SEQUENCES OF FUNCTIONS

A sequence of real valued functions defined on $A \subset \mathbb{R}$ is a function $F: \mathbb{N} \rightarrow\{f \mid f: A \rightarrow \mathbb{R}\}$.
We write $F(n)=f_{n}$ and the sequence of functions is denoted by $\left(f_{n}\right)$.
An element $a \in A$ is called point of convergence of the sequence $\left(f_{n}\right)$ if the sequence $\left(f_{n}(a)\right)$ converges. The set of all points of convergence is called the set of convergence of the sequence $\left(f_{n}\right)$.
A function $f: A \rightarrow \mathbb{R}$ is called the limit function of sequence $\left(f_{n}\right)$ if for any $x \in A$ and $\varepsilon>0$ there exists $N(x, \varepsilon)$ such that for $n>N(x, \varepsilon)$ we have $\left|f_{n}(x)-f(x)\right|<\varepsilon$. (we write $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ on A.)
The sequence $\left(f_{n}\right)$ is uniformly convergent on A to f if for any $\varepsilon>0$, there exists $N(\varepsilon)$ such that for $n>N(\varepsilon)$ and $x \in A$ we have $\left|f_{n}(x)-f(x)\right|<\varepsilon$. (we write $f_{n} \xrightarrow[n \rightarrow \infty]{u} f$.)

Criteria for uniform convergence:

- Cauchy's criterion: The sequence $\left(f_{n}\right)$, defined on A, converges uniformly to a function f defined on A if and only if for any $\varepsilon>0$ there exists $N(\varepsilon)$ such that, for any $n, m>N(\varepsilon)$ and any $x \in A$ we have: $\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon$.
- 2nd criterion: Let $\left(f_{n}\right)$ be a sequence of functions defined on A and $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$. If there exists a sequence $\left(a_{n}\right)$ of positive real numbers which converges to 0 , such that $\left|f_{n}(x)-f(x)\right| \leq a_{n}$, for any $n \in \mathbb{N}$ and any $x \in A$, then $f_{n} \xrightarrow[n \rightarrow \infty]{u} f$.

Continuity and uniform convergence:

Let $\left(f_{n}\right)$ be a sequence of functions defined on A which converges uniformly to $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$. If all the functions f_{n} are continuous at a point $a \in A$, then f is continuous at a.
A sequence of functions $\left(f_{n}\right)$ is called equally continuous functions A if for any $x \in A$ and $\varepsilon>0$ there exists $\delta=\delta(x, \varepsilon)>0$ such that if $x^{\prime} \in A$ and $\left|x^{\prime}-x\right|<\delta$ then $\left|f_{n}\left(x^{\prime}\right)-f_{n}(x)\right|<\varepsilon$ for any $n \in N$.
A sequence of functions $\left(f_{n}\right)$ is called equally uniformly continuous on A if for any $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that if $x^{\prime}, x^{\prime \prime} \in A$ and $\left|x^{\prime}-x^{\prime \prime}\right|<\delta(\varepsilon)$ then $\left|f_{n}\left(x^{\prime}\right)-f_{n}\left(x^{\prime \prime}\right)\right|<\varepsilon$ for any $n \in N$.
A sequence of functions $\left(f_{n}\right)$ is called equally bounded on A, if there is $M>0$, such that $\left|f_{n}(x)\right|<M$ for any $n \in \mathbb{N}$ and $x \in A$.

Arzela-Ascoli Theorem:

Let $I=[a, b]$ be a closed interval and $\left(f_{n}\right)$ an equally continuous and equally bounded sequence of functions defined on I. Then $\left(f_{n}\right)$ contains a subsequence $\left(f_{n_{k}}\right)$ which is uniformly convergent on I.

SERIES OF FUNCTIONS

Let $A \subset \mathbb{R}$ and $\left(f_{n}\right)$ a sequence of functions defined on A.
We say that $\sum_{n=1}^{\infty} f_{n}$ is a convergent/divergent series of functions at the point $a \in A$, if the numerical series $\sum_{n=1}^{\infty} f_{n}(a)$ is convergent/divergent.
A point $a \in A$ is called point of convergence of the series of functions $\sum_{n=1}^{\infty} f_{n}$ if the series converges at a. The collection of all the points of convergence of the series is called the set of convergence of the series $\sum_{n=1}^{\infty} f_{n}$.
Let $\sum_{n=1}^{\infty} f_{n}$ be a series of functions defined on A, and S a function defined on $B \subset A$. The series $\sum_{n=1}^{\infty} f_{n}$ converges to S on B if for any $x \in B$ and any $\varepsilon>0$ there exists $N=N(x, \varepsilon)>0$ such that for any $n>N$ we have $\left|f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)-S(x)\right|<\varepsilon$.
If the number N is independent on x, then the series is uniformly convergent on B to S.
The series $\sum_{n=1}^{\infty} f_{n}$ converges absolutely on B if the series $\sum_{n=1}^{\infty}\left|f_{n}\right|$ converges on B.
! absolute convergence \Rightarrow convergence
Convergence criteria for series of functions:
The series of functions $\sum_{n=k+1}^{\infty} f_{n}$ is called the remainder of order k of the series $\sum_{n=1}^{\infty} f_{n}$.
1: The series $\sum_{n=1}^{\infty} f_{n}$ converges if and only if the remainder of any order k of the series converges.
2: The series $\sum_{n=1}^{\infty} f_{n}$ converges if and only if the sequence of the sums of remainders tends to 0 .
3 (Cauchy): The series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on A if and only if for any $\varepsilon>0$ there is $N=N(\varepsilon)$ such that for $n \geq N$ and $p \geq 1$ we have $\left|f_{n+1}(x)+f_{n+2}(x)+\cdots+f_{n+p}\right|<\varepsilon$ for any $x \in A$.
4: Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series of positive numbers. If $\left|f_{n}(x)\right| \leq a_{n}$ for $x \in A$ and $n \in \mathbb{N}$ then the series $\sum_{n=1}^{\infty} f_{n}$ is uniform convergent.

Ex. 1 Consider the sequence of functions $f_{n}(x)=x^{2 n}$ and the functions $f(x)=0, x \in A=\left[0, \frac{1}{3}\right]$ and $g(x)=\left\{\begin{array}{l}0, x \in[0,1) \\ 1, x=1\end{array}\right.$. We study if the sequence of functions $f_{n}(x)$ converges simply and/or uniformly to f on the set A and to g on the set $B=[0,1]$.
Solution: Let $x \in A=\left[0, \frac{1}{3}\right]$.
Then $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} x^{2 n}=0=f(x)$.
Therefore $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ on A. Moreover, we have that
$\left|f_{n}(x)-f(x)\right|=\left|x^{2 n}-0\right|=|x|^{2 n} \leq\left(\frac{1}{3}\right)^{2 n}=\frac{1}{3^{2 n}}\left(\right.$ as $\left.x \leq \frac{1}{3}\right)$
Denoting $a_{n}=\frac{1}{3^{2 n}}$, we can easily see that $a_{n} \xrightarrow[n \rightarrow \infty]{ } 0$. It follows that $f_{n} \xrightarrow[n \rightarrow \infty]{u} f$ on A.
Let $x \in B=[0,1]$. Then, $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} x^{2 n}=\left\{\begin{array}{l}0, x \in[0,1) \\ 1, x=1\end{array} \quad=g(x)\right.$.
It results that $f_{n} \xrightarrow[n \rightarrow \infty]{ } g$ pe B. We study the continuity of the function g at 1 .
$\lim _{\substack{x \rightarrow 1 \\ x<1}} f(x)=0 \neq 1=f(1)$
It follows that g is not continuous at 1 , therefore g is not continuous on $B=[0,1]$.
Thus, $f_{n} \xrightarrow[n \rightarrow \infty]{u} f$.
Ex. 2 For $n \geq 1$, consider the sequence of functions $f_{n}(x)=\frac{\cos ^{n} x}{n^{3}}, x \in \mathbb{R}$ and the series of functions $\sum_{n=1}^{\infty} f_{n}$. We study if $\sum_{n=1}^{\infty} f_{n}$ is uniformly convergent on \mathbb{R}.
Soluţie: We have that
$\left|\frac{\cos ^{n} x}{n^{3}}\right|=\frac{\left|\cos ^{n} x\right|}{\left|n^{3}\right|}=\frac{|\cos x|^{n}}{n^{3}} \leq \frac{1^{n}}{n^{3}}=\frac{1}{n^{3}}$
Denoting $a_{n}=\frac{1}{n^{3}}$, we can easily see that $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a convergent series, as it is harmonic with $p=3>1$.
It results that $\sum_{n=1}^{\infty} f_{n}$ is an uniformly convergent series of functions.
Ex. 3 Consider the sequence of functions $f_{n}(x)=\frac{(n x+1)^{2}}{2 n+3}$ and the series $\sum_{n=1}^{\infty} f_{n}$. We determine the set of convergence for the given series of functions.
Soluţie: Denote with C the set of convergence of the series of functions. If $n \neq 0$, we compute
$\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{(n x+1)^{2}}{2 n+3}=\lim _{n \rightarrow \infty} \frac{n^{2} x^{2}+2 n x+1}{2 n+3}=\lim _{n \rightarrow \infty} \frac{n^{2}\left(x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}}\right)}{n\left(2+\frac{3}{n}\right)}=+\infty \neq 0$
If follows that $\sum_{n=1}^{\infty} f_{n}$ is divergent, for any $x \neq 0$.
For $x=0$, we have that $\sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \frac{1}{2 n+3} \sim \sum_{n=1}^{\infty} \frac{1}{n}$, which is divergent, as it is a harmonic series with $p=1$. (we apply comparison test 2 , for example)
In conclusion, $\sum_{n=1}^{\infty} f_{n}$ is divergent, for any $x \in \mathbb{R}$, which is equivalent to $C=\varnothing$.

CALCULUS HANDOUT 4-SEQUENCES AND SERIES OF FUNCTIONS: exercises

1. Consider the sequence of functions $f_{n}(x)=x^{n}$, defined on $A=[0,1]$, and $f(x)=\left\{\begin{array}{ll}1 & \text { for } x=1 \\ 0 & \text { for } x \in[0,1)\end{array}\right.$. Show that the sequence $\left(f_{n}\right)$ is simply convergent to f, but does not converge uniformly to f.
2. Show that the sequence of functions $f_{n}(x)=\frac{\sin n x}{n}$, converges uniformly to $f(x)=0$ on $A=[0,2 \pi]$.
3. Consider the sequence of functions defined by $f_{n}(x)=\frac{x^{2}}{\left(1+x^{2}\right)^{n}}$ for $n \geq 0$ and the series $\sum_{n=0}^{\infty} f_{n}(x)$. Show that the set of convergence of this series is \mathbb{R} and the sum of series is $S(x)=\left\{\begin{array}{cl}1+x^{2} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{array}\right.$
4. For $n \geq 1$ consider f_{n} defined on \mathbb{R} as $f_{n}(x)=\frac{\sin ^{n} x}{n^{2}}$ and the series $\sum_{n=1}^{\infty} f_{n}$. Show that the series is absolutely convergent on \mathbb{R} and uniformly convergent on \mathbb{R}.
5. For $n \geq 1$ consider $f_{n}(x)=\cos ^{n} x$ and the series $\sum_{n=1}^{\infty} f_{n}$. Show that the set of convergence is $\mathbb{R} \backslash\{k \cdot \pi\}_{k \in \mathbb{Z}}$. and that the series is absolutely convergent on the set of convergence.
6. For $n \geq 1$ consider the functions $f_{n}(x)=\frac{e^{n \cdot|x|}}{n}$ and the series $\sum_{n=1}^{\infty} f_{n}$. Show that the set of convergence of the series is empty.
7. Study the convergence of the following series of functions:
8. $\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}\right)^{x}, x \in \mathbb{R}$
9. $\sum_{n=1}^{\infty}\left(1-\cos \frac{1}{n}\right)^{x}, x \in \mathbb{R}$
10. $\sum_{n=0}^{\infty} \frac{x}{x+n+1}, x \in[1,2]$
11. $\sum_{n=1}^{\infty} \frac{x}{n} \ln \frac{x}{n}, x \in[1,2]$
12. $\sum_{n=1}^{\infty} \frac{1}{x^{2}+n^{2}}, x \in \mathbb{R}$
13. $\sum_{n=1}^{\infty} \frac{n}{x^{n}}, x \in \mathbb{R}^{*}$
14. $\sum_{n=1}^{\infty}(-1)^{n} \frac{x+n}{n^{3}}, x>0$
15. $\sum_{n=1}^{\infty}\left[\frac{x(x+n)}{n}\right]^{n}, x \in \mathbb{R}$
16. $\sum_{n=1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{n}}, x \in \mathbb{R}$
17. $\sum_{n=0}^{\infty} \frac{x}{\left(x^{2}+x^{-2}\right)^{n}}, x>0$

Hint: For exercise 7, you can apply one of the tests from series of real numbers (Handout 2).

