CALCULUS HANDOUT 3-Limits. Continuity. Differentiability - definitions, properties

LIMITS

Suppose that $f(x)$ is a function defined on an open interval containing the point a (except possibly not at a itself). We say that L is the limit of the function f as x approaches a if for any $\varepsilon>0$ there exists $\delta>0$ such that for any x such that $0<|x-a|<\delta$ we have $|f(x)-L|<\varepsilon$.
Heine's criterion for the limit:
The function $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ has a limit as x approaches a if and only if for any sequence $\left(x_{n}\right) \subset A \backslash\{a\}$ such that $x_{n} \rightarrow a$ as $n \rightarrow \infty$, the sequence $\left(f\left(x_{n}\right)\right)$ converges.

Cauchy-Bolzano's criterion for the limit:

The function $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ has a limit as x approaches a if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that $0<\left|x^{\prime}-a\right|<\delta$ and $0<\left|x^{\prime \prime}-a\right|<\delta$ implies $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon$.

Rules for the limit of a function:

\rightarrow If k is a constant, then $\lim _{x \rightarrow a} k=k$.
\rightarrow If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a}(f(x) \pm g(x))=L \pm M$.
\rightarrow If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a} f(x) \cdot g(x)=L \cdot M$.
\rightarrow If $\lim _{x \rightarrow a} f(x)=L, g(x) \neq 0$ and $\lim _{x \rightarrow a} g(x)=M \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$.

Squeeze rule:

Suppose that the inequality $f(x) \leq g(x) \leq h(x)$ holds for all x in some interval around a, except perhaps at $x=a$. If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} h(x)=L$ then also $\lim _{x \rightarrow a} g(x)=L$..

The substitution rule:

Assume that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{y \rightarrow L} g(y)=M$. Then $\lim _{x \rightarrow a} g(f(x))=M$.

One-sided limits:

$\rightarrow L$ is called the right-hand limit of f at a (denoted $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \searrow a} f(x)$), if for any $\varepsilon>0$, there exists a number $\delta>0$ such that $a<x<a+\delta$ implies $|f(x)-L|<\varepsilon$.
$\rightarrow L$ is called the left-hand limit of f at a (denoted $\lim _{x \rightarrow a^{-}} f(x)$ or $\left.\lim _{x \nearrow a} f(x)\right)$ if for any $\varepsilon>0$, there exists a number $\delta>0$ such that $a-\delta<x<a$ implies $|f(x)-L|<\varepsilon$.
! If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}}=L$ then $\lim _{x \rightarrow a} f(x)=L$.

Limits at infinity:

\rightarrow The number L is the limit of $f(x)$ as x approaches $+\infty$ (denoted by $\lim _{x \rightarrow+\infty} f(x)=L$) if for any $\varepsilon>0$, there exists a number $M>0$ such that $x>M$ implies $|f(x)-L|<\varepsilon$.
\rightarrow The limit $\lim _{x \rightarrow-\infty} f(x)=L$ is defined analogously.

Infinite limits:

\rightarrow The function f has the right-hand limit $+\infty$ at a (denoted by $\lim _{x \rightarrow a^{+}} f(x)=+\infty$) if for any $M>0$ there is a $\delta>0$ such that $f(x)>M$ whenever $a<x<a+\delta$.
\rightarrow The function f has the right-hand limit $-\infty$ at a (denoted by $\lim _{x \rightarrow a^{+}} f(x)=-\infty$) if for any $M>0$ there is a $\delta>0$ such that $f(x)<-M$ whenever $a<x<a+\delta$.
\rightarrow The left-hand limits are defined similarly.

Limit points:

\rightarrow The number L is a limit point of $f(x)$ at a if there exists a sequence $\left(x_{n}\right) \in A \backslash\{a\}$ such that $\lim _{n \rightarrow+\infty} x_{n}=a$ and $\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=L$.
\rightarrow The set of limit points of $f(x)$ at a is denoted by $\mathcal{L}_{a}(f)$.
$\rightarrow \inf \mathcal{L}_{a}(f)$ is called the inferior limit of f at a and it is denoted by $\underline{\lim }_{x \rightarrow a} f(x)$.

CONTINUITY

The function f is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.
The function f is continuous at a if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
Heine's criterion for continuity:
The function $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in A$ if and only if for any sequence $\left(x_{n}\right) \subset A$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(a)$.
Cauchy-Bolzano's criterion for continuity:
The function $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in A$ if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that $\left|x^{\prime}-a\right|<\delta$ and $\left|x^{\prime \prime}-a\right|<\delta$ imply $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon$.
Rules for continuity:
\rightarrow Sum rule: If f and g are continuous at a then $f+g$ is continuous at a.
\rightarrow Product rule: If f and g are continuous at a then $f \cdot g$ is continuous at a.
\rightarrow Reciprocal rule: If f is continuous at a and $f(x) \neq 0$, then $\frac{1}{f}$ is continuous at a.
\rightarrow Composite rule: If f and g be continuous at a and $f(a)$, respectively, then $g \circ f$ is continuous at a.
The boundedness property:
If f be continuous on the interval $[a, b]$, then f is bounded on $[a, b]$ and attains its bounds.
The intermediate value property:
Let f be continuous on $[a, b]$ and suppose that $f(a)=\alpha$ and $f(b)=\beta$. For every real number γ between α and β there exists a number $c \in(a, b)$ such that $f(c)=\gamma$.
The interval theorem:
Let f be continuous on $I=[a, b]$. Then, $f(I)$ is a closed bounded interval.
The fixed point theorem:
Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Then there is at least one number c such that $f(c)=c$.
The continuity of the inverse function:
Suppose that $f: A \rightarrow B$ is a bijection where A and B are intervals. If f is continuous on A, then f^{-1} is continuous on B.

Uniform continuity:

The function $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ is called uniformly continuous on A if for any $\varepsilon>0$ there exists $\delta>0$ such that $\left|x^{\prime}-x^{\prime \prime}\right|<\delta$ implies $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon$.
Theorem of uniform continuity:
If $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous on any closed interval $[a, b] \subset A$.

DIFFERENTIABILITY

A function $f: A \subset \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $a \in A$ if $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists. The value of this limit is denoted by $f^{\prime}(a)$ and is called the derivative of f at a.
! If f is differentiable at a, then f is continuous at a.
Rules for differentiability:
Sum rule: If $f, g \in \mathcal{D}_{a}$ then $f+g \in \mathcal{D}_{a}$ and $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$.
Product rule: If $f, g \in \mathcal{D}_{a}$ then $f \cdot g \in \mathcal{D}_{a}$ and $(f \cdot g)^{\prime}(a)=f^{\prime}(a) \cdot g(a)+f(a) \cdot g^{\prime}(a)$.
Reciprocal rule: If $f \in \mathcal{D}_{a}$ and $f(x) \neq 0$, then $\frac{1}{f} \in \mathcal{D}_{a}$ and $\left(\frac{1}{f}\right)^{\prime}(a)=-\frac{f^{\prime}(a)}{f^{2}(a)}$.
Quotient rule: If $f, g \in \mathcal{D}_{a}$ and $g(x) \neq 0$, then $\frac{f}{g} \in \mathcal{D}_{a}$ and $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) \cdot g(c)-f(c) \cdot g^{\prime}(c)}{[g(c)]^{2}}$.
Composite rule: If $f \in \mathcal{D}_{a}$ and $g \in \mathcal{D}_{f(a)}$, then $g \circ f \in \mathcal{D}_{a}$ and $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)$.
Inverse rule: Suppose that $f: A \rightarrow B$ is a continuous bijection where A and B are intervals. If $f \in \mathcal{D}_{a}$ is differentiable at $a \in A$ and $f^{\prime}(a) \neq 0$, then f^{-1} is differentiable at $b=f(a)$ and $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}$.

Local extremes:

A function f has a local maximum value at c if c is contained in some open interval I for which $f(x) \leq f(c)$ for each $x \in I$. If $f(x) \geq f(c)$ for each $x \in I$, then f has a local minimum value at c.

Fermat's theorem:

If f is differentiable at c and possesses a local maximum or a local minimum at c, then $f^{\prime}(c)=0$.
Rolle's theorem:
Let f be differentiable on (a, b) and continuous on $[a, b]$. If $f(a)=f(b)$ then there exists $c \in(a, b)$, such that $f^{\prime}(c)=0$.

Lagrange's mean value theorem:

Let f be differentiable on (a, b) and continuous on $[a, b]$. Then there exists $c \in(a, b)$, such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

The increasing-decreasing theorem:

If f is differentiable on (a, b) and continuous on $[a, b]$ then
$\rightarrow f^{\prime}(x)>0$ for all $x \in(a, b)$ implies f is strictly increasing on $[a, b]$;
$\rightarrow f^{\prime}(x)<0$ for all $x \in(a, b)$ implies f is strictly decreasing on $[a, b]$;
$\rightarrow f^{\prime}(x)=0$ for all $x \in(a, b)$ implies f is constant on $[a, b]$.

Cauchy's mean value theorem:

Let f and g be differentiable on (a, b) and continuous on $[a, b]$. If $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there exists $c \in(a, b)$, such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

L'Hôspital's rule:

Suppose that f and g are differentiable on an interval $I, a \in I$ and $g^{\prime}(x) \neq 0$ (except possibly at a itself). Assume that either a. $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ or $\mathbf{b} . \lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right either exists (as a finite real number) or is $\pm \infty$.

CALCULUS HANDOUT 3-Limits. Continuity. Differentiability - solved examples

Ex. 1: We study the existence of the limit at the point $a=0$ for the functions $f: \mathbb{R} \rightarrow \mathbb{R}$:
a) $f(x)=\frac{|x|}{x}$;
b) $f(x)=\cos \frac{\pi}{x}$.

Solution:
a) We have $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$. Then
$l_{s}=\lim _{\substack{x \rightarrow 0 \\ x<0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x<0}} \frac{-x}{x}=-1$
$l_{d}=\lim _{\substack{x \rightarrow 0 \\ x>0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{x}{x}=1$
As $l_{s} \neq l_{d}$, it follows that $\lim _{x \rightarrow 0} f(x)$ does not exist.
b) Consider $x_{n}=\frac{1}{2 n} \xrightarrow[n \rightarrow \infty]{ } 0$ and $y_{n}=\frac{1}{2 n+1} \xrightarrow[n \rightarrow \infty]{ } 0$. Then
$f\left(x_{n}\right)=\cos \frac{\pi}{\frac{1}{2 n}}=\cos 2 n \pi=1 \underset{n \rightarrow \infty}{ } 1$
$f\left(y_{n}\right)=\cos \frac{\pi}{\frac{1}{2 n+1}}=\cos (2 n+1) \pi=\cos (2 n \pi+\pi)=\cos \pi=-1 \underset{n \rightarrow \infty}{\longrightarrow}-1$
As $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)$, applying Heine's theorem for limits, it results that $\lim _{x \rightarrow 0} f(x)$ does not exist.
Ex. 2: We study the continuity and differentiability of the functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
a) $f(x)=\left\{\begin{array}{lll}\frac{\sin x}{|x|} & , x \neq 0 \\ 1 & , x=0\end{array} \quad\right.$ b) $f(x)= \begin{cases}x^{3} \sin \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{cases}$

Solution: We can easily see that the above functions are both continuous and differentiable on $\mathbb{R} \backslash\{0\}$, as they are both formed out of elementary functions. We study the continuity and differentiability of the functions at $x=0$.
a) We compute the lateral limits at 0 .
$l_{s}=\lim _{\substack{x \rightarrow 0 \\ x<0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x<0}}\left(-\frac{\sin x}{x}\right)=-\lim _{\substack{x \rightarrow 0 \\ x<0}} \frac{\sin x}{x}=-1$
$l_{d}=\lim _{\substack{x \rightarrow 0 \\ x>0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{\sin x}{x}=1$
As $l_{s} \neq l_{d}$, it follows that $\lim _{x \rightarrow 0} f(x)$ does not exist, and therefore f is not continuous at 0 .
Thus, function f is not differentiable at 0 .
b) Continuity
$\left|x^{3} \sin \frac{1}{x}\right|=\left|x^{3}\right| \cdot\left|\sin \frac{1}{x}\right| \leq\left|x^{3}\right| \cdot 1=\left|x^{3}\right|$
Consider $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=|x|^{3}$. We can easily see that $\lim _{x \rightarrow 0} g(x)=0$. (check!)
Then, it follows that $\lim _{x \rightarrow 0} f(x)=0$. Moreover, $f(0)=0$.
Therefore, function f is continuous at 0 .
Differentiablity
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3} \sin \frac{1}{x}-0}{x}=\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
$\left|x^{2} \sin \frac{1}{x}\right|=\left|x^{2}\right| \cdot\left|\sin \frac{1}{x}\right| \leq\left|x^{2}\right| \cdot 1=x^{2}$
$\lim _{x \rightarrow 0} x^{2}=0$

Then, we have that $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$, which means that function f is differentiable at 0 .
Ex. 3: We prove the inequalities a) $\ln x<x, x>0$
b) $|\cos b-\cos a| \leq|b-a|$

Solution:
a) Let $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=x-\ln x$. We compute $f^{\prime}(x) . f^{\prime}(x)=(x-\ln x)^{\prime}=x^{\prime}-(\ln x)^{\prime}=1-\frac{1}{x}$.

We solve the equation: $f^{\prime}(x)=0 \Leftrightarrow 1-\frac{1}{x}=0 \Leftrightarrow \frac{x-1}{x}=0 \Leftrightarrow x=1$.
Computing $f^{\prime \prime}(x)$, we obtain $f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}=\left(1-\frac{1}{x}\right)^{\prime}=1^{\prime}-\left(\frac{1}{x}\right)^{\prime}=0-\left(-\frac{1}{x^{2}}\right)=\frac{1}{x^{2}}>0$ şi $f^{\prime \prime}(1)=1>0$. Then $x=1$ is a minimum point, which means that $f(x) \geq f(1)$.
$f(1)=1-\ln 1=1-0=1$
We obtain $f(x) \geq 1>0 \Leftrightarrow x-\ln x>0 \Leftrightarrow \ln x<x$, for any $x>0$.
b) Let $f:[a, b] \rightarrow \mathbb{R}, f(x)=\cos x$. Then $f^{\prime}(x)=(\cos x)^{\prime}=-\sin x$.

As f is continuous on $[a, b]$ and differentiable on (a, b), by applying Lagrange's theorem, it follows that there exists $c \in(a, b)$ such that we have $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. We obtain
$\frac{\cos b-\cos a}{b-a}=-\sin c \Leftrightarrow\left|\frac{\cos b-\cos a}{b-a}\right|=|-\sin c| \Leftrightarrow\left|\frac{\cos b-\cos a}{b-a}\right|=|\sin c| \leq 1$
$\Leftrightarrow \frac{|\cos b-\cos a|}{|b-a|} \leq 1 \Leftrightarrow|\cos b-\cos a| \leq|b-a|$.
Ex. 4: We find the minimum and maximum attained by the function $f(x)=x^{3}-2 x^{2}-4 x+2$ on the interval $[-2,2]$.
Solution: We compute $f^{\prime}(x)$.
$f^{\prime}(x)=\left(x^{3}-2 x^{2}-4 x+2\right)^{\prime}=\left(x^{3}\right)^{\prime}-2 \cdot\left(x^{2}\right)^{\prime}-4 \cdot x^{\prime}+2^{\prime}=3 x^{2}-2 \cdot 2 x-4 \cdot 1+0=3 x^{2}-4 x-4$
The equation $f^{\prime}(x)=0 \Leftrightarrow 3 x^{2}-4 x-4=0$, has the roots $x_{1}=-\frac{2}{3}$ sुi $x_{2}=2$. (check!)
As $f(-2)=-6, f(2)=-6, f\left(-\frac{2}{3}\right)=\frac{94}{27}$, we have:

x	-2			$-\frac{2}{3}$			2		
$f^{\prime}(x)$		+	+	+	0		-	-	
$f(x)$	-6	\uparrow	$\frac{94}{27}$	\downarrow			-6		

Then $f_{\text {min }}=-6$ at $x=-2$ and $x=2$ and $f_{\max }=\frac{94}{27}$ at $x=-\frac{2}{3}$.

CALCULUS HANDOUT 3-Limits. Continuity. Differentiability - exercises

1. Study the existence of the limits at the point a for the functions:
2. $f(x)=\sin \frac{1}{x}, a=0$
3. $f(x)=\cos \frac{1}{x}-\sin \frac{1}{x}, \quad a=0$
4. $f(x)=x \sin \frac{1}{x}, \quad a=0$
5. $f(x)=x^{2} \cos ^{2} x, \quad a=\infty$
6. $f(x)=x\left[\frac{1}{x}\right], a=0$
7. $f(x)=\sin ^{2} \frac{1}{x}+\frac{2}{\pi} \operatorname{arctg} \frac{1}{x}, \quad a=0$
8. Study the continuity and differentiability of the following functions (m is a real parameter, $\alpha \in\{0,1,2,3\}$) on their maximal domains of definition:
9. $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x} & , x \neq 0 \\ m & , x=0\end{array}\right.$
10. $f(x)=\left\{\begin{array}{cl}\cos \frac{1}{x} & , x \neq 0 \\ m & , x=0\end{array}\right.$
11. $f(x)=\left\{\begin{array}{cl}\frac{1-\cos ^{3} 2 x}{x \sin 2 x} & , x \neq 0 \\ m & , x=0\end{array}\right.$
12. $f(x)=\left\{\begin{array}{cl}\frac{1-\cos x}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
13. $f(x)=\left\{\begin{array}{cl}\frac{1}{x} \sin \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
14. $f(x)=\left\{\begin{array}{cl}x^{2} \cos \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
15. $f(x)=\left\{\begin{array}{cl}\frac{e^{x^{2}}-1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
16. $f(x)=\left\{\begin{array}{cl}\frac{\ln \left(1+x^{2}\right)}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
17. $f(x)=\left\{\begin{array}{cl}x^{\alpha} \sin \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
18. $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x}-\frac{\cos x}{x} & , x>0 \\ m & , x=0\end{array}\right.$
19. $f(x)=\left\{\begin{array}{cl}x \ln \frac{1-x^{2}}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
20. $f(x)=\left\{\begin{array}{cl}\frac{1}{x} \operatorname{arctg} \frac{x}{1+x^{2}} & , x \neq 0 \\ m & , x=0\end{array}\right.$
21. Prove the following inequalities:
22. $\frac{b-a}{\cos ^{2} a} \leq \tan b-\tan a \leq \frac{b-a}{\cos ^{2} b}, 0<a<b<\frac{\pi}{2}$
23. $x \arctan x>\ln \left(1+x^{2}\right), x>0$
24. $\frac{b-a}{1+b^{2}}<\arctan \frac{b-a}{1+a b}<\frac{b-a}{1+a^{2}}, 0<a<b$
25. $(\sin x)^{\sin x}<(\cos x)^{\cos x}, x \in\left(0, \frac{\pi}{4}\right)$
26. $1-\frac{a}{b}<\ln \frac{b}{a}<\frac{b}{a}-1,0<a<b$
27. $\frac{2}{\pi} x<\sin x<x, x \in\left(0, \frac{\pi}{2}\right)$
28. $\sin x+\tan x>2 x, x \in\left(0, \frac{\pi}{2}\right)$
29. $\arcsin x>x+\frac{x^{3}}{6}, x \in(0,1)$
30. $(1+x)^{a} \geq 1+a x, x>-1, a \in(-\infty, 0] \cup[1, \infty)$
31. $x-\frac{x^{3}}{3!}<\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}, x \in\left(0, \frac{\pi}{2}\right)$
32. $(1+x)^{a} \leq 1+a x, x>-1, a \in(0,1)$
33. $\sin ^{2} x+x \tan x>2 x^{2}, x \in\left(0, \frac{\pi}{2}\right)$
34. Find the maximum and the minimum attained by the following functions on the indicated closed interval.
35. $f(x)=x^{2}+\frac{16}{x} ;[1,3]$
36. $f(x)=x^{2}-4 x+3 ;[0,2]$
37. $f(x)=\frac{x}{x+1} ;[0,3]$
38. $f(x)=\frac{1-x}{x^{2}+3} ;[-2,5]$
39. $f(x)=x \sqrt{1-x^{2}} ;[-1,1]$
40. $f(x)=|x+1|+|x-1| ;[-2,2]$

Extra exercises

5. Let $g: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function at $a \in I$.

Show that $f=|g|$ is differentiable at a if and only if $g(a) \neq 0$ or $g(a)=g^{\prime}(a)=0$.
Find the values of the parameter such that the following functions are differentiable on \mathbb{R} :
a) $f(x)=\left|(1+x)^{3}-3^{a t}\right|$
b) $f(x)=\max \{\lambda+\cos x, \sin x\}$
c) $f(x)=\left|(x+m)\left(e^{x}-1-m t\right)\right|$
6. For which values of $a>0, a \neq 1$, the following inequality holds:

$$
a^{x}+2^{x} \geq 3^{x}+4^{x} \quad \forall x \in \mathbb{R}
$$

7. What is the equation of a straight line through $(1,0)$ that is tangent to the graph of $f(x)=x+\frac{1}{x}$ at a point in the first quadrant?
8. The period T of oscillation (in seconds) of a simple pendulum of length L (in feet) is given by $T=2 \pi \sqrt{L / 32}$. What is the rate of change of T with respect to L when $L=4$ feet?
9. What is the shortest possible distance from the parabola $y=x^{2}$ to the point $(0,1)$?
10. Find two positive real numbers x and y such that their sum is 50 and their product is as large as possible.
11. Find the maximum possible area of a rectangle of perimeter 200 m .
12. Find the dimensions of the rectangle (with sides parallel to the coordinate axes) of maximal area that can be inscribed in an ellipse with equation $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
