
CALCULUS HANDOUT 2 - SERIES: definitions, properties, theorems

An infinite series is an expression of the form

∞∑
n=1

an = a1 + a2 + ...+ an + ...

where (an) is a sequence of real numbers. The number an is called the n-th term of the series.

The n-th partial sum sn of the series
∑
an is the sum of its first n terms: sn = a1 + a2 + · · ·+ an.

If (sn) is a convergent sequence then the series
∑
an is said to be convergent.

If (sn) is a divergent sequence then the series
∑
an is called divergent.

The sum of an infinite series is the limit of its sequence of finite sums: S =

∞∑
n=1

an = lim
n→∞

sn.

The series
∑
an is called absolutely convergent if the series

∑
|an| is convergent.

! Remark: absolute convergence implies convergence (but the converse is not true!)

♠ Geometric series:

The series

∞∑
n=0

arn (a 6= 0) converges if and only if |r| < 1. In this case, its sum is S =

∞∑
n=0

arn =
a

1− r
.

Vanishing condition: If
∑
an is convergent, then lim

n→∞
an = 0.

! Remark: If lim
n→∞

an 6= 0 or this limit does not exist, then the infinite series
∑
an is divergent.

! Remark: The converse of the vanishing condition is not true! (the harmonic series

∞∑
n=1

1

n
is divergent)

Cauchy’s criterion for the convergence of a series:
The series

∑
an converges if and only if for any ε > 0 there exists N such that for n ≥ N and p ≥ 1 the

following inequality holds: |an+1 + an+2 + · · ·+ an+p| < ε.

Termwise addition and multiplication:
If the series

∑
an and

∑
bn converge, then the series

∑
(an + bn) and

∑
can (with c ∈ R) converge and

1.
∑

(an + bn) =
∑
an +

∑
bn

2.
∑
can = c

∑
an

CONVERGENCE TESTS FOR SERIES

Integral test:

Let f : R1
+ → R1

+ be a decreasing function and let an = f(n) for each n ∈ N. Let jn =

∫ n

1

f(x) dx. The

series
∑
an converges if and only if the sequence (jn) converges.

♠ Harmonic series: The series

∞∑
n=1

1

np
converges if and only if p > 1.

Comparison test I:
Suppose that 0 ≤ an ≤ bn for all n ∈ N. Then:
1. If

∑
bn is convergent then

∑
an is convergent.

2. If
∑
an is divergent then

∑
bn is divergent.

Comparison test II:

Suppose that
∑
an and

∑
bn are positive-term series such that lim

n→∞

an
bn

= L ∈ (0,∞).

Then,
∑
an converges if and only if

∑
bn converges.

Alternating series test (Leibnitz):
If (bn) is a decreasing sequence and lim

n→∞
bn = 0 then the alternating series

∑
(−1)n · bn converges.

Ratio test:

Suppose that the limit L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists or is infinite. Then the series
∑
an

1. is absolutely convergent if L < 1;
2. is divergent if L > 1.
If L = 1, the ratio test is inconclusive.
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Root test:
Suppose that the limit L = lim

n→∞
n
√
|an| exists or is infinite. Then the series

∑
an

1. is absolutely convergent if L < 1;
2. is divergent if L > 1.
If L = 1, the root test is inconclusive.

CALCULUS HANDOUT 2 - SERIES: examples

Ex. 1: We express the n-th partial sum of the infinite series and find the sum of the series:
∞∑

n=1

1

n(n+ 1)
.

Solution:

We can easily see that
1

k(k + 1)
=

1

k
− 1

k + 1
. (check!)

Then

k = 1⇒ 1

1 · 2
= 1− 1

2

k = 2⇒ 1

2 · 3
=

1

2
− 1

3

k = 3⇒ 1

3 · 4
=

1

3
− 1

4
...

k = n− 1⇒ 1

(n− 1)n
=

1

n− 1
− 1

n

k = n⇒ 1

n(n+ 1)
=

1

n
− 1

n+ 1

The n-th partial sum of the series is

⇒ Sn = 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ ...+

1

n− 1
− 1

n
+

1

n
− 1

n+ 1

= 1− 1

n− 1

The sum of the series is

s = lim
n→∞

Sn = lim
n→∞

(
1− 1

n+ 1

)
= lim

n→∞
1− lim

n→∞

1

n+ 1
= 1− 0 = 1.

Remark: Because s = 1 <∞, we have that
∞∑

n=1

1

n(n+ 1)
is convergent.

Ex. 2: We study the convergence of the series: a)
∞∑

n=1
(arcsin1)n ; b)

∞∑
n=1

2n2

3n2 + 1
.

Solution:

a) The series
∞∑

n=1
(arcsin1)n =

∞∑
n=1

(π
2

)n
is a geometric series with r =

π

2
.

As |r| =
∣∣∣π
2

∣∣∣ =
π

2
> 1, it follows that

∞∑
n=1

(arcsin1)nis divergent.

b) Because lim
n→∞

2n2

3n2 + 1
= lim

n→∞

2n2

n2
(

3 +
1

n2

) = lim
n→∞

2

3 +
1

n2

=
2

3 + 0
=

2

3
6= 0 it results that

∞∑
n=1

2n2

3n2 + 1
is divergent.

Ex. 3: We study the convergence of the series: a)
∞∑

n=1

1

n2
; b)

∞∑
n=2

1

n lnn
using the integral test.

Solution:

a) Let f : R+ → R+, f(x) =
1

x2
. We can easily see that f is decreasing (check!) and f(n) =

1

n2
. We

compute
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jn =
n∫
1

f(x)dx =
n∫
1

1

x2
dx = − 1

x

∣∣∣n
1

= − 1

n
+ 1

lim
n→∞

jn = lim
n→∞

(
− 1

n
+ 1

)
= − lim

n→∞

1

n
+ lim

n→∞
1 = −0 + 1 = 1

Because lim
n→∞

jn = 1 <∞, we have that (jn) is a convergent sequence and, by applying the integral test,

we obtain that
∞∑

n=1

1

n2
is convergent.

b) Let f : R+ → R+, f(x) =
1

x lnx
. We can easily see that f is decreasing (check!) and f(n) =

1

n lnn
.

We compute

jn =
n∫
2

f(x)dx =
n∫
2

1

x lnx
dx = ln(lnx)

∣∣∣n
2

= ln(lnn)− ln(ln 2)

lim
n→∞

jn = lim
n→∞

(ln(lnn)− ln(ln 2)) = lim
n→∞

ln(ln 2)− lim
n→∞

ln(ln 2) =∞− ln(ln 2) =∞

As lim
n→∞

jn =∞, is results that (jn) is a convergent sequence and, by applying the integral test, we obtain

that
∞∑

n=2

1

n lnn
is divergent.

Ex. 4: We study the convergence of the series: a)
∞∑

n=1

1√
n(n+ 1)(n+ 3)

; b)
∞∑

n=1
5n sin

1

7n
.

Solution:

a) Denote an =
1√

n(n+ 1)(n+ 3)
=

1√
n3 + 4n2 + 3n

. We can easily see that 0 < an =

1√
n3 + 4n2 + 3n

≤ 1√
n3

.

MI: As
∞∑

n=1

1√
n3

=
∞∑

n=1

1

n
3
2

is a harmonic series with p =
3

2
> 1, it follows that

∞∑
n=1

1√
n3

is convergent

and, by applying the comparison test I, we have that
∞∑

n=1
an is convergent.

MII: We compute

l = lim
n→∞

1√
n3 + 4n2 + 3n

1√
n3

= lim
n→∞

√
n3√

n3 + 4n2 + 3n
= lim

n→∞

√
n3√

n3
(

1 +
4

n
+

3

n2

)
= lim

n→∞

√
n3

√
n3 ·

√
1 +

4

n
+

3

n2

= lim
n→∞

1√
1 +

4

n
+

3

n2

=
1√

1 + 0 + 0
=

1

1
= 1

As l = 1 ∈ (0,∞) and
∞∑

n=1

1√
n3

is a convergent series (harmonic series with p =
3

2
> 1), by applying the

comparison test II, it results that
∞∑

n=1
an is also convergent.

b) Denote an = 5n sin
1

7n
.

MI: Because 0 ≤ sinx ≤ x, x ∈
(

0,
π

2

)
and

1

7n
∈
(

0,
π

2

)
, for any n ≥ 1, we obtain

0 ≤ sin
1

7n
≤ 1

7n

∣∣∣ · 5n ⇔ 0 ≤ 5n sin
1

7n
≤ 5n

7n
⇔ 0 ≤ an ≤

(
5

7

)n

.

As
∞∑

n=1

(
5

7

)n

is a convergent series (geometric series with |r| =
∣∣∣5
7

∣∣∣ =
5

7
< 1), by applying the comparison

test I, we have that
∞∑

n=1
an is convergent.

MII: Recall that lim
x→0

sinx

x
= 1 and we have that

1

7n
→ 0. We compute
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l = lim
n→∞

5n sin
1

7n
5n

7n

= lim
n→∞

5n · 7n

5n
· sin 1

7n
= lim

n→∞

sin
1

7n
1

7n

= 1.

As l = 1 ∈ (0,∞) and
∞∑

n=1

(
5

7

)n

is convergent, by applying the comparison test II, is follows that
∞∑

n=1
an

is a convergent series.

Ex. 5: We study the convergence of the alternating series
∞∑

n=1

(−1)n

3n
.

Solution:

Denote bn =
1

3n
. We can easily see that bn > 0, for any n ≥ 1 and (bn) is a decreasing sequence, as

bn+1

bn
=

1

3n+1

1

3n

=
3n

3n+1 =
3n

3n · 3

=
1

3
< 1.

Furthermore, lim
n→∞

bn = lim
n→∞

1

3n
= 0.

Then, by applying Leibnitz’ test for alternating series, we obtain that
∞∑

n=1
(−1)n · bn is convergent.

Ex. 6: We study the convergence of the series: a)
∞∑

n=1

(n+ 3)!

2n((n+ 1)!)2
; b)

∞∑
n=1

(
√
n2 + 3n− n)n.

Solution:

a) Denote an =
(n+ 3)!

2n((n+ 1)!)2
and observe that an > 0, for any n ≥ 1. We compute

l = lim
n→∞

an+1

an
= lim

n→∞

(n+ 4)!

2n+1((n+ 2)!)2
· 2n((n+ 1)!)2

(n+ 3)!
= lim

n→∞

(n+ 3)!(n+ 4)

2n · 2((n+ 1)!)2(n+ 2)2
· 2n((n+ 1)!)2

(n+ 3)!

= lim
n→∞

n+ 4

2(n+ 2)2
= lim

n→∞

n

(
1 +

4

n

)
2n2

(
1 +

2

n
+

1

n2

) = lim
n→∞

1 +
4

n

2n

(
1 +

2

n
+

1

n2

) = 0

As l = 0 < 1, by applying the ratio test, it follows that
∞∑

n=1
an is convergent.

b) Denote an = (
√
n2 + 3n− n)n and observe that an > 0, for any n ≥ 1. We compute

l = lim
n→∞

n
√
an = lim

n→∞

n

√
(
√
n2 + 3n− n)n = lim

n→∞
(
√
n2 + 3n− n) = lim

n→∞

(
√
n2 + 3n− n)(

√
n2 + 3n+ n)√

n2 + 3n+ n

= lim
n→∞

(
√
n2 + 3n)2 − n2√
n2 + 3n+ n

= lim
n→∞

n2 + 3n− n2√
n2 + 3n+ n

= lim
n→∞

3n√
n2 + 3n+ n

= lim
n→∞

3n√
n2
(

1 +
3

n

)
+ n

= lim
n→∞

3n

√
n2 ·

√
1 +

3

n
+ n

= lim
n→∞

3n

n

√
1 +

3

n
+ n

= lim
n→∞

3n

n

(√
1 +

3

n
+ 1

) = lim
n→∞

3√
1 +

3

n
+ 1

=
3√

1 + 0 + 1
=

3

2

As l =
3

2
> 1, by applying the root test, we have that

∞∑
n=1

an is divergent.
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CALCULUS HANDOUT 2 - SERIES: exercises

1. Express the n-th partial sum of the infinite series and find the sum of the series.

1.

∞∑
n=1

√
n+ 1−

√
n√

n2 + n

2.

∞∑
n=1

1

4n2 − 1

3.

∞∑
n=1

1

n2 − 1

4.

∞∑
n=1

2n+ 1

n2(n+ 1)2

5.

∞∑
n=1

ln
n+ 1

n

6.

∞∑
n=1

1

n(n+ 2)

7.

∞∑
n=1

2

n(n+ 1)(n+ 2)

8.

∞∑
n=1

6n

n4 − 5n2 + 4

9.

∞∑
n=1

1

9n2 + 3n− 2

10.

∞∑
n=1

1

16n2 − 8n− 3

2. Determine wether the following series converges or diverges.

1.

∞∑
n=1

(−1)n

sin 1
n

2.

∞∑
n=1

(−1)nn

n+ 1

3.

∞∑
n=1

(−1)n
(

3

e

)n

4.

∞∑
n=1

√
n

ln(n+ 1)

5.

∞∑
n=1

(
2

n
− 1

2n

)
6.

∞∑
n=1

1 + 2n + 5n

3n

7.

∞∑
n=1

1

5n + 3n

8.

∞∑
n=1

1

lnn

9.

∞∑
n=1

(arctan 1)n

10.

∞∑
n=1

[(
7

11

)n

−
(

3

5

)n]
3. Use the integral test to test the following series for convergence.

1.

∞∑
n=1

n2

en
2.

∞∑
n=1

lnn

n2
3.

∞∑
n=1

arctann

n2 + 1
4.

∞∑
n=1

21/n

n2
5.

∞∑
n=1

1

n(lnn)p
, p ∈ R

4. Use comparison tests to determine wether the following series converge or diverge.

1.

∞∑
n=1

1

n2 + n+ 1

2.

∞∑
n=1

n3 + 1

n4 + 2

3.

∞∑
n=1

1

n+ n3/2

4.

∞∑
n=1

10n2

n4 + 1

5.

∞∑
n=1

1√
n2 + 1

6.

∞∑
n=1

√
n

n2 + n

7.

∞∑
n=1

1

lnn

8.

∞∑
n=1

1

n− lnn

9.

∞∑
n=1

sin2 n

n2 + 1

10.

∞∑
n=1

cos2 n

3n

11.

∞∑
n=1

n+ 2n

n+ 3n

12.

∞∑
n=1

1

5n + 3n

13.

∞∑
n=1

e1/n

n

14.

∞∑
n=1

lnn

n2

15.

∞∑
n=1

2n2 − 1

n2 · 3n

16.

∞∑
n=1

2 + sinn

n2

17.

∞∑
n=1

3n sin
π

5n

18.

∞∑
n=1

(n+ 1)n

nn+1

19.

∞∑
n=1

arctan
1

n2 + n+ 1

20.

∞∑
n=1

ln

(
1 +

3

n2 + 4n

)
5. Determine wether or not the following alternating series converge or diverge.

1.

∞∑
n=1

(−1)n

n2

2.

∞∑
n=1

(−1)nn

3n2 + 2

3.

∞∑
n=1

(−1)nn√
n2 + 2

4.

∞∑
n=1

(−1)n lnn√
n

5.

∞∑
n=1

(−1)nn

2n

6.

∞∑
n=1

(−1)n

n
√

2

7.

∞∑
n=1

(−1)n sin
1

n

8.

∞∑
n=1

(−1)n

n
√
n

9.

∞∑
n=1

(−1)nn!

(2n)!

10.

∞∑
n=1

cos(nπ)

n3/2

6. Using the root test or the ratio test, determine wether the following series are convergent or divergent.

1.

∞∑
n=1

n!

nn

2.

∞∑
n=1

3−
√

n2−2

3.

∞∑
n=1

(n!)2

(2n)!

4.

∞∑
n=1

(n!)2n2

(2n)!

5.

∞∑
n=1

(
lnn

n

)n

6.

∞∑
n=1

3n

n!n

7.

∞∑
n=1

an

n2
, a ∈ R

8.

∞∑
n=1

(an)n

n!
, a ∈ R

9.

∞∑
n=1

an
(

1 +
1

n

)n

, a > 0

10.

∞∑
n=1

(
an+ 1

bn+ 2

)n

, a, b > 0

Extra exercise

7. Determine wether the following series are absolutely convergent, simply convergent or divergent.

1.
∞∑

n=1

(−1)n

np
, p ∈ R

2.

∞∑
n=1

(−1)n lnn

n

3.

∞∑
n=1

(−1)n√
n(n+ 1)

4.

∞∑
n=1

(−1)n

n n
√
n

5.

∞∑
n=1

(−10)n

n!

6.

∞∑
n=1

(−1)n sinn

n

7.

∞∑
n=1

(−1)n

nn

8.

∞∑
n=1

(−1)n

n n
√
n

9.

∞∑
n=1

(−1)nnn

3n2

10.
∞∑

n=1

(n+ 2)!

3n(n!)2
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