CALCULUS HANDOUT 4 - SEQUENCES AND SERIES OF FUNCTIONS: definitions

SEQUENCES OF FUNCTIONS

A sequence of real valued functions defined on $A \subset \mathbb{R}$ is a function $F : \mathbb{N} \to \{f \mid f : A \to \mathbb{R}\}$.

We write $F(n) = f_n$ and the sequence of functions is denoted by (f_n) .

An element $a \in A$ is called **point of convergence** of the sequence (f_n) if the sequence $(f_n(a))$ converges. The set of all points of convergence is called the **set of convergence** of the sequence (f_n) .

A function $f : A \to \mathbb{R}$ is called the **limit function** of sequence (f_n) if for any $x \in A$ and $\varepsilon > 0$ there exists $N(x,\varepsilon)$ such that for $n > N(x,\varepsilon)$ we have $|f_n(x) - f(x)| < \varepsilon$. (we write $f_n \xrightarrow[n \to \infty]{} f$ on A.)

The sequence (f_n) is **uniformly convergent** on A to f if for any $\varepsilon > 0$, there exists $N(\varepsilon)$ such that for $n > N(\varepsilon)$ and $x \in A$ we have $|f_n(x) - f(x)| < \varepsilon$. (we write $f_n \xrightarrow[n \to \infty]{u} f$.)

Criteria for uniform convergence:

• Cauchy's criterion: The sequence (f_n) , defined on A, converges uniformly to a function f defined on A if and only if for any $\varepsilon > 0$ there exists $N(\varepsilon)$ such that, for any $n, m > N(\varepsilon)$ and any $x \in A$ we have: $|f_n(x) - f_m(x)| < \varepsilon$.

• 2nd criterion: Let (f_n) be a sequence of functions defined on A and $f : A \subset \mathbb{R} \to \mathbb{R}$. If there exists a sequence (a_n) of positive real numbers which converges to 0, such that $|f_n(x) - f(x)| \le a_n$, for any $n \in \mathbb{N}$ and any $x \in A$, then $f_n \xrightarrow{u}{n \to \infty} f$.

Continuity and uniform convergence:

Let (f_n) be a sequence of functions defined on A which converges uniformly to $f : A \subset \mathbb{R} \to \mathbb{R}$. If all the functions f_n are continuous at a point $a \in A$, then f is continuous at a.

A sequence of functions (f_n) is called **equally continuous** functions A if for any $x \in A$ and $\varepsilon > 0$ there exists $\delta = \delta(x, \varepsilon) > 0$ such that if $x' \in A$ and $|x' - x| < \delta$ then $|f_n(x') - f_n(x)| < \varepsilon$ for any $n \in N$.

A sequence of functions (f_n) is called **equally uniformly continuous** on A if for any $\varepsilon > 0$ there is a $\delta = \delta(\varepsilon) > 0$ such that if $x', x'' \in A$ and $|x' - x''| < \delta(\varepsilon)$ then $|f_n(x') - f_n(x'')| < \varepsilon$ for any $n \in N$.

A sequence of functions (f_n) is called **equally bounded** on A, if there is M > 0, such that $|f_n(x)| < M$ for any $n \in \mathbb{N}$ and $x \in A$.

Arzela-Ascoli Theorem:

Let I = [a, b] be a closed interval and (f_n) an equally continuous and equally bounded sequence of functions defined on I. Then (f_n) contains a subsequence (f_{n_k}) which is uniformly convergent on I.

SERIES OF FUNCTIONS

Let $A \subset \mathbb{R}$ and (f_n) a sequence of functions defined on A.

We say that $\sum_{n=1}^{\infty} f_n$ is a **convergent/divergent series of functions** at the point $a \in A$, if the numerical series $\sum_{n=1}^{\infty} f_n(a)$ is convergent/divergent.

A point $a \in A$ is called **point of convergence** of the series of functions $\sum_{n=1}^{\infty} f_n$ if the series converges at a. The collection of all the points of convergence of the series is called the **set of convergence** of the series $\sum_{n=1}^{\infty} f_n$.

Let $\sum_{n=1}^{\infty} f_n$ be a series of functions defined on A, and S a function defined on $B \subset A$. The series $\sum_{n=1}^{\infty} f_n$ **converges** to S on B if for any $x \in B$ and any $\varepsilon > 0$ there exists $N = N(x, \varepsilon) > 0$ such that for any n > N we have $|f_1(x) + f_2(x) + \cdots + f_n(x) - S(x)| < \varepsilon$.

If the number N is independent on x, then the series is **uniformly convergent** on B to S.

The series $\sum_{n=1}^{\infty} f_n$ converges absolutely on B if the series $\sum_{n=1}^{\infty} |f_n|$ converges on B.

! absolute convergence \Rightarrow convergence

Convergence criteria for series of functions:

The series of functions $\sum_{n=k+1}^{\infty} f_n$ is called the **remainder of order** k of the series $\sum_{n=1}^{\infty} f_n$.

1: The series $\sum_{n=1}^{\infty} f_n$ converges if and only if the remainder of any order k of the series converges.

2: The series $\sum_{n=1}^{\infty} f_n$ converges if and only if the sequence of the sums of remainders tends to 0.

3 (Cauchy): The series $\sum_{n=1}^{\infty} f_n$ converges uniformly on A if and only if for any $\varepsilon > 0$ there is $N = N(\varepsilon)$ such that for $n \ge N$ and $p \ge 1$ we have $|f_{n+1}(x) + f_{n+2}(x) + \cdots + f_{n+p}| < \varepsilon$ for any $x \in A$.

4: Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of positive numbers. If $|f_n(x)| \le a_n$ for $x \in A$ and $n \in \mathbb{N}$ then the series $\sum_{n=1}^{\infty} f_n$ is uniform convergent.

Ex.1 Consider the sequence of functions $f_n(x) = x^{2n}$ and the functions $f(x) = 0, x \in A = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix}$ and $g(x) = \begin{cases} 0, x \in [0, 1) \\ 1, x = 1 \end{cases}$. We study if the sequence of functions $f_n(x)$ converges simply and/or uniformly to f on the set A and to g on the set B = [0, 1]. Solution: Let $x \in A = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix}$. Then $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^{2n} = 0 = f(x)$. Therefore $f_n \xrightarrow[n \to \infty]{} f$ on A. Moreover, we have that $|f_n(x) - f(x)| = |x^{2n} - 0| = |x|^{2n} \le \left(\frac{1}{3}\right)^{2n} = \frac{1}{3^{2n}} \left(\operatorname{as} x \le \frac{1}{3} \right)$ Denoting $a_n = \frac{1}{3^{2n}}$, we can easily see that $a_n \xrightarrow[n \to \infty]{} 0$. It follows that $f_n \xrightarrow[n \to \infty]{} f$ on A. Let $x \in B = [0, 1]$. Then, $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^{2n} = \begin{cases} 0, x \in [0, 1) \\ 1, x = 1 \end{bmatrix} = g(x)$. It results that $f_n \xrightarrow[n \to \infty]{} g$ pe B. We study the continuity of the function g at 1. $\lim_{x \to 1} f(x) = 0 \ne 1 = f(1)$ $x \le 1$ It follows that g is not continuous at 1, therefore g is not continuous on B = [0, 1].

Ex.2 For $n \ge 1$, consider the sequence of functions $f_n(x) = \frac{\cos^n x}{n^3}$, $x \in \mathbb{R}$ and the series of functions $\sum_{n=1}^{\infty} f_n$. We study if $\sum_{n=1}^{\infty} f_n$ is uniformly convergent on \mathbb{R} . Solutive: We have that $\left|\frac{\cos^n x}{n^3}\right| = \frac{|\cos x|^n}{|n^3|} = \frac{|\cos x|^n}{n^3} \le \frac{1^n}{n^3} = \frac{1}{n^3}$ Denoting $a_n = \frac{1}{n^3}$, we can easily see that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is a convergent series, as it is harmonic with p = 3 > 1. It results that $\sum_{n=1}^{\infty} f_n$ is an uniformly convergent series of functions.

Ex.3 Consider the sequence of functions $f_n(x) = \frac{(nx+1)^2}{2n+3}$ and the series $\sum_{n=1}^{\infty} f_n$. We determine the set of convergence for the given series of functions.

Soluție: Denote with C the set of convergence of the series of functions. If $n \neq 0$, we compute

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{(nx+1)^2}{2n+3} = \lim_{n \to \infty} \frac{n^2 x^2 + 2nx + 1}{2n+3} = \lim_{n \to \infty} \frac{n^2 \left(x^2 + \frac{2x}{n} + \frac{1}{n^2}\right)}{n \left(2 + \frac{3}{n}\right)} = +\infty \neq 0$$

If follows that $\sum_{n=1}^{\infty} f_n$ is divergent, for any $x \neq 0$.

For x = 0, we have that $\sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \frac{1}{2n+3} \sim \sum_{n=1}^{\infty} \frac{1}{n}$, which is divergent, as it is a harmonic series with p = 1. (we apply comparison test 2, for example)

In conclusion, $\sum_{n=1}^{\infty} f_n$ is divergent, for any $x \in \mathbb{R}$, which is equivalent to $C = \emptyset$.

CALCULUS HANDOUT 4 - SEQUENCES AND SERIES OF FUNCTIONS: exercises

1. Consider the sequence of functions $f_n(x) = x^n$, defined on A = [0, 1], and $f(x) = \begin{cases} 1 & \text{for } x = 1 \\ 0 & \text{for } x \in [0, 1) \end{cases}$. Show that the sequence (f_n) is simply convergent to f, but does not converge uniformly to f.

2. Show that the sequence of functions $f_n(x) = \frac{\sin n x}{n}$, converges uniformly to f(x) = 0 on $A = [0, 2\pi]$.

3. Consider the sequence of functions defined by $f_n(x) = \frac{x^2}{(1+x^2)^n}$ for $n \ge 0$ and the series $\sum_{n=0}^{\infty} f_n(x)$. Show that the set of convergence of this series is \mathbb{R} and the sum of series is $S(x) = \begin{cases} 1+x^2 & \text{for } x \ne 0 \\ 0 & \text{for } x = 0 \end{cases}$

4. For $n \ge 1$ consider f_n defined on \mathbb{R} as $f_n(x) = \frac{\sin^n x}{n^2}$ and the series $\sum_{n=1}^{\infty} f_n$. Show that the series is absolutely convergent on \mathbb{R} and uniformly convergent on \mathbb{R} .

5. For $n \ge 1$ consider $f_n(x) = \cos^n x$ and the series $\sum_{n=1}^{\infty} f_n$. Show that the set of convergence is $\mathbb{R} \setminus \{k \cdot \pi\}_{k \in \mathbb{Z}}$ and that the series is absolutely convergent on the set of convergence.

6. For $n \ge 1$ consider the functions $f_n(x) = \frac{e^{n \cdot |x|}}{n}$ and the series $\sum_{n=1}^{\infty} f_n$. Show that the set of convergence of the series is empty.

7. Study the convergence of the following series of functions:

$$1. \sum_{n=1}^{\infty} \left(\sin\frac{1}{n}\right)^{x}, \ x \in \mathbb{R}$$

$$2. \sum_{n=1}^{\infty} \left(1 - \cos\frac{1}{n}\right)^{x}, \ x \in \mathbb{R}$$

$$3. \sum_{n=0}^{\infty} \frac{x}{x+n+1}, \ x \in [1,2]$$

$$4. \sum_{n=1}^{\infty} \frac{x}{n} \ln\frac{x}{n}, \ x \in [1,2]$$

$$5. \sum_{n=1}^{\infty} \frac{1}{x^{2}+n^{2}}, \ x \in \mathbb{R}$$

$$6. \sum_{n=1}^{\infty} \frac{n}{x^{n}}, \ x \in \mathbb{R}^{*}$$

$$7. \sum_{n=1}^{\infty} (-1)^{n} \frac{x+n}{n^{3}}, \ x > 0$$

$$8. \sum_{n=1}^{\infty} \left[\frac{x(x+n)}{n}\right]^{n}, \ x \in \mathbb{R}$$

$$9. \sum_{n=1}^{\infty} \frac{x}{(1+x^{2})^{n}}, \ x \in \mathbb{R}$$

$$10. \sum_{n=0}^{\infty} \frac{x}{(x^{2}+x^{-2})^{n}}, \ x > 0$$

Hint: For exercise 7, you can apply one of the tests from series of real numbers (Handout 2).