CALCULUS HANDOUT 2-SERIES: definitions, properties, theorems

An infinite series is an expression of the form $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\ldots+a_{n}+\ldots$
where $\left(a_{n}\right)$ is a sequence of real numbers. The number a_{n} is called the \boldsymbol{n}-th term of the series.
The \boldsymbol{n}-th partial sum s_{n} of the series $\sum a_{n}$ is the sum of its first n terms: $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. If $\left(s_{n}\right)$ is a convergent sequence then the series $\sum a_{n}$ is said to be convergent.
If $\left(s_{n}\right)$ is a divergent sequence then the series $\sum a_{n}$ is called divergent.
The sum of an infinite series is the limit of its sequence of finite sums: $S=\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}$.
The series $\sum a_{n}$ is called absolutely convergent if the series $\sum\left|a_{n}\right|$ is convergent.
! Remark: absolute convergence implies convergence (but the converse is not true!)
A Geometric series:
The series $\sum_{n=0}^{\infty} a r^{n}(a \neq 0)$ converges if and only if $|r|<1$. In this case, its sum is $S=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$.
Vanishing condition: If $\sum a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
! Remark: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or this limit does not exist, then the infinite series $\sum a_{n}$ is divergent.
! Remark: The converse of the vanishing condition is not true! (the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent)
Cauchy's criterion for the convergence of a series:
The series $\sum a_{n}$ converges if and only if for any $\varepsilon>0$ there exists N such that for $n \geq N$ and $p \geq 1$ the following inequality holds: $\left|a_{n+1}+a_{n+2}+\cdots+a_{n+p}\right|<\varepsilon$.
Termwise addition and multiplication:
If the series $\sum a_{n}$ and $\sum b_{n}$ converge, then the series $\sum\left(a_{n}+b_{n}\right)$ and $\sum c a_{n}$ (with $c \in \mathbb{R}$) converge and

1. $\sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n}$
2. $\sum c a_{n}=c \sum a_{n}$

CONVERGENCE TESTS FOR SERIES

Integral test:

Let $f: \mathbb{R}_{+}^{1} \rightarrow \mathbb{R}_{+}^{1}$ be a decreasing function and let $a_{n}=f(n)$ for each $n \in \mathbb{N}$. Let $j_{n}=\int_{1}^{n} f(x) d x$. The series $\sum a_{n}$ converges if and only if the sequence $\left(j_{n}\right)$ converges.
© Harmonic series: The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$.

Comparison test I:

Suppose that $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$. Then:

1. If $\sum b_{n}$ is convergent then $\sum a_{n}$ is convergent.
2. If $\sum a_{n}$ is divergent then $\sum b_{n}$ is divergent.

Comparison test II:
Suppose that $\sum a_{n}$ and $\sum b_{n}$ are positive-term series such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \in(0, \infty)$.
Then, $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
Alternating series test (Leibnitz):
If $\left(b_{n}\right)$ is a decreasing sequence and $\lim _{n \rightarrow \infty} b_{n}=0$ then the alternating series $\sum(-1)^{n} \cdot b_{n}$ converges.

Ratio test:

Suppose that the limit $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists or is infinite. Then the series $\sum a_{n}$

1. is absolutely convergent if $L<1$;
2. is divergent if $L>1$.

If $L=1$, the ratio test is inconclusive.

Root test:

Suppose that the limit $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists or is infinite. Then the series $\sum a_{n}$

1. is absolutely convergent if $L<1$;

2 . is divergent if $L>1$.
If $L=1$, the root test is inconclusive.

CALCULUS HANDOUT 2-SERIES: examples

Ex. 1: We express the n-th partial sum of the infinite series and find the sum of the series: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
Solution:
We can easily see that $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$. (check!)
Then
$k=1 \Rightarrow \frac{1}{1 \cdot 2}=1-\frac{1}{2}$
$k=2 \Rightarrow \frac{1}{2 \cdot 3}=\frac{1}{2}-\frac{1}{3}$
$k=3 \Rightarrow \frac{1}{3 \cdot 4}=\frac{1}{3}-\frac{1}{4}$
$k=n-1 \Rightarrow \frac{1}{(n-1) n}=\frac{1}{n-1}-\frac{1}{n}$
$k=n \Rightarrow \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
The n-th partial sum of the series is
$\Rightarrow S_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1}$
$=1-\frac{1}{n-1}$
The sum of the series is
$s=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n+1}=1-0=1$.
Remark: Because $s=1<\infty$, we have that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent.
Ex. 2: We study the convergence of the series: a) $\sum_{n=1}^{\infty}(\arcsin 1)^{n}$; b) $\sum_{n=1}^{\infty} \frac{2 n^{2}}{3 n^{2}+1}$.
Solution:
a) The series $\sum_{n=1}^{\infty}(\arcsin 1)^{n}=\sum_{n=1}^{\infty}\left(\frac{\pi}{2}\right)^{n}$ is a geometric series with $r=\frac{\pi}{2}$.

As $|r|=\left|\frac{\pi}{2}\right|=\frac{\pi}{2}>1$, it follows that $\sum_{n=1}^{\infty}(\arcsin 1)^{n}$ is divergent.
b) Because $\lim _{n \rightarrow \infty} \frac{2 n^{2}}{3 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}\left(3+\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{2}{3+\frac{1}{n^{2}}}=\frac{2}{3+0}=\frac{2}{3} \neq 0$ it results that $\sum_{n=1}^{\infty} \frac{2 n^{2}}{3 n^{2}+1}$ is divergent.
Ex. 3: We study the convergence of the series: a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} ; \quad$ b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ using the integral test.
Solution:
a) Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, f(x)=\frac{1}{x^{2}}$. We can easily see that f is decreasing (check!) and $f(n)=\frac{1}{n^{2}}$. We compute
$j_{n}=\int_{1}^{n} f(x) d x=\int_{1}^{n} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{n}=-\frac{1}{n}+1$
$\lim _{n \rightarrow \infty} j_{n}=\lim _{n \rightarrow \infty}\left(-\frac{1}{n}+1\right)=-\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} 1=-0+1=1$
Because $\lim _{n \rightarrow \infty} j_{n}=1<\infty$, we have that $\left(j_{n}\right)$ is a convergent sequence and, by applying the integral test, we obtain that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
b) Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, f(x)=\frac{1}{x \ln x}$. We can easily see that f is decreasing (check!) and $f(n)=\frac{1}{n \ln n}$. We compute
$j_{n}=\int_{2}^{n} f(x) d x=\int_{2}^{n} \frac{1}{x \ln x} d x=\left.\ln (\ln x)\right|_{2} ^{n}=\ln (\ln n)-\ln (\ln 2)$
$\lim _{n \rightarrow \infty} j_{n}=\lim _{n \rightarrow \infty}(\ln (\ln n)-\ln (\ln 2))=\lim _{n \rightarrow \infty} \ln (\ln 2)-\lim _{n \rightarrow \infty} \ln (\ln 2)=\infty-\ln (\ln 2)=\infty$
As $\lim _{n \rightarrow \infty} j_{n}=\infty$, is results that $\left(j_{n}\right)$ is a convergent sequence and, by applying the integral test, we obtain that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ is divergent.
Ex. 4: We study the convergence of the series: a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+3)}} ; \quad$ b) $\sum_{n=1}^{\infty} 5^{n} \sin \frac{1}{7^{n}}$.
Solution:
a) Denote $a_{n}=\frac{1}{\sqrt{n(n+1)(n+3)}}=\frac{1}{\sqrt{n^{3}+4 n^{2}+3 n}}$. We can easily see that $0<a_{n}=$ $\frac{1}{\sqrt{n^{3}+4 n^{2}+3 n}} \leq \frac{1}{\sqrt{n^{3}}}$.
MI: As $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is a harmonic series with $p=\frac{3}{2}>1$, it follows that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$ is convergent and, by applying the comparison test I, we have that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
MII: We compute

$$
\begin{aligned}
l & =\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{3}+4 n^{2}+3 n}}}{\frac{1}{\sqrt{n^{3}}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{3}}}{\sqrt{n^{3}+4 n^{2}+3 n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{3}}}{\sqrt{n^{3}\left(1+\frac{4}{n}+\frac{3}{n^{2}}\right)}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{n^{3}}}{\sqrt{n^{3}} \cdot \sqrt{1+\frac{4}{n}+\frac{3}{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{4}{n}+\frac{3}{n^{2}}}}=\frac{1}{\sqrt{1+0+0}}=\frac{1}{1}=1
\end{aligned}
$$

As $l=1 \in(0, \infty)$ and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$ is a convergent series (harmonic series with $p=\frac{3}{2}>1$), by applying the comparison test II, it results that $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
b) Denote $a_{n}=5^{n} \sin \frac{1}{7^{n}}$.

MI: Because $0 \leq \sin x \leq x, x \in\left(0, \frac{\pi}{2}\right)$ and $\frac{1}{7^{n}} \in\left(0, \frac{\pi}{2}\right)$, for any $n \geq 1$, we obtain $0 \leq \sin \frac{1}{7^{n}} \leq \frac{1}{7^{n}} \left\lvert\, \cdot 5^{n} \Leftrightarrow 0 \leq 5^{n} \sin \frac{1}{7^{n}} \leq \frac{5^{n}}{7^{n}} \Leftrightarrow 0 \leq a_{n} \leq\left(\frac{5}{7}\right)^{n}\right.$.
As $\sum_{n=1}^{\infty}\left(\frac{5}{7}\right)^{n}$ is a convergent series (geometric series with $|r|=\left|\frac{5}{7}\right|=\frac{5}{7}<1$), by applying the comparison test I, we have that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
MII: Recall that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and we have that $\frac{1}{7^{n}} \rightarrow 0$. We compute
$l=\lim _{n \rightarrow \infty} \frac{5^{n} \sin \frac{1}{7^{n}}}{\frac{5^{n}}{7^{n}}}=\lim _{n \rightarrow \infty} 5^{n} \cdot \frac{7^{n}}{5^{n}} \cdot \sin \frac{1}{7^{n}}=\lim _{n \rightarrow \infty} \frac{\sin \frac{1}{7^{n}}}{\frac{1}{7^{n}}}=1$.
As $l=1 \in(0, \infty)$ and $\sum_{n=1}^{\infty}\left(\frac{5}{7}\right)^{n}$ is convergent, by applying the comparison test II, is follows that $\sum_{n=1}^{\infty} a_{n}$ is a convergent series.
Ex. 5: We study the convergence of the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}}$.

Solution:

Denote $b_{n}=\frac{1}{3^{n}}$. We can easily see that $b_{n}>0$, for any $n \geq 1$ and $\left(b_{n}\right)$ is a decreasing sequence, as $\frac{b_{n+1}}{b_{n}}=\frac{\frac{1}{3^{n+1}}}{\frac{1}{3^{n}}}=\frac{3^{n}}{3^{n+1}=\frac{3^{n}}{3^{n} \cdot 3}}=\frac{1}{3}<1$.
Furthermore, $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{3^{n}}=0$.
Then, by applying Leibnitz' test for alternating series, we obtain that $\sum_{n=1}^{\infty}(-1)^{n} \cdot b_{n}$ is convergent.
Ex. 6: We study the convergence of the series: a) $\sum_{n=1}^{\infty} \frac{(n+3)!}{2^{n}((n+1)!)^{2}} ; \quad$ b) $\sum_{n=1}^{\infty}\left(\sqrt{n^{2}+3 n}-n\right)^{n}$.
Solution:
a) Denote $a_{n}=\frac{(n+3)!}{2^{n}((n+1)!)^{2}}$ and observe that $a_{n}>0$, for any $n \geq 1$. We compute

$$
\begin{aligned}
l & =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+4)!}{2^{n+1}((n+2)!)^{2}} \cdot \frac{2^{n}((n+1)!)^{2}}{(n+3)!}=\lim _{n \rightarrow \infty} \frac{(n+3)!(n+4)}{2^{n} \cdot 2((n+1)!)^{2}(n+2)^{2}} \cdot \frac{2^{n}((n+1)!)^{2}}{(n+3)!} \\
& =\lim _{n \rightarrow \infty} \frac{n+4}{2(n+2)^{2}}=\lim _{n \rightarrow \infty} \frac{n\left(1+\frac{4}{n}\right)}{2 n^{2}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{1+\frac{4}{n}}{2 n\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)}=0
\end{aligned}
$$

As $l=0<1$, by applying the ratio test, it follows that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
b) Denote $a_{n}=\left(\sqrt{n^{2}+3 n}-n\right)^{n}$ and observe that $a_{n}>0$, for any $n \geq 1$. We compute

$$
\begin{aligned}
l & =\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\sqrt{n^{2}+3 n}-n\right)^{n}}=\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+3 n}-n\right)=\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+3 n}-n\right)\left(\sqrt{n^{2}+3 n}+n\right)}{\sqrt{n^{2}+3 n}+n} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+3 n}\right)^{2}-n^{2}}{\sqrt{n^{2}+3 n}+n}=\lim _{n \rightarrow \infty} \frac{n^{2}+3 n-n^{2}}{\sqrt{n^{2}+3 n}+n}=\lim _{n \rightarrow \infty} \frac{3 n}{\sqrt{n^{2}+3 n}+n}=\lim _{n \rightarrow \infty} \frac{3 n}{\sqrt{n^{2}\left(1+\frac{3}{n}\right)}+n} \\
& =\lim _{n \rightarrow \infty} \frac{3 n}{\sqrt{n^{2}} \cdot \sqrt{1+\frac{3}{n}}+n}=\lim _{n \rightarrow \infty} \frac{3 n}{n \sqrt{1+\frac{3}{n}}+n}=\lim _{n \rightarrow \infty} \frac{3 n}{n\left(\sqrt{1+\frac{3}{n}}+1\right)}=\lim _{n \rightarrow \infty} \frac{3}{\sqrt{1+\frac{3}{n}}+1} \\
& =\frac{3}{\sqrt{1+0}+1}=\frac{3}{2}
\end{aligned}
$$

As $l=\frac{3}{2}>1$, by applying the root test, we have that $\sum_{n=1}^{\infty} a_{n}$ is divergent.

CALCULUS HANDOUT 2-SERIES: exercises

1. Express the n-th partial sum of the infinite series and find the sum of the series.
2. $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}$
3. $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$
4. $\sum_{n=1}^{\infty} \frac{1}{n^{2}-1}$
5. $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$
6. $\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$
7. $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
8. $\sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}$
9. $\sum_{n=1}^{\infty} \frac{6 n}{n^{4}-5 n^{2}+4}$
10. $\sum_{n=1}^{\infty} \frac{1}{9 n^{2}+3 n-2}$
11. $\sum_{n=1}^{\infty} \frac{1}{16 n^{2}-8 n-3}$
12. Determine wether the following series converges or diverges.
13. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sin \frac{1}{n}}$
14. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+1}$
15. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{3}{e}\right)^{n}$
16. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln (n+1)}$
17. $\sum_{n=1}^{\infty}\left(\frac{2}{n}-\frac{1}{2^{n}}\right)$
18. $\sum_{n=1}^{\infty} \frac{1+2^{n}+5^{n}}{3^{n}}$
19. $\sum_{n=1}^{\infty} \frac{1}{5^{n}+3^{n}}$
20. $\sum_{n=1}^{\infty} \frac{1}{\ln n}$
21. $\sum_{n=1}^{\infty}(\arctan 1)^{n}$
22. $\sum_{n=1}^{\infty}\left[\left(\frac{7}{11}\right)^{n}-\left(\frac{3}{5}\right)^{n}\right]$
23. Use the integral test to test the following series for convergence.
24. $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n}}$
25. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
26. $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{2}+1}$
27. $\sum_{n=1}^{\infty} \frac{2^{1 / n}}{n^{2}}$
28. $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{p}}, p \in \mathbb{R}$
29. Use comparison tests to determine wether the following series converge or diverge.
30. $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n+1}$
31. $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{4}+2}$
32. $\sum_{n=1}^{\infty} \frac{1}{n+n^{3 / 2}}$
33. $\sum_{n=1}^{\infty} \frac{10 n^{2}}{n^{4}+1}$
34. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$
35. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+n}$
36. $\sum_{n=1}^{\infty} \frac{1}{\ln n}$
37. $\sum_{n=1}^{\infty} \frac{1}{n-\ln n}$
38. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}+1}$
39. $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$
40. $\sum_{n=1}^{\infty} \frac{n+2^{n}}{n+3^{n}}$
41. $\sum_{n=1}^{\infty} \frac{1}{5^{n}+3^{n}}$
42. $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n}$
43. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
44. $\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{n^{2} \cdot 3^{n}}$
45. $\sum_{n=1}^{\infty} \frac{2+\sin n}{n^{2}}$
46. $\sum_{n=1}^{\infty} 3^{n} \sin \frac{\pi}{5^{n}}$
47. $\sum_{n=1}^{\infty} \frac{(n+1)^{n}}{n^{n+1}}$
48. $\sum_{n=1}^{\infty} \arctan \frac{1}{n^{2}+n+1}$
49. $\sum_{n=1}^{\infty} \ln \left(1+\frac{3}{n^{2}+4 n}\right)$
50. Determine wether or not the following alternating series converge or diverge.
51. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
52. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3 n^{2}+2}$
53. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{2}+2}}$
54. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{\sqrt{n}}$
55. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2^{n}}$
56. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[n]{2}}$
57. $\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{1}{n}$
58. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[n]{n}}$
59. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(2 n)!}$
60. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{3 / 2}}$
61. Using the root test or the ratio test, determine wether the following series are convergent or divergent.
62. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
63. $\sum_{n=1}^{\infty} 3^{-\sqrt{n^{2}-2}}$
64. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
65. $\sum_{n=1}^{\infty} \frac{(n!)^{2} n^{2}}{(2 n)!}$
66. $\sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{n}$
67. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!n}$
68. $\sum_{n=1}^{\infty} \frac{a^{n}}{n^{2}}, a \in \mathbb{R}$
69. $\sum_{n=1}^{\infty} \frac{(a n)^{n}}{n!}, a \in \mathbb{R}$
70. $\sum_{n=1}^{\infty} a^{n}\left(1+\frac{1}{n}\right)^{n}, a>0$
71. $\sum_{n=1}^{\infty}\left(\frac{a n+1}{b n+2}\right)^{n}, a, b>0$

Extra exercise

7. Determine wether the following series are absolutely convergent, simply convergent or divergent.
8. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}, p \in \mathbb{R}$
9. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$
10. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n(n+1)}}$
11. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt[n]{n}}$
12. $\sum_{n=1}^{\infty} \frac{(-10)^{n}}{n!}$
13. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin n}{n}$
14. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{n}}$
15. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt[n]{n}}$
16. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{n}}{3^{n^{2}}}$
17. $\sum_{n=1}^{\infty} \frac{(n+2)!}{3^{n}(n!)^{2}}$
