\frac{6 \sqrt{2}+10 \sqrt{2}}{2}=\frac{16 \sqrt{2}}{2}=8 \sqrt{2}$.
Ex. 3 Study wether the following function is continuous, partially differentiable, (Fréchet) differentiable or continuously differentiable on \mathbb{R}^{2} :

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{cases}
$$

Solution:

Continuity:
The function f is continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$. Moreover, $f(0,0)=0$.
We study if the function f has limit at the point $(0,0)$.
$y=x \Rightarrow f(x, x)=\frac{x \cdot x}{x^{2}+y^{2}}=\frac{x^{2}}{2 x^{2}}=\frac{1}{2} \underset{x \rightarrow 0}{ } \frac{1}{2}$
$y=-x \Rightarrow f(x,-x)=\frac{x \cdot(-x)}{x^{2}+(-x)^{2}}=\frac{-x^{2}}{2 x^{2}}=-\frac{1}{2} \xrightarrow[x \rightarrow 0]{ }-\frac{1}{2}$
As $\frac{1}{2} \neq-\frac{1}{2}$, it results that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
We obtain that f is not continuous at the point $(0,0)$.
Therefore, the function f is continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$
Partial derivatives:
$\frac{\partial f}{\partial x}(x, y)=\lim _{t \rightarrow 0} \frac{f(x+t, y)-f(x, y)}{t} \Rightarrow \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(0+t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{f(t, 0)-0}{t}=0$
$\frac{\partial f}{\partial y}(x, y)=\lim _{t \rightarrow 0} \frac{f(x, y+t)-f(x, y)}{t} \Rightarrow \frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0,0+t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{f(0, t)-0}{t}=0$
It follows that f is partially differentiable at $(0,0)$. Moreover, the partial derivatives of the function are:
$\frac{\partial f}{\partial x}(x, y)=\frac{y\left(x^{2}+y^{2}\right)-x y \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2} y+y^{3}-2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{3}-x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}$
$\frac{\partial f}{\partial y}(x, y)=\frac{x\left(x^{2}+y^{2}\right)-x y \cdot 2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{3}+x y^{2}-2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{3}-x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
Fréchet differentiability:
At the point $(0,0)$ we have that $f(0,0)=0, \frac{\partial f}{\partial x}(0,0)=0$ and $\frac{\partial f}{\partial y}(0,0)=0$.
We check if $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-\nabla f(a) \cdot h}{\|h\|}=0$, where $a=(0,0)$ and $h=\left(h_{1}, h_{2}\right)$.
We have that $\nabla f(0,0)=\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right)=(0,0)$ and $\|h\|=\left\|\left(h_{1}, h_{2}\right)\right\|=\sqrt{h_{1}^{2}+h_{2}^{2}}$. Then:
$\lim _{h \rightarrow 0} \frac{f\left((0,0)+\left(h_{1}, h_{2}\right)\right)-f(0,0)-(0,0) \cdot\left(h_{1}, h_{2}\right)}{\sqrt{h_{1}^{2}+h_{2}^{2}}}=\lim _{h \rightarrow 0} \frac{f\left(h_{1}, h_{2}\right)}{\sqrt{h_{1}^{2}+h_{2}^{2}}}=\lim _{h \rightarrow 0} \frac{h_{1} h_{2}}{\left(h_{1}^{2}+h_{2}^{2}\right) \sqrt{h_{1}^{2}+h_{2}^{2}}}$.
The limit does not exsit for $\left(h_{1}, h_{2}\right) \rightarrow(0,0)$. (check!)
It results that the functions f is not Fréchet differentiable at the point $(0,0)$.
Continuous differentiability:
$\frac{\partial f}{\partial x}(x, y)=\left\{\begin{array}{ll}\frac{y^{3}-x^{2} y}{\left(x^{2}+y^{2}\right)^{2}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array} \quad\right.$ and $\quad \frac{\partial f}{\partial y}(x, y)= \begin{cases}\frac{x^{3}-x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{cases}$
We have that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not continuous at the point $(0,0)$. (check!)
Thus, the function f is not continuously differentiable on \mathbb{R}^{2}.

CALCULUS HANDOUT 9 - PARTIAL AND DIRECTIONAL DERIVATIVES. DIFFERENTIABILITY. FRECHET DERIVATIVE - exercises

1. Compute the first order partial derivatives and the Fréchet derivative for the following functions:
2. $f(x, y)=3 x^{2}-4 x y+5 y^{2}$
3. $f(x, y)=\frac{e^{y}}{x+y^{2}}$
4. $f(x, y)=e^{-x y}$
5. $f(x, y)=\arctan \left(x y^{2}\right)$
$f(x, y)=x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}$
6. $f(x, y)=\ln \left(x^{2}+y^{2}\right)$
$f(x, y)=e^{x}(\cos y-\sin y)$
7. $f(x, y)=x^{y}$
$f(x, y)=\arctan x y$
8. $f(x, y, z)=x^{2} e^{y} \ln z$
$f(x, y)=x^{4}+5 x y^{3}$
9. $f(x, y, z)=e^{x y z}$
$f(x, y)=y^{2} e^{-x}$
10. $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}$
11. $f(x, y, z)=x^{3} y z^{2}+2 y z$
$f(x, y)=\frac{x}{y}$
12. $f(x, y, z)=\ln (x+2 y+3 z)$
13. $f(x, y, z)=\sqrt{x^{4}+y^{2} \cos z}$
14. $f(x, y)=\frac{a x+b y}{c x+d y}$
15. $f(x, y, z)=x^{2} y \cos \frac{z}{x}$
16. $f(x, y)=\left(x^{2} y-y^{3}\right)^{5}$
17. $f(x, y, z)=x y^{2} e^{-x z}$
18. $f(x, y)=\sqrt{3 x+4 y}$
19. $f(x, y, z)=y \tan (x+2 z)$
20. $f(x, y)=x \sin (x y)$
21. $f(x, y, z)=\left(x^{2}+y^{2}\right) \sin \left(x+2 y+z^{2}\right)$
22. $f(x, y)=\frac{x}{(x+y)^{2}}$
23. Find the directional derivative of the following functions at the given point a in the direction $u=\frac{v}{\|v\|}$:
24. $f(x, y)=2 x^{2}+3 x y^{2}+y^{2} ; a=(1,-1), v=(3,4)$
25. $f(x, y)=e^{x} \sin y ; a=(0, \pi / 4), v=(1,-1)$
26. $f(x, y)=x^{3}-x^{2} y+x y^{2}+y^{3} ; a=(1,-1), v=(2,3)$
27. $f(x, y, z)=x y+y z+z x ; a=(1,-1,2), v=(1,2,-2)$
28. $f(x, y, z)=\ln \left(1+x^{2}+y^{2}-z^{2}\right) ; a=(1,-1,1) ; v=(2,-2,-3)$
29. Study wether the following functions are continuous, partially differentiable, (Fréchet) differentiable or continuously differentiable on \mathbb{R}^{2} :
30. $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
31. $f(x, y)=\frac{e^{x y}-1}{x}$ if $x \neq 0$ and $f(0, y)=y$
32. $f(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
33. $f(x, y)=\frac{4 x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
34. $f(x, y)=\frac{\ln (1+x y)}{x}$ if $x \neq 0$ and $f(0, y)=y$
35. $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}$ if $x y \neq 0$ and $f(x, y)=0$ if $x y=0$
36. $f(x, y)=\frac{x^{2}(1-\cos (x y))}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
37. $f(x, y)=\frac{x^{3}}{\sqrt{x^{2}+y^{2}}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
38. $f(x, y)=\frac{x^{a} y}{\sqrt{x^{2}+y^{2}}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0(a \geq 1)$
39. $f(x, y)=y^{2} \cos \frac{1}{x}$ if $x \neq 0$ and $f(0, y)=0$
40. $f(x, y)=\frac{\sin \left(x^{4}\right)}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
41. $f(x, y)=\frac{\operatorname{tg}\left(x^{3} y\right)}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$

Extra exercises

4. Find the partial derivatives of the function $z=z(x, y)$ given implicitly by the following equations:
5. $x^{2 / 3}+y^{2 / 3}+z^{2 / 3}=1$
6. $x^{3}+y^{3}+z^{3}=x y z$
7. $x e^{y z}+y e^{z x}+z e^{x y}=3$
8. $x^{5}+x y^{2}+y z=5$
9. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
10. $x y z=\sin (x+y+z)$
11. Find a function $f(x, y)$ such that $\frac{\partial f}{\partial x}=2 x y^{3}+e^{x} \sin y$ and $\frac{\partial f}{\partial y}=3 x^{2} y^{2}+e^{x} \cos y+1$.
