CALCULUS HANDOUT 8 FUNCTIONS OF SEVERAL VARIABLES. LIMITS AND CONTINUITY - definitions

THE VECTOR SPACE \mathbb{R}^n

 $\mathbb{R}^n = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R}^1, i = 1, 2, ..., n\}$. The elements of \mathbb{R}^n are called vectors.

 \mathbb{R}^n is a *n*-dimensional vector space with respect to the sum and the scalar product defined by: $(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$ $k(x_1, x_2, \ldots, x_n) = (kx_1, kx_2, \ldots, kx_n)$

For $x \in \mathbb{R}^n$ the norm (or length) of x is defined by $||x|| = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$.

The distance between x and $a = (a_1, a_2, \dots, a_n)$ is ||x - a||.

A neighborhood of $a \in \mathbb{R}^n$ is a set $V \subset \mathbb{R}^n$ which contains a hypersphere $S_r(a)$ centered in a, $S_r(a) = \{x \in \mathbb{R}^n \mid ||x - a|| < r\}, r > 0.$

FUNCTIONS OF SEVERAL VARIABLES

A real valued function of *n* variables associates to every vector $x \in A \subset \mathbb{R}^n$ a unique real number. Formally, $f: A \subset \mathbb{R}^n \to \mathbb{R}^1$ is given by $x = (x_1, x_2, \dots, x_n) \in A \mapsto f(x) = f(x_1, x_2, \dots, x_n) \in \mathbb{R}$.

A vector valued function of *n* variables associates to every vector $x \in A \subset \mathbb{R}^n$ a unique vector f(x) from \mathbb{R}^m . Formally, $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ is given by

 $x = (x_1, x_2, \dots, x_n) \in A \mapsto f(x) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n)) \in \mathbb{R}^m$ The functions $f_i : A \subset \mathbb{R}^n \to \mathbb{R}^1, i = \overline{1, m}$, are called **scalar components** of the vector function f.

SEQUENCES IN \mathbb{R}^n

A sequence (x_k) of vectors of \mathbb{R}^n is a function whose domain is \mathbb{N} and whose values belong to \mathbb{R}^n . A vector $x \in \mathbb{R}^n$ is said to be **the limit of the sequence** (x_k) if for any $\varepsilon > 0$ there exists $N = N(\varepsilon) > 0$ such that for any k > N we have $||x_k - x|| < \varepsilon$. In this case we write $\lim_{k \to \infty} x_k = x$.

Properties:

• If the limit of the sequence (x_k) exists, then it is unique.

- If a sequence (x_k) converges to x, then the sequence is bounded: $\exists M > 0 \ s.t. \|x_k\| < M, \forall k \in \mathbb{N}.$
- If a sequence (x_k) converges to x, then any subsequence (x_{k_l}) of the sequence (x_k) converges to x.

• A sequence (x_k) , $x_k = (x_{1k}, x_{2k}, ..., x_{nk}) \in \mathbb{R}^n$ converges to $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ if and only if the sequence (x_{ik}) converges to x_i for any i = 1, 2, ..., n.

Bolzano-Weierstrass: any bounded sequence (x_k) of points of ℝⁿ contains a convergent subsequence.
Cauchy's criterion for convergence: A sequence (x_k) ⊂ ℝⁿ converges if and only if for any ε > 0 there exists N_ε such that for p, q > N_ε we have ||x_p - x_q|| < ε.

LIMITS

Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^1$ be a real valued *n* variable function and $a \in A'$ (i.e., for any neighborhood *V* of *a*, one has $V \setminus \{a\} \cap A \neq \emptyset$). The real number *L* is called the **limit** of f(x) as *x* tends to *a* if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that if $0 < ||x - a|| < \delta$ then $|f(x) - L| < \varepsilon$. We write $\lim f(x) = L$.

Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ be a vector valued function of n variables and $a \in A'$. The vector $L \in \mathbb{R}^m$ is called the **limit** of f(x) as x tends to a, if for any $\varepsilon > 0$, there exists $\delta > 0$ such that if $0 < ||x - a|| < \delta$ then $||f(x) - L|| < \varepsilon$. We write $L = \lim_{x \to a} f(x)$.

! If $f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$ and $L = (L_1, \ldots, L_m)$, then $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a} f_i(x) = L_i$ for any $i = \overline{1, m}$.

! same limit laws as for functions of one real variable !

Heine's criterion for the limit:

The function $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ has a limit as x approaches a if and only if for any sequence $(x_k), x_k \in A$, $x_k \neq a$, and $x_k \to a$ as $k \to \infty$, the sequence $(f(x_k))$ converges.

Cauchy-Bolzano's criterion for the limit:

The function $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ has a limit as $x \to a$ if and only if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < ||x' - a|| < \delta$ and $0 < ||x'' - a|| < \delta$ then $||f(x') - f(x'')|| < \varepsilon$.

CONTINUITY

A function $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ is **continuous** at $a \in A$ if $\lim_{x \to a} f(x) = f(a)$.

Rules for continuity:

• If the real valued functions of n variables f and g are continuous at a then so are f + g, $f \cdot g$ and $\frac{1}{f}$.

• If $f: A \subset \mathbb{R}^n \to B \subset \mathbb{R}^m$ is continuous at $a \in A$ and $g: B \subset \mathbb{R}^m \to \mathbb{R}^p$ is continuous at $f(a) = b \in \mathbb{R}^m$, then the composite function $g \circ f: A \to \mathbb{R}^p$ is continuous at a.

Continuity of the scalar components:

Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$, $f(x) = (f_1(x), \ldots, f_m(x))$ and $a \in A$. The function f is continuous at $a \in A$ if and only if the scalar components f_i , $i = 1, 2, \ldots, m$ are continuous at a.

Heine's criterion for continuity:

The function $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $a \in A$ if and only if for any sequence $(x_k) \subset A$ which converges to a, the sequence $(f(x_k))$ converges to f(a).

Cauchy-Bolzano's criterion for continuity:

The function $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $a \in A$ if and only if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $||x' - a|| < \delta$ and $||x'' - a|| < \delta$ then $||f(x') - f(x'')|| < \varepsilon$.

The boundedness property:

If $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous on the compact set A, then the set f(A) is bounded and there exists $a \in A$ such that $||f(a)|| = \sup ||f(A)||$.

Uniform continuity:

A function $f : A \subset \mathbb{R}^n \to \mathbb{R}^1$ is **uniformly continuous** (on A) if for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that for $x', x'' \in A$ we have that if $||x' - x''|| < \delta$ then $||f(x') - f(x'')|| < \varepsilon$.

CALCULUS HANDOUT 8 FUNCTIONS OF SEVERAL VARIABLES. LIMITS AND CONTINUITY - examples

Ex.1 We study if the following functions have limits at the given points::

a. $f(x,y) = 5x^2 - 2xy + y^2 - 6$ at (1,2) c. $f(x,y) = (x^2 + y^2) \cos \frac{1}{x+y}$ at (0,0)b. $f(x,y) = \frac{x^2 - y^2}{x+y}$ at (0,0) d. $f(x,y) = \frac{xy}{x^2+y^2}$ at (0,0)Solution: a. $f(x,y) = 5x^2 - 2xy + y^2 - 6$ at (1,2) $\lim_{(x,y)\to(1,2)} f(x,y) = \lim_{(x,y)\to(1,2)} (5x^2 - 2xy + y^2 - 6) = 5 \cdot 1^2 - 2 \cdot 1 \cdot 2 + 2^2 - 6 = 5 - 4 + 4 - 6 = -1$ b. $f(x,y) = \frac{x^2 - y^2}{x+y}$ at (0,0) $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x+y} = \lim_{(x,y)\to(0,0)} \frac{(x-y)(x+y)}{x+y} = \lim_{(x,y)\to(0,0)} (x-y) = 0 - 0 = 0$ c. $f(x,y) = (x^2 + y^2) \cos \frac{1}{x+y}$ în (0,0) $-1 \le \cos \frac{1}{x+y} \le 1 | \cdot (x^2 + y^2) \ge 0 \Leftrightarrow -(x^2 + y^2) \le (x^2 + y^2) \cos \frac{1}{x+y} \le x^2 + y^2$ $\lim_{(x,y)\to(0,0)} -(x^2 + y^2) = \lim_{(x,y)\to(0,0)} (x^2 + y^2) = 0^2 + 0^2 = 0$ Applying the squeeze rule, it follows that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

d.
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 în $(0,0)$

We compute the limits of the functions along the lines y = 0 and y = x. $y = 0 \Rightarrow f(x, 0) = \frac{x \cdot 0}{x^2} = 0 \xrightarrow[x \to 0]{} 0$ $y = x \Rightarrow f(x, x) = \frac{x \cdot x}{x^2 + x^2} = \frac{x^2}{2x^2} = \frac{1}{2} \xrightarrow[x \to 0]{} \frac{1}{2}$ As we obtained two different limits along two different lines, it results that $\lim_{(x,y) \to (0,0)} f(x, y)$ doesn't exist.

Ex.2 We study the continuity of the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \begin{cases} \arcsin \frac{y^2}{(x-1)^2 + y^2} & , (x,y) \neq (1,0) \\ 0 & , (x,y) = (1,0) \end{cases}$.

Solution: We study the continuity of the function f at the point (1,0). As f(1,0) = 0, we compute, if it exists, $\lim_{(x,y)\to(1,0)} f(x,y)$.

Consider the sequences $\left(1, \frac{1}{n}\right) \xrightarrow[n \to \infty]{} (1, 0)$ and $\left(1 + \frac{1}{n}, \frac{1}{n}\right) \xrightarrow[n \to \infty]{} (1, 0)$. Compute $f\left(1, \frac{1}{n}\right)$ and $f\left(1 + \frac{1}{n}, \frac{1}{n}\right)$. $f\left(1, \frac{1}{n}\right) = \arcsin\frac{\frac{1}{n^2}}{(1-1)^2 + \frac{1}{n^2}} = \arcsin 1 = \frac{\pi}{2} \xrightarrow[n \to \infty]{} \frac{\pi}{2}$ $f\left(1 + \frac{1}{n}, \frac{1}{n}\right) = \arcsin\frac{\frac{1}{n^2}}{\left(1 + \frac{1}{n} - 1\right)^2 + \frac{1}{n^2}} = \arcsin\frac{\frac{1}{n^2}}{\frac{2}{n^2}} = \arcsin\frac{1}{2} = \frac{\pi}{6} \xrightarrow[n \to \infty]{} \frac{\pi}{6}$

As $\frac{\pi}{2} \neq \frac{\pi}{6}$, applying Heine's theorem, it follows that $\lim_{(x,y)\to(1,0)} f(x,y)$ doesn't exist. Thus, function f is not continuous at (1,0).

CALCULUS HANDOUT 8 FUNCTIONS OF SEVERAL VARIABLES. LIMITS AND CONTINUITY - exercises

1. Study if the following functions have limits at the given points:

1.
$$f(x, y) = 3x^2 - 4xy + 5y^2$$
 at $(1, -2)$
2. $f(x, y) = x^2y^3 - 4y^2$ at $(3, 2)$
3. $f(x, y) = e^{\sqrt{2x-y}}$ at $(3, 2)$
4. $f(x, y) = e^{-xy}$ at $(1, -1)$
5. $f(x, y) = \frac{x + y}{1 + xy}$ at $(0, 0)$
6. $f(x, y) = \frac{x^2y + xy^2}{x^2 - y^2}$ at $(2, -1)$
7. $f(x, y) = \frac{\cos(x^2 + y^2)}{1 - x^2 - y^2}$ at $(0, 0)$
8. $f(x, y, z) = \sqrt{xy} \tan \frac{3\pi z}{4}$ at $(2, 8, 1)$
9. $f(x, y) = \frac{4 - xy}{4 + xy}$ at $(2, -2)$
10. $f(x, y) = \frac{\sin(xy)}{x}$ at $(0, 0)$ and $(0, 2)$
11. $f(x, y) = \frac{\sin(xy)}{x}$ at $(0, 0)$ and $(0, 2)$
12. $f(x, y) = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$ at $(0, 0)$
13. $f(x, y) = (x^2 + y^2) \sin \frac{1}{xy}$ at $(0, 0)$
14. $f(x, y) = \frac{x^2y^2}{\sqrt{x^2 + y^2}}$ at $(0, 0)$
15. $f(x, y) = \frac{x^3 - y^3}{\sqrt{x^2 + y^2}}$ at $(0, 0)$
16. $f(x, y) = \frac{x^4 - 4y^2}{x^2 + 2y^2}$ at $(0, 0)$
17. $f(x, y) = \frac{x^4 - 4y^2}{x^2 + 2y^2}$ at $(0, 0)$
18. $f(x, y) = \frac{y^2 \sin^2 x}{x^4 + y^4}$ at $(0, 0)$
19. $f(x, y) = \frac{x^4 + y^4}{(x^2 + y^2)^{3/2}}$ at $(0, 0)$

20.
$$f(x,y) = \frac{x^2 + y^2}{|x| + |y|}$$
 at $(0,0)$
21. $f(x,y) = \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}}$ at $(0,0)$
22. $f(x,y) = \frac{2x^2 - 3y^2}{x^2 + y^2}$ at $(0,0)$
23. $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ at $(0,0)$
24. $f(x,y) = \frac{x^4 - y^4}{x^4 + x^2y^2 + y^4}$ at $(0,0)$
25. $f(x,y,z) = \frac{x^2 + y^2 - z^2}{x^2 + y^2 + z^2}$ at $(0,0,0)$
26. $f(x,y) = \frac{e^{xy} - 1}{x^2 + y^2}$ at $(0,0)$
27. $f(x,y) = \frac{2x^2y}{x^2 + y^2}$ at $(0,0)$
28. $f(x,y) = \frac{2x^2y}{x^4 + y^2}$ at $(0,0)$
29. $f(x,y) = \frac{xy^2 + \sin(x^3 + y^5)}{x^2 + y^4}$ at $(0,0)$
30. $f(x,y) = \frac{xy^2 \cos y}{\sqrt{x^2 + y^2}}$ at $(0,0)$
31. $f(x,y) = \frac{xy^2 \cos y}{\sqrt{x^2 + y^2}}$ at $(0,0)$
32. $f(x,y) = \frac{xy^4}{\sqrt{x^2 + y^2} + 1 - 1}$ at $(0,0)$
33. $f(x,y) = \frac{xy^4}{x^2 + y^8}$ at $(0,0)$
34. $f(x,y) = \frac{x^3 - y^3}{x^2 + xy + y^2}$ at $(1,0)$
35. $f(x,y) = \frac{x^4}{x^2 + y^4}$ at $(0,0)$
36. $f(x,y) = \frac{xy^4}{x^4 + y^4}$ at $(0,0)$

2. Discuss the continuity of the following functions:

1.
$$f(x,y) = (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}$$
 if $(x,y) \neq (0,0)$ and $f(0,0) = 0$
2. $f(x,y) = \frac{\sin xy}{xy}$ if $xy \neq 0$ and $f(x,y) = 1$ if $xy = 0$
3. $f(x,y) = \frac{4xy(x^2 - y^2)}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and $f(0,0) = 0$
4. $f(x,y) = \frac{x^2(1 - \cos(xy))}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and $f(0,0) = 0$
5. $f(x,y) = \frac{x^2y^3}{2x^2 + y^2}$ if $(x,y) \neq (0,0)$ and $f(0,0) = 0$
6. $f(x,y) = \frac{xy}{x^2 + xy + y^2}$ if $(x,y) \neq (0,0)$ and $f(0,0) = 0$