
CALCULUS HANDOUT 5 - POWER SERIES. TAYLOR POLYNOMIALS : definitions

POWER SERIES

A series of functions of the form

∞∑
n=0

an · xn is called power series.

The Abel-Cauchy-Hadamard theorem: the set of convergence of a power series:

Considering ω = lim
n→∞

n
√
|an| ∈ [0,+∞] and R =

{
1

ω
, if ω 6= 0

+∞, if ω = 0
we have:

• The power series
∑∞

n=0 an ·xn is absolutely convergent for |x| < R. (R called radius of convergence)
• The power series diverges

∑∞
n=0 an · xn for any x with |x| > R.

• For any r ∈ (0, R) the power series is uniformly convergent on the closed interval [−r, r].

! The ACH theorem does not provide any information about the convergence at x = ±R. Convergence
at these points needs to be studied using convergence tests for series of real numbers.

Continuity of the sum of a power series:
The sum of the power series

∑∞
n=0 an · xn is a continuous function on (−R,R).

Arithmetics of power series:

Let

∞∑
n=0

an · xn and

∞∑
n=0

bn · xn be power series with radii of convergence R1 and R2, where 0 ≤ R1 ≤ R2.

Then the following power series have radii of convergence larger (or equal) then R1:

• sum

∞∑
n=0

(an+bn)·xn • scalar product

∞∑
n=0

k ·an ·xn • Cauchy product

∞∑
n=0

cn ·xn, cn =

∞∑
k=0

an ·bn−k

More, if

∞∑
n=0

an · xn = f(x) and

∞∑
n=0

bn · xn = g(x), then:

•
∞∑

n=0

(an + bn) · xn = f(x) + g(x) •
∞∑

n=0

(k · an) · xn = k · f(x) •
∞∑

n=0

cn · xn = f(x) · g(x).

Differentiability of the sum of a power series:

Consider a power series

∞∑
n=0

anx
n with radius of convergence R > 0 and sum f(x).

• f is k-times differentiable and f (k)(x) =

∞∑
n=k

an · n · (n− 1) · . . . · (n− k + 1) · xn−k for |x| < R.

• For x = 0, we obtain ak =
f (k)(0)

k!
for k ∈ N. Hence: f(x) =

∞∑
n=0

f (n)(0)

n!
· xn, for |x| < R.

• For small values of x, f(x) ' f(0) +
f ′(0)

1!
x +

f (2)(0)

2!
x2 + . . . +

f (N)(0)

N !
xN for any value of N .

TAYLOR POLYNOMIALS

Let f be an n-times continuously differentiable function on an open interval containing the point a.

The n-th degree Taylor polynomial of the function f at the point a is defined by:

Tn,af(x) = f(a) +
f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 + . . . +

f (n)(a)

n!
(x− a)n

? Can we approximate the value f(x) by the value of the Taylor polynomial Tn,af(x)?

The first remainder theorem:
Let f be (n + 1) times continuously differentiable on an open interval containing the points a and x.
Then the difference between f and Tn,af(x) is given by

f(x)− Tn,af(x) =
(x− a)n+1

(n + 1)!
f (n+1)(c)

for some c between a and x.
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The error in approximating f(x) by the value of the polynomial Tn,af(x) is the remainder term:

Rn,af(x) =
(x− a)n+1

(n + 1)!
f (n+1)(c)

where c lies between a and x. The approximation is good when x is close to a.

The formula f(x) = Tn,af(x) + Rn,af(x) is called Taylor’s formula (of degree n).

Taylor series representation theorem:
Suppose that the function f has derivatives of all orders on some interval containing the point a and also
that lim

n→∞
Rn,a(x) = 0 for each x in that interval. Then for any x in that interval, we have:

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

When a = 0, the above series are called MacLaurin series.

CALCULUS HANDOUT 5 - POWER SERIES. TAYLOR POLYNOMIALS : examples

Ex.1 We determine the interval of convergence of the following series:

a)
∞∑

n=0

(−2)nxn

√
n + 3

; b)
∞∑

n=0

(x− 5)n

n2
.

Solution: a) Method I: Ratio test.

Denote an =
(−2)nxn

√
n + 3

. We compute

l = lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (−2)n+1xn+1

√
n + 4

·
√
n + 3

(−2)nxn

∣∣∣ = 2|x| lim
n→∞

√
n ·
√

1 +
3

n

√
n ·
√

1 +
4

n

= 2|x|

Applying the ratio test, it follows that
∞∑

n=0
an is convergent for 2|x| < 1, which is equivalent to |x| < 1

2
,

so x ∈
(
−1

2
,

1

2

)
and it is divergent for |x| > 1

2
, so for x ∈

(
−∞,−1

2

)
∪
(

1

2
,+∞

)
.

We study the convergence of
∞∑

n=0
an for x = ±1

2
.

If x = −1

2
, then

∞∑
n=0

an =
∞∑

n=0

1√
n + 3

is divergent (apply the integral test or comparison test II).

If x =
1

2
, then

∞∑
n=0

an =
∞∑

n=0

(−1)n√
n + 3

is convergent (apply the Liebniz test for alternating series).

Method II: Apply the Abel-Cauchy-Hadamard theorem

Denote bn =
(−2)n√
n + 3

. We compute

ω = lim
n→∞

n
√
|bn| = lim

n→∞

∣∣∣bn+1

bn

∣∣∣ = lim
n→∞

∣∣∣ (−2)n+1

√
n + 4

·
√
n + 3

(−2)n

∣∣∣ = 2 lim
n→∞

√
n
(
1 + 3

n

)
n
(
1 + 4

n

) = 2

As ω = 2 6= 0, it follows that the radius of convergence of the power series is R =
1

ω
=

1

2
.

Therefore
∞∑

n=0
bnx

n is convergent if and only if |x| < 1

2
, and for x = ±1

2
we study the convergence of the

given power series separately (see Method I).

Thus,
∞∑

n=0

(−2)nxn

√
n + 3

if convergent for x ∈
(
−1

2
,

1

2

]
.
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b) Denote an =
(x− 5)n

n2
. We compute

l = lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

∣∣∣ (x− 5)n+1

(n + 1)2
· n2

(x− 5)n

∣∣∣ = |x− 5| lim
n→∞

n2

(n + 1)2
= |x− 5|

Applying the ratio test, it follows that
∞∑

n=0
an is convergent if and only if l < 1.

l < 1⇔ |x− 5| < 1⇔ −1 < x− 5 < 1 |+ 5⇔ 4 < x < 6

If x = 4, then
∞∑

n=0
an =

∞∑
n=0

(−1)n

n2
is convergent (apply the Liebniz test for alternating series).

If x = 6, then
∞∑

n=0
an =

∞∑
n=0

1

n2
is convergent (harmonic series for p = 2 > 1).

Therefore, the interval of convergence for the power series is [4, 6].

Ex.2 Consider the function f : (−1,+∞)→ R, f(x) = ln(x + 1).

a) We determine a representation of the function f in power series and its radius of convergence.

b) We find Taylor’s formula of order n for the functions f at a = 0.

c) Using Taylor’s formula from b), approximate ln(1.1) accurate to 3 decimal places.

d) Using Taylor’s formula from b), approximate the integral
0.1∫
0

ln(x + 1)

x
dx accurate to 4 decimal places.

Solution: a) We have
1

x + 1
=

1

1− (−x)
= 1− x + x2 − x3 + ..., |x| < 1.

(ln(x + 1))′ =
1

x + 1

∣∣∣ ∫ ()dx

⇒ ln(x + 1) =
∫ 1

x + 1
dx =

∫
(1− x + x2 − x3 + ...)dx = x− x2

2
+

x3

3
− x4

4
+ ... + C

As ln(1) = C, it results that C = 0.

Then ln(x + 1) =
∞∑

n=0
(−1)n−1 · x

n

n
, and the radius of convergence is R = 1. (check!)

b) We write Taylor’s formula of order n for the function f at a = 0:

Tn,0f(x) = f(0) +
f ′(0)

1!
(x− 0) +

f ′′(0)

2!
(x− 0)2 + ... +

f (n)(0)

n!
(x− 0)n

⇔ Tn,0f(x) = f(0) +
f ′(0)

1!
· x +

f ′′(0)

2!
· x2 + ... +

f (n)(0)

n!
· xn

f(0) = ln(0 + 1) = ln 1 = 0

f ′(x) = (ln(x + 1))′ =
1

x + 1
⇒ f ′(0) =

1

0 + 1
= 1

f ′′(x) =

(
1

x + 1

)′
= − 1

(x + 1)2
⇒ f ′′(0) = − 1

(0 + 1)2
= −1

f ′′′(x) =

(
− 1

(x + 1)2

)′
=

2

(x + 1)3
⇒ f ′′′(0) =

2

(0 + 1)3
= 2

f (4)(x) =

(
2

(x + 1)3

)′
= − 6

(x + 1)4
⇒ f (4)(0) = − 6

(0 + 1)4
= −6

f (5)(x) =

(
− 6

(x + 1)4

)′
=

24

(x + 1)5
⇒ f (5)(0) =

24

(0 + 1)5
= 24

...

f (n)(x) = (−1)n−1 · (n− 1)!

(x + 1)n
⇒ f (n)(0) = (−1)n−1 · (n− 1)!

⇒ Tn,0f(x) = 0 +
1

1!
· x− 1

2!
· x2 +

2

3!
· x3 − 6

4!
· x4 +

24

5!
· x5 − ... +

(−1)n−1(n− 1)!

n!
· xn

⇔ Tn,0f(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− ... +

(−1)n−1 · xn

n
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⇔ Tn,0f(x) =
n∑

k=1

(−1)k−1 · x
k

k

The Taylor remainder is Rn,0f(x) =
xn+1

(n + 1)!
· (−1)n · n! =

(−1)n · xn+1

n + 1
−−−−→
n→∞

0 for |x| < 1.

Then, the Taylor series (MacLaurin) associated to the functions is f(x) = ln(x + 1) =
∞∑

n=0
(−1)n−1 · x

n

n
.

(we have obtained the same power series as at a))

c) We can easily see that ln(1.1) = ln(0.1 + 1) = f(0.1).

As the accuracy is 3 decimal places, we have that error ≤ 10−3.

error = |f(x)− Tn,0f(x)| = |Rn,0f(c)| =
∣∣∣ xn+1

(n + 1)!
· f (n+1)(c)

∣∣∣ =
1

n + 1

(
x

c + 1

)n+1

error = |f(0.1)− Tn,0f(0.1)| = 0.1n+1

n + 1
· 1

(c + 1)n+1
≤ 10−(n+1)

n + 1
(as c ∈ (0, 0.1))

The smallest n ∈ N such that
10−(n+1)

n + 1
≤ 10−3 is n = 2 (check!). We obtain

f(0.1) = ln(1.1) ≈ T2,0f(0.1) =

(
x− x2

2

) ∣∣∣
x=0.1

=
1

10
− 1

200
=

20− 1

200
=

19

200
= 0.095

d) Denote I =
0.1∫
0

ln(x + 1)

x
dx ≈

0.1∫
0

Tn,0f(x)

x
dx.

As the integral has to be approximated with an accuracy of 4 decimal places, we have that error ≤ 10−4.

error =
∣∣∣I − 0.1∫

0

Tn,0f(x)

x
dx
∣∣∣ =

∣∣∣ 0.1∫
0

ln(x + 1)

x
dx−

0.1∫
0

Tn,0f(x)

x
dx
∣∣∣ =

∣∣∣ 0.1∫
0

1

x
(ln(x + 1)− Tn,0f(x)) dx

∣∣∣
=
∣∣∣ 0.1∫
0

Rn,0f(c)

x
dx
∣∣∣ =

∣∣∣ 0.1∫
0

1

x
· x

n+1

n + 1
· 1

(c + 1)n+1
dx
∣∣∣ ≤ 0.1∫

0

xn

n + 1
· 1

(c + 1)n+1
dx ≤

0.1∫
0

xn

n + 1
dx =

=
1

n + 1

0.1∫
0

xndx =
1

n + 1
· x

n+1

n + 1

∣∣∣0.1
0

=
10−(n+1)

(n + 1)2

The smallest n ∈ N such that
10−(n+1)

(n + 1)2
≤ 10−4 is n = 3 (check!). Then

I ≈
0.1∫
0

T3,0f(x)

x
dx =

0.1∫
0

x− x2

2
+

x3

3
x

dx =

0.1∫
0

dx− 1

2

0.1∫
0

xdx +
1

3

0.1∫
0

x2dx = x
∣∣∣0.1
0
− 1

2
· x

2

2

∣∣∣0.1
0

+
1

3
· x

3

3

∣∣∣0.1
0

=

= 0.1− 1

4
· (0.1)2 +

1

9
· (0.1)3 = 0.0976

Ex.3 We compute lim
x→0

x− ln(x + 1)

x2
using Taylor series.

Solution: Using example 2a) we have that ln(x + 1) = x− x2

2
+

x3

3
− x4

4
+ ... .

It follows that

lim
x→0

x− ln(x + 1)

x2
= lim

x→0

x−
(
x− x2

2
+

x3

3
− x4

4
+ ...

)
x2

= lim
x→0

x− x +
x2

2
− x3

3
+

x4

4
− ...

x2

= lim
x→0

(
1

2
− x

3
+

x2

4
− ...

)
=

1

2

Thus lim
x→0

x− ln(x + 1)

x2
=

1

2
. (Check, using l’Hospital’s rule!)
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CALCULUS HANDOUT 5 - POWER SERIES. TAYLOR POLYNOMIALS : exercises

1. Find the interval of convergence of the following series:

1.

∞∑
n=1

xn√
n

2.

∞∑
n=1

(−4)nxn√
2n + 1

3.

∞∑
n=1

lnnxn

3n

4.

∞∑
n=1

n(−1)nxn

5.

∞∑
n=0

an
2

xn, a > 0

6.

∞∑
n=1

3n + (−2)n

n
(x + 1)n

7.

∞∑
n=0

(−1)n√
1 + n2

(
x√
3

)n

8.

∞∑
n=1

n!xn

9.

∞∑
n=1

n!

2n
(x− 5)n

10.

∞∑
n=1

n!

nn
xn

11.

∞∑
n=1

n!

nn
(x + 3)n

12.

∞∑
n=1

(−1)nnxn

2n(n + 1)3

13.

∞∑
n=0

xn

an + bn
, a, b > 0

14.

∞∑
n=1

(
n + 3

2n + 1

)n lnn

xn

15.

∞∑
n=1

(−1)nxn

nn

16.

∞∑
n=1

(−1)n

n10n
(x− 2)n

17.

∞∑
n=1

(2n)!

n!
xn

18.

∞∑
n=1

n!xn

(a + 1)(a + 2) . . . (a + n)
, a > 0

19.

∞∑
n=2

√
n! xn

(2 +
√

2)(2 +
√

3) . . . (2 +
√
n)

20.

∞∑
n=1

[
2n(n!)2

(2n + 1)!

]3(
x− 1

2

)n
21.

∞∑
n=1

(
1 +

1

2
+ . . . +

1

n

)
xn

2. Find Taylor’s formula for the following functions. If not stated otherwise, a = 0 and n is arbitrary.

1. f(x) = 1
1−x

2. f(x) =
1

x
, a = −3

3. f(x) = ex

4. f(x) = cosx

5. f(x) = sinx

6. f(x) = arctanx

7. f(x) = sin 2x

8. f(x) = e−x

9. f(x) = sin2 x

10. f(x) = sinx2

11. f(x) =
√
x + 1, n = 3

12. f(x) = tanx, n = 3

13. f(x) = arcsinx, n = 2

14. f(x) = x2 − 2x + 5, n = 3

15. f(x) = x3/2, a = 1, n = 4

16. f(x) = sinx, a = π
2

, n = 4

17. f(x) =
√
x, a = 100, n = 3

18. f(x) = (x− 4)−2, a = 5, n = 5

19. f(x) = tanx, a = π
4

, n = 4

20. f(x) = ex sinx, n = 4

3. For the first 10 functions given in ex. 2, find the Taylor series representation and its interval of convergence.

4. Use Taylor’s formula to approximate the indicated number accurate to three decimal places.

1. 3
√

65 2. sin(0.5) 3. arctan(0.5) 4. e−0.2 5. cos(0.3)

5. Use power series to evaluate the given limits:

1. lim
x→0

1 + x− ex

x2
2. lim

x→0

1− cosx

x(ex − 1)
3. lim

x→0

x− sinx

x3 cosx
4. lim

x→1

x2

x− 1
5. lim

x→0

ex − e−x − 2x

x− arctanx

Extra exercises

6. Use Taylor’s formula to approximate the given integrals accurate to four decimal places.

1.

∫ 1

0

sinx

x
dx 2.

∫ 1

0

arctanx

x
dx 3.

∫ 1

0

cosx

x
dx 4.

∫ 1
2

0

1− e−x

x
5.

∫ 1

0

sinx√
x

dx

7. Find the set of convergence and the sum of the series:

1.

∞∑
n=0

xn

n!

2.

∞∑
n=0

(−1)n
x2n+2

2n + 1

3.

∞∑
n=1

n

n + 1

(x
2

)n
4.

∞∑
n=1

n(n− 1)xn

5.

∞∑
n=1

n xn

6.

∞∑
n=1

xn

n(n + 1)

7.

∞∑
n=1

(n + 1)2

n(n + 2)
xn

8.

∞∑
n=1

(3n− 1)
(x

3

)n
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