THE VECTOR SPACE \mathbb{R}^{n}

$\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{1}, i=1,2, \ldots, n\right\}$. The elements of \mathbb{R}^{n} are called vectors.
\mathbb{R}^{n} is a n-dimensional vector space with respect to the sum and the scalar product defined by:
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
$k\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(k x_{1}, k x_{2}, \ldots, k x_{n}\right)$
For $x \in \mathbb{R}^{n}$ the norm (or length) of x is defined by $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$.
The distance between x and $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is $\|x-a\|$.
A neighborhood of $a \in \mathbb{R}^{n}$ is a set $V \subset \mathbb{R}^{n}$ which contains a hypersphere $S_{r}(a)$ centered in a, $S_{r}(a)=\left\{x \in \mathbb{R}^{n} \mid\|x-a\|<r\right\}, r>0$.

FUNCTIONS OF SEVERAL VARIABLES

A real valued function of n variables associates to every vector $x \in A \subset \mathbb{R}^{n}$ a unique real number. Formally, $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ is given by $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A \mapsto f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}$.
A vector valued function of n variables associates to every vector $x \in A \subset \mathbb{R}^{n}$ a unique vector $f(x)$ from \mathbb{R}^{m}. Formally, $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by
$x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A \mapsto f(x)=\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \in \mathbb{R}^{m}$
The functions $f_{i}: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}, i=\overline{1, m}$, are called scalar components of the vector function f.

SEQUENCES IN \mathbb{R}^{n}

A sequence $\left(x_{k}\right)$ of vectors of \mathbb{R}^{n} is a function whose domain is \mathbb{N} and whose values belong to \mathbb{R}^{n}.
A vector $x \in \mathbb{R}^{n}$ is said to be the limit of the sequence $\left(x_{k}\right)$ if for any $\varepsilon>0$ there exists $N=N(\varepsilon)>0$ such that for any $k>N$ we have $\left\|x_{k}-x\right\|<\varepsilon$. In this case we write $\lim _{k \rightarrow \infty} x_{k}=x$.

Properties:

- If the limit of the sequence $\left(x_{k}\right)$ exists, then it is unique.
- If a sequence $\left(x_{k}\right)$ converges to x, then the sequence is bounded: $\exists M>0$ s.t. $\left\|x_{k}\right\|<M, \forall k \in \mathbb{N}$.
- If a sequence $\left(x_{k}\right)$ converges to x, then any subsequence $\left(x_{k_{l}}\right)$ of the sequence (x_{k}) converges to x.
- A sequence $\left(x_{k}\right), x_{k}=\left(x_{1 k}, x_{2 k}, \ldots, x_{n k}\right) \in \mathbb{R}^{n}$ converges to $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ if and only if the sequence ($x_{i k}$) converges to x_{i} for any $i=1,2, \ldots, n$.
- Bolzano-Weierstrass: any bounded sequence $\left(x_{k}\right)$ of points of \mathbb{R}^{n} contains a convergent subsequence.
- Cauchy's criterion for convergence: A sequence $\left(x_{k}\right) \subset \mathbb{R}^{n}$ converges if and only if for any $\varepsilon>0$ there exists N_{ε} such that for $p, q>N_{\varepsilon}$ we have $\left\|x_{p}-x_{q}\right\|<\varepsilon$.

LIMITS

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ be a real valued n variable function and $a \in A^{\prime}$ (i.e., for any neighborhood V of a, one has $V \backslash\{a\} \cap A \neq \emptyset)$. The real number L is called the limit of $f(x)$ as x tends to a if for any $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that if $0<\|x-a\|<\delta$ then $|f(x)-L|<\varepsilon$. We write $\lim _{x \rightarrow a} f(x)=L$.
Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector valued function of n variables and $a \in A^{\prime}$. The vector $L \in \mathbb{R}^{m}$ is called the limit of $f(x)$ as x tends to a, if for any $\varepsilon>0$, there exists $\delta>0$ such that if $0<\|x-a\|<\delta$ then $\|f(x)-L\|<\varepsilon$. We write $L=\lim _{x \rightarrow a} f(x)$.
! If $f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$ and $L=\left(L_{1}, \ldots, L_{m}\right)$, then $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a} f_{i}(x)=L_{i}$ for any $i=\overline{1, m}$.
! same limit laws as for functions of one real variable!

Heine's criterion for the limit:

The function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has a limit as x approaches a if and only if for any sequence $\left(x_{k}\right)$, $x_{k} \in A$, $x_{k} \neq a$, and $x_{k} \rightarrow a$ as $k \rightarrow \infty$, the sequence $\left(f\left(x_{k}\right)\right)$ converges.
Cauchy-Bolzano's criterion for the limit:
The function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has a limit as $x \rightarrow a$ if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that if $0<\left\|x^{\prime}-a\right\|<\delta$ and $0<\left\|x^{\prime \prime}-a\right\|<\delta$ then $\left\|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right\|<\varepsilon$.

CONTINUITY

A function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $a \in A$ if $\lim _{x \rightarrow a} f(x)=f(a)$.

Rules for continuity:

- If the real valued functions of n variables f and g are continuous at a then so are $f+g, f \cdot g$ and $\frac{1}{f}$.
- If $f: A \subset \mathbb{R}^{n} \rightarrow B \subset \mathbb{R}^{m}$ is continuous at $a \in A$ and $g: B \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is continuous at $f(a)=b \in \mathbb{R}^{m}$, then the composite function $g \circ f: A \rightarrow \mathbb{R}^{p}$ is continuous at a.

Continuity of the scalar components:

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ and $a \in A$. The function f is continuous at $a \in A$ if and only if the scalar components $f_{i}, i=1,2, \ldots, m$ are continuous at a.
Heine's criterion for continuity:
The function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $a \in A$ if and only if for any sequence $\left(x_{k}\right) \subset A$ which converges to a, the sequence $\left(f\left(x_{k}\right)\right)$ converges to $f(a)$.
Cauchy-Bolzano's criterion for continuity:
The function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $a \in A$ if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that if $\left\|x^{\prime}-a\right\|<\delta$ and $\left\|x^{\prime \prime}-a\right\|<\delta$ then $\left\|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right\|<\varepsilon$.
The boundedness property:
If $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous on the compact set A, then the set $f(A)$ is bounded and there exists $a \in A$ such that $\|f(a)\|=\sup \|f(A)\|$.
Uniform continuity:
A function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ is uniformly continuous (on A) if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that for $x^{\prime}, x^{\prime \prime} \in A$ we have that if $\left\|x^{\prime}-x^{\prime \prime}\right\|<\delta$ then $\left\|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right\|<\varepsilon$.

CALCULUS HANDOUT 8

FUNCTIONS OF SEVERAL VARIABLES. LIMITS AND CONTINUITY - examples

Ex. 1 We study if the following functions have limits at the given points::
a. $f(x, y)=5 x^{2}-2 x y+y^{2}-6$ at $(1,2)$
b. $f(x, y)=\frac{x^{2}-y^{2}}{x+y}$ at $(0,0)$
c. $f(x, y)=\left(x^{2}+y^{2}\right) \cos \frac{1}{x+y}$ at $(0,0)$
d. $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ at $(0,0)$

Solution:
a. $f(x, y)=5 x^{2}-2 x y+y^{2}-6$ at $(1,2)$
$\lim _{(x, y) \rightarrow(1,2)} f(x, y)=\lim _{(x, y) \rightarrow(1,2)}\left(5 x^{2}-2 x y+y^{2}-6\right)=5 \cdot 1^{2}-2 \cdot 1 \cdot 2+2^{2}-6=5-4+4-6=-1$
b. $f(x, y)=\frac{x^{2}-y^{2}}{x+y}$ at $(0,0)$
$\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x+y}=\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)(x+y)}{x+y}=\lim _{(x, y) \rightarrow(0,0)}(x-y)=0-0=0$
c. $f(x, y)=\left(x^{2}+y^{2}\right) \cos \frac{1}{x+y}$ în $(0,0)$
$-1 \leq \cos \frac{1}{x+y} \leq 1 \left\lvert\, \cdot\left(x^{2}+y^{2}\right) \geq 0 \Leftrightarrow-\left(x^{2}+y^{2}\right) \leq\left(x^{2}+y^{2}\right) \cos \frac{1}{x+y} \leq x^{2}+y^{2}\right.$
$\lim _{(x, y) \rightarrow(0,0)}-\left(x^{2}+y^{2}\right)=\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right)=0^{2}+0^{2}=0$
Applying the squeeze rule, it follows that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
d. $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ în $(0,0)$

We compute the limits of the functions along the lines $y=0$ and $y=x$.
$y=0 \Rightarrow f(x, 0)=\frac{x \cdot 0}{x^{2}}=0 \xrightarrow[x \rightarrow 0]{\longrightarrow} 0$
$y=x \Rightarrow f(x, x)=\frac{x \cdot x}{x^{2}+x^{2}}=\frac{x^{2}}{2 x^{2}}=\frac{1}{2} \underset{x \rightarrow 0}{ } \frac{1}{2}$
As we obtained two different limits along two different lines, it results that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist.
Ex. 2 We study the continuity of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=\left\{\begin{array}{ll}\arcsin \frac{y^{2}}{(x-1)^{2}+y^{2}} & ,(x, y) \neq(1,0) \\ 0 & ,(x, y)=(1,0)\end{array}\right.$.
Solution: We study the continuity of the function f at the point $(1,0)$.
As $f(1,0)=0$, we compute, if it exists, $\lim _{(x, y) \rightarrow(1,0)} f(x, y)$.
Consider the sequences $\left(1, \frac{1}{n}\right) \underset{n \rightarrow \infty}{ }(1,0)$ and $\left(1+\frac{1}{n}, \frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{ }(1,0)$.
Compute $f\left(1, \frac{1}{n}\right)$ and $f\left(1+\frac{1}{n}, \frac{1}{n}\right)$.
$f\left(1, \frac{1}{n}\right)=\arcsin \frac{\frac{1}{n^{2}}}{(1-1)^{2}+\frac{1}{n^{2}}}=\arcsin 1=\frac{\pi}{2} \xrightarrow[n \rightarrow \infty]{ } \frac{\pi}{2}$
$f\left(1+\frac{1}{n}, \frac{1}{n}\right)=\arcsin \frac{\frac{1}{n^{2}}}{\left(1+\frac{1}{n}-1\right)^{2}+\frac{1}{n^{2}}}=\arcsin \frac{\frac{1}{n^{2}}}{\frac{2}{n^{2}}}=\arcsin \frac{1}{2}=\frac{\pi}{6} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \frac{\pi}{6}$
As $\frac{\pi}{2} \neq \frac{\pi}{6}$, applying Heine's theorem, it follows that $\lim _{(x, y) \rightarrow(1,0)} f(x, y)$ doesn't exist.
Thus, function f is not continuous at $(1,0)$.

CALCULUS HANDOUT 8

FUNCTIONS OF SEVERAL VARIABLES. LIMITS AND CONTINUITY - exercises

1. Study if the following functions have limits at the given points:
2. $f(x, y)=3 x^{2}-4 x y+5 y^{2}$ at $(1,-2)$
3. $f(x, y)=x^{2} y^{3}-4 y^{2}$ at $(3,2)$
4. $f(x, y)=e^{\sqrt{2 x-y}}$ at $(3,2)$
5. $f(x, y)=e^{-x y}$ at $(1,-1)$
6. $f(x, y)=\frac{x+y}{1+x y}$ at $(0,0)$
7. $f(x, y)=\frac{x^{2} y+x y^{2}}{x^{2}-y^{2}}$ at $(2,-1)$
8. $f(x, y)=\frac{\cos \left(x^{2}+y^{2}\right)}{1-x^{2}-y^{2}}$ at $(0,0)$
9. $f(x, y, z)=\sqrt{x y} \tan \frac{3 \pi z}{4}$ at $(2,8,1)$
10. $f(x, y)=\frac{4-x y}{4+x y}$ at $(2,-2)$
11. $f(x, y)=\frac{\operatorname{ctg}\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$ at $(0,0)$
12. $f(x, y)=\frac{\sin (x y)}{x}$ at $(0,0)$ and $(0,2)$
13. $f(x, y)=\frac{\sin \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}$ at $(0,0)$
14. $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}$ at $(0,0)$
15. $f(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}}$ at $(0,0)$
16. $f(x, y)=\frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}$ at $(0,0)$
17. $f(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}}$ at $(0,0)$
18. $f(x, y)=\frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$ at $(0,0)$
19. $f(x, y)=\frac{y^{2} \sin ^{2} x}{x^{4}+y^{4}}$ at $(0,0)$
20. $f(x, y)=\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}}$ at $(0,0)$
21. $f(x, y)=\frac{x^{2}+y^{2}}{|x|+|y|}$ at $(0,0)$
22. $f(x, y)=\frac{\sin \left(x^{2}\right)+\sin \left(y^{2}\right)}{\sqrt{x^{2}+y^{2}}}$ at $(0,0)$
23. $f(x, y)=\frac{2 x^{2}-3 y^{2}}{x^{2}+y^{2}}$ at $(0,0)$
24. $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ at $(0,0)$
25. $f(x, y)=\frac{x^{4}-y^{4}}{x^{4}+x^{2} y^{2}+y^{4}}$ at $(0,0)$
26. $f(x, y, z)=\frac{x^{2}+y^{2}-z^{2}}{x^{2}+y^{2}+z^{2}}$ at $(0,0,0)$
27. $f(x, y)=\frac{e^{x y}-1}{x^{2}+y^{2}}$ at $(0,0)$
28. $f(x, y)=\frac{x y^{2}}{x^{2}+y^{6}}$ at $(0,0)$
29. $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ at $(0,0)$
30. $f(x, y)=\frac{x y^{2}+\sin \left(x^{3}+y^{5}\right)}{x^{2}+y^{4}}$ at $(0,0)$
31. $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$ at $(0,0)$
32. $f(x, y)=\frac{x y^{2} \cos y}{x^{2}+y^{4}}$ at $(0,0)$
33. $f(x, y)=\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1}$ at $(0,0)$
34. $f(x, y)=\frac{x y^{4}}{x^{2}+y^{8}}$ at $(0,0)$
35. $f(x, y)=\frac{x y-y}{(x-1)^{2}+y^{2}}$ at $(1,0)$
36. $f(x, y)=\frac{x^{3}-y^{3}}{x^{2}+x y+y^{2}}$ at $(0,0)$
37. $f(x, y)=\frac{x y^{4}}{x^{4}+y^{4}}$ at $(0,0)$
38. Discuss the continuity of the following functions:
39. $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
40. $f(x, y)=\frac{\sin x y}{x y}$ if $x y \neq 0$ and $f(x, y)=1$ if $x y=0$
41. $f(x, y)=\frac{4 x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
42. $f(x, y)=\frac{x^{2}(1-\cos (x y))}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
43. $f(x, y)=\frac{x^{2} y^{3}}{2 x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
44. $f(x, y)=\frac{x y}{x^{2}+x y+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
