CALCULUS HANDOUT 2 - SERIES: definitions, properties, theorems

An infinite series is an expression of the form $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$

where (a_n) is a sequence of real numbers. The number a_n is called the *n*-th term of the series.

The *n*-th partial sum s_n of the series $\sum a_n$ is the sum of its first *n* terms: $s_n = a_1 + a_2 + \cdots + a_n$.

If (s_n) is a convergent sequence then the series $\sum a_n$ is said to be **convergent**. If (s_n) is a divergent sequence then the series $\sum a_n$ is called **divergent**.

The sum of an infinite series is the limit of its sequence of finite sums: $S = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$.

The series $\sum a_n$ is called **absolutely convergent** if the series $\sum |a_n|$ is convergent.

! Remark: absolute convergence implies convergence (but the converse is not true!)

♠ Geometric series:

The series $\sum_{n=0}^{\infty} ar^n \ (a \neq 0)$ converges if and only if |r| < 1. In this case, its sum is $S = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$.

Vanishing condition: If $\sum a_n$ is convergent, then $\lim a_n = 0$.

! Remark: If $\lim_{n \to \infty} a_n \neq 0$ or this limit does not exist, then the infinite series $\sum a_n$ is divergent.

! Remark: The converse of the vanishing condition is not true! (the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent)

Cauchy's criterion for the convergence of a series:

The series $\sum a_n$ converges if and only if for any $\varepsilon > 0$ there exists N such that for $n \ge N$ and $p \ge 1$ the following inequality holds: $|a_{n+1} + a_{n+2} + \cdots + a_{n+p}| < \varepsilon$.

Termwise addition and multiplication:

If the series $\sum a_n$ and $\sum b_n$ converge, then the series $\sum (a_n + b_n)$ and $\sum ca_n$ (with $c \in \mathbb{R}$) converge and 1. $\sum (a_n + b_n) = \sum a_n + \sum b_n$

2.
$$\sum ca_n = c \sum a_n$$

CONVERGENCE TESTS FOR SERIES

Integral test:

Let $f: \mathbb{R}^1_+ \to \mathbb{R}^1_+$ be a decreasing function and let $a_n = f(n)$ for each $n \in \mathbb{N}$. Let $j_n = \int_1^n f(x) \, dx$. The series $\sum a_n$ converges if and only if the sequence (j_n) converges.

A Harmonic series: The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

Comparison test I:

Suppose that $0 \leq a_n \leq b_n$ for all $n \in \mathbb{N}$. Then:

1. If $\sum b_n$ is convergent then $\sum a_n$ is convergent. 2. If $\sum a_n$ is divergent then $\sum b_n$ is divergent.

Comparison test II:

Suppose that $\sum a_n$ and $\sum b_n$ are positive-term series such that $\lim_{n \to \infty} \frac{a_n}{b_n} = L \in (0, \infty).$

Then, $\sum a_n$ converges if and only if $\sum b_n$ converges.

Alternating series test (Leibnitz):

If (b_n) is a decreasing sequence and $\lim_{n \to \infty} b_n = 0$ then the alternating series $\sum (-1)^n \cdot b_n$ converges.

Ratio test:

Suppose that the limit $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists or is infinite. Then the series $\sum a_n$

1. is absolutely convergent if L < 1;

2. is divergent if L > 1.

If L = 1, the ratio test is inconclusive.

Root test:

Suppose that the limit $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists or is infinite. Then the series $\sum a_n$ 1. is absolutely convergent if L < 1; 2. is divergent if L > 1. If L = 1, the root test is inconclusive.

CALCULUS HANDOUT 2 - SERIES: examples

Ex. 1: We express the *n*-th partial sum of the infinite series and find the sum of the series: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

Solution:

We can easily see that $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. (check!)

Then

$$k = 1 \Rightarrow \frac{1}{1 \cdot 2} = 1 - \frac{1}{2}$$

$$k = 2 \Rightarrow \frac{1}{2 \cdot 3} = \frac{1}{2} - \frac{1}{3}$$

$$k = 3 \Rightarrow \frac{1}{3 \cdot 4} = \frac{1}{3} - \frac{1}{4}$$
...
$$k = n - 1 \Rightarrow \frac{1}{(n-1)n} = \frac{1}{n-1} - \frac{1}{n}$$

$$k = n \Rightarrow \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

The n-th partial sum of the series is

$$\Rightarrow S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1}$$
$$= 1 - \frac{1}{n-1}$$

The sum of the series is

$$s = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n+1} = 1 - 0 = 1.$$

Remark: Because $s = 1 < \infty$, we have that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent. **Ex. 2:** We study the convergence of the series: a) $\sum_{n=1}^{\infty} (\arcsin 1)^n$; b) $\sum_{n=1}^{\infty} \frac{2n^2}{3n^2+1}$.

Solution:

a) The series $\sum_{n=1}^{\infty} (\arcsin 1)^n = \sum_{n=1}^{\infty} \left(\frac{\pi}{2}\right)^n$ is a geometric series with $r = \frac{\pi}{2}$. As $|r| = \left|\frac{\pi}{2}\right| = \frac{\pi}{2} > 1$, it follows that $\sum_{n=1}^{\infty} (\arcsin 1)^n$ is divergent.

b) Because
$$\lim_{n \to \infty} \frac{2n^2}{3n^2 + 1} = \lim_{n \to \infty} \frac{2n^2}{n^2 \left(3 + \frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{2}{3 + \frac{1}{n^2}} = \frac{2}{3 + 0} = \frac{2}{3} \neq 0$$
 it results that

 $\sum_{n=1}^{\infty} \frac{2n^2}{3n^2 + 1}$ is divergent.

Ex. 3: We study the convergence of the series: a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$; b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ using the integral test. Solution:

a) Let $f : \mathbb{R}_+ \to \mathbb{R}_+$, $f(x) = \frac{1}{x^2}$. We can easily see that f is decreasing (check!) and $f(n) = \frac{1}{n^2}$. We compute

$$j_n = \int_{1}^{n} f(x) dx = \int_{1}^{n} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{1}^{n} = -\frac{1}{n} + 1$$
$$\lim_{n \to \infty} j_n = \lim_{n \to \infty} \left(-\frac{1}{n} + 1 \right) = -\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 1 = -0 + 1 = 1$$

Because $\lim_{n\to\infty} j_n = 1 < \infty$, we have that (j_n) is a convergent sequence and, by applying the integral test, we obtain that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

b) Let $f : \mathbb{R}_+ \to \mathbb{R}_+$, $f(x) = \frac{1}{x \ln x}$. We can easily see that f is decreasing (check!) and $f(n) = \frac{1}{n \ln n}$. We compute

$$\begin{split} j_n &= \int_2^n f(x) dx = \int_2^n \frac{1}{x \ln x} dx = \ln(\ln x) \Big|_2^n = \ln(\ln n) - \ln(\ln 2) \\ &\lim_{n \to \infty} j_n = \lim_{n \to \infty} \left(\ln(\ln n) - \ln(\ln 2)\right) = \lim_{n \to \infty} \ln(\ln 2) - \lim_{n \to \infty} \ln(\ln 2) = \infty - \ln(\ln 2) = \infty \\ &\text{As } \lim_{n \to \infty} j_n = \infty, \text{ is results that } (j_n) \text{ is a convergent sequence and, by applying the integral test, we obtain that } \sum_{n=2}^\infty \frac{1}{n \ln n} \text{ is divergent.} \end{split}$$

Ex. 4: We study the convergence of the series: a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+3)}}$; b) $\sum_{n=1}^{\infty} 5^n \sin \frac{1}{7^n}$. Solution:

a) Denote
$$a_n = \frac{1}{\sqrt{n(n+1)(n+3)}} = \frac{1}{\sqrt{n^3 + 4n^2 + 3n}}$$
. We can easily see that $0 < a_n = \frac{1}{\sqrt{n^3 + 4n^2 + 3n}} \le \frac{1}{\sqrt{n^3}}$.
MI: As $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is a harmonic series with $p = \frac{3}{2} > 1$, it follows that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ is convergent and, by applying the comparison test I, we have that $\sum_{n=1}^{\infty} a_n$ is convergent.
MII: We compute

$$l = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^3 + 4n^2 + 3n}}}{\frac{1}{\sqrt{n^3}}} = \lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n^3 + 4n^2 + 3n}} = \lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n^3 \left(1 + \frac{4}{n} + \frac{3}{n^2}\right)}}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n^3} \cdot \sqrt{1 + \frac{4}{n} + \frac{3}{n^2}}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{4}{n} + \frac{3}{n^2}}} = \frac{1}{\sqrt{1 + 0 + 0}} = \frac{1}{1} = 1$$

As $l = 1 \in (0, \infty)$ and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ is a convergent series (harmonic series with $p = \frac{3}{2} > 1$), by applying the comparison test II, it results that $\sum_{n=1}^{\infty} a_n$ is also convergent.

b) Denote $a_n = 5^n \sin \frac{1}{7^n}$.

MI: Because $0 \leq \sin x \leq x, x \in \left(0, \frac{\pi}{2}\right)$ and $\frac{1}{7^n} \in \left(0, \frac{\pi}{2}\right)$, for any $n \geq 1$, we obtain $0 \leq \sin \frac{1}{7^n} \leq \frac{1}{7^n} \left| \cdot 5^n \Leftrightarrow 0 \leq 5^n \sin \frac{1}{7^n} \leq \frac{5^n}{7^n} \Leftrightarrow 0 \leq a_n \leq \left(\frac{5}{7}\right)^n$. As $\sum_{n=1}^{\infty} \left(\frac{5}{7}\right)^n$ is a convergent series (geometric series with $|r| = \left|\frac{5}{7}\right| = \frac{5}{7} < 1$), by applying the comparison test I, we have that $\sum_{n=1}^{\infty} a_n$ is convergent. MII: Recall that $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and we have that $\frac{1}{7^n} \to 0$. We compute

$$l = \lim_{n \to \infty} \frac{5^n \sin \frac{1}{7^n}}{\frac{5^n}{7^n}} = \lim_{n \to \infty} 5^n \cdot \frac{7^n}{5^n} \cdot \sin \frac{1}{7^n} = \lim_{n \to \infty} \frac{\sin \frac{1}{7^n}}{\frac{1}{7^n}} = 1.$$

As $l = 1 \in (0, \infty)$ and $\sum_{n=1}^{\infty} \left(\frac{5}{7}\right)^n$ is convergent, by applying the comparison test II, is follows that $\sum_{n=1}^{\infty} a_n$ is a convergent series.

Ex. 5: We study the convergence of the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n}$.

Solution:

Denote $b_n = \frac{1}{3^n}$. We can easily see that $b_n > 0$, for any $n \ge 1$ and (b_n) is a decreasing sequence, as

$$\frac{b_{n+1}}{b_n} = \frac{\frac{1}{3^{n+1}}}{\frac{1}{3^n}} = \frac{3^n}{3^{n+1}} = \frac{3^n}{3^n \cdot 3} = \frac{1}{3} < 1$$

Furthermore, $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{3^n} = 0.$

Then, by applying Leibnitz' test for alternating series, we obtain that $\sum_{n=1}^{\infty} (-1)^n \cdot b_n$ is convergent. **Ex. 6:** We study the convergence of the series: a) $\sum_{n=1}^{\infty} \frac{(n+3)!}{2^n((n+1)!)^2}$; b) $\sum_{n=1}^{\infty} (\sqrt{n^2+3n}-n)^n$. Solution:

a) Denote $a_n = \frac{(n+3)!}{2^n((n+1)!)^2}$ and observe that $a_n > 0$, for any $n \ge 1$. We compute

$$l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+4)!}{2^{n+1}((n+2)!)^2} \cdot \frac{2^n((n+1)!)^2}{(n+3)!} = \lim_{n \to \infty} \frac{(n+3)!(n+4)}{2^n \cdot 2((n+1)!)^2(n+2)^2} \cdot \frac{2^n((n+1)!)^2}{(n+3)!}$$
$$= \lim_{n \to \infty} \frac{n+4}{2(n+2)^2} = \lim_{n \to \infty} \frac{n\left(1+\frac{4}{n}\right)}{2n^2\left(1+\frac{2}{n}+\frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{1+\frac{4}{n}}{2n\left(1+\frac{2}{n}+\frac{1}{n^2}\right)} = 0$$

As l = 0 < 1, by applying the ratio test, it follows that $\sum_{n=1}^{\infty} a_n$ is convergent. b) Denote $a_n = (\sqrt{n^2 + 3n} - n)^n$ and observe that $a_n > 0$, for any $n \ge 1$. We compute

$$\begin{split} l &= \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{(\sqrt{n^2 + 3n} - n)^n} = \lim_{n \to \infty} (\sqrt{n^2 + 3n} - n) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n} - n)(\sqrt{n^2 + 3n} + n)}{\sqrt{n^2 + 3n} + n} \\ &= \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n})^2 - n^2}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2} (1 + \frac{3}{n})} + n \\ &= \lim_{n \to \infty} \frac{3n}{\sqrt{n^2} \cdot \sqrt{1 + \frac{3}{n}} + n} = \lim_{n \to \infty} \frac{3n}{n\sqrt{1 + \frac{3}{n}} + n} = \lim_{n \to \infty} \frac{3n}{n\left(\sqrt{1 + \frac{3}{n}} + 1\right)} = \lim_{n \to \infty} \frac{3}{\sqrt{1 + \frac{3}{n}} + 1} \\ &= \frac{3}{\sqrt{1 + 0} + 1} = \frac{3}{2} \end{split}$$

As $l = \frac{3}{2} > 1$, by applying the root test, we have that $\sum_{n=1}^{\infty} a_n$ is divergent.

CALCULUS HANDOUT 2 - SERIES: exercises

1. Express the n-th partial sum of the infinite series and find the sum of the series.

$$1. \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}} \quad 3. \sum_{n=1}^{\infty} \frac{1}{n^2 - 1} \qquad 5. \sum_{n=1}^{\infty} \ln \frac{n+1}{n} \quad 7. \sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)} \quad 9. \sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n - 2}$$
$$2. \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \qquad 4. \sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} \quad 6. \sum_{n=1}^{\infty} \frac{1}{n(n+2)} \quad 8. \sum_{n=1}^{\infty} \frac{6n}{n^4 - 5n^2 + 4} \quad 10. \sum_{n=1}^{\infty} \frac{1}{16n^2 - 8n - 3}$$

2. Determine wether the following series converges or diverges.

$$1. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sin\frac{1}{n}} \qquad 3. \sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{e}\right)^n \qquad 5. \sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n}\right) \qquad 7. \sum_{n=1}^{\infty} \frac{1}{5^n + 3^n} \qquad 9. \sum_{n=1}^{\infty} (\arctan 1)^n$$

$$2. \sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1} \qquad 4. \sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)} \qquad 6. \sum_{n=1}^{\infty} \frac{1 + 2^n + 5^n}{3^n} \qquad 8. \sum_{n=1}^{\infty} \frac{1}{\ln n} \qquad 10. \sum_{n=1}^{\infty} \left[\left(\frac{7}{11}\right)^n - \left(\frac{3}{5}\right)^n\right]$$

3. Use the integral test to test the following series for convergence.

1.
$$\sum_{n=1}^{\infty} \frac{n^2}{e^n}$$
 2. $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ 3. $\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$ 4. $\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$ 5. $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^p}, p \in \mathbb{R}$

4. Use comparison tests to determine wether the following series converge or diverge. ∞ ∞ ∞ 2 ∞ 1/n

$$1. \sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1} \qquad 5. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}} \qquad 9. \sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 + 1} \qquad 13. \sum_{n=1}^{\infty} \frac{e^{1/n}}{n} \qquad 17. \sum_{n=1}^{\infty} 3^n \sin \frac{\pi}{5^n}$$

$$2. \sum_{n=1}^{\infty} \frac{n^3 + 1}{n^4 + 2} \qquad 6. \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + n} \qquad 10. \sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n} \qquad 14. \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \qquad 18. \sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$$

$$3. \sum_{n=1}^{\infty} \frac{1}{n + n^{3/2}} \qquad 7. \sum_{n=1}^{\infty} \frac{1}{\ln n} \qquad 11. \sum_{n=1}^{\infty} \frac{n + 2^n}{n + 3^n} \qquad 15. \sum_{n=1}^{\infty} \frac{2n^2 - 1}{n^2 \cdot 3^n} \qquad 19. \sum_{n=1}^{\infty} \arctan \frac{1}{n^2 + n + 1}$$

$$4. \sum_{n=1}^{\infty} \frac{10n^2}{n^4 + 1} \qquad 8. \sum_{n=1}^{\infty} \frac{1}{n - \ln n} \qquad 12. \sum_{n=1}^{\infty} \frac{1}{5^n + 3^n} \qquad 16. \sum_{n=1}^{\infty} \frac{2 + \sin n}{n^2} \qquad 20. \sum_{n=1}^{\infty} \ln \left(1 + \frac{3}{n^2 + 4n}\right)$$

5. Determine wether or not the following alternating series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 2}}$$
5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$
7.
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$$
9.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$$
2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{3n^2 + 2}$$
4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n!}{\sqrt{n}}$$
6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
10.
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/2}}$$

6. Using the root test or the ratio test, determine wether the following series are convergent or divergent.

$$1. \sum_{n=1}^{\infty} \frac{n!}{n^n} \qquad 3. \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \qquad 5. \sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^n \qquad 7. \sum_{n=1}^{\infty} \frac{a^n}{n^2}, a \in \mathbb{R} \qquad 9. \sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^n, a > 0$$

$$2. \sum_{n=1}^{\infty} 3^{-\sqrt{n^2 - 2}} \qquad 4. \sum_{n=1}^{\infty} \frac{(n!)^2 n^2}{(2n)!} \qquad 6. \sum_{n=1}^{\infty} \frac{3^n}{n!n} \qquad 8. \sum_{n=1}^{\infty} \frac{(an)^n}{n!}, a \in \mathbb{R} \ 10. \sum_{n=1}^{\infty} \left(\frac{an+1}{bn+2}\right)^n, a, b > 0$$

Extra exercise

7. Determine wether the following series are absolutely convergent, simply convergent or divergent.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, p \in \mathbb{R}$$
 3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+1)}}$$
 5.
$$\sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$
 7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$$
 9.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{3^{n^2}}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$$
 4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt[n]{n}}$$
 6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n}$$
 8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt[n]{n}}$$
 10.
$$\sum_{n=1}^{\infty} \frac{(n+2)!}{3^n (n!)^2}$$