CALCULUS HANDOUT 1 - SEQUENCES: definitions, properties, theorems

A sequence of real numbers is a function $n \mapsto a_n$ whose domain is the set of positive integers N and whose values belong to the set of real numbers \mathbb{R} . Usual notation: (a_n) .

- A sequence (a_n) is **increasing** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.
- A sequence (a_n) is **decreasing** if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$.

A sequence which is either increasing or decreasing is called **monotonic** sequence.

A sequence (a_n) is **bounded** if there exists a number M such that $|a_n| \leq M$ for all $n \in \mathbb{N}$.

The sequence of real numbers (a_n) converges to the real number L (or has the limit L) if for any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that $|a_n - L| < \varepsilon$ for any $n \ge N$.

 \rightarrow If (a_n) converges to L, then any subsequence (a_{n_k}) of the sequence (a_n) converges to L.

 \rightarrow Not every sequence has a limit (see for instance, the sequence $a_n = (-1)^n$).

- \rightarrow If the limit of a sequence (a_n) exists, then it is unique.
- \rightarrow If the sequence (a_n) converges to L, then it is bounded.

The limit of (a_n) is said to be $+\infty$ if for any M > 0 there is N_M such that $a_n > M$ for $n > N_M$. The limit of (a_n) is said to be $-\infty$ if for any M > 0 there is N_M such that $a_n < -M$ for $n > N_M$.

The set of limit points (denoted by $\mathcal{L}(a_n)$) of the sequence (a_n) is the collection of points $x \in \mathbb{R}$ for which there exists a subsequence (a_{n_k}) of the sequence (a_n) such that $\lim_{n_k \to \infty} a_{n_k} = x$.

 \rightarrow The sequence (a_n) converges and $\lim_{n \to +\infty} a_n = L$ if and only if $\mathcal{L}(a_n) = \{L\}$.

The limit superior of a sequence (a_n) is $\sup \mathcal{L}(a_n)$. It is usually denoted by $\limsup a_n$ or by $\lim_{n \to \infty} a_n$. The limit inferior of a sequence (a_n) is $\inf \mathcal{L}(a_n)$. It is usually is denoted by $\liminf a_n$ or $\lim a_n$.

Bounded monotonic sequence property:

Every bounded monotonic sequence converges (to a finite real number).

Bolzano-Weierstrass Theorem:

Any bounded sequence (a_n) of real numbers contains a convergent subsequence.

Limit laws for sequences:

If the limits $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$ exist (so A and B are real numbers) then: 1. (scalar product rule) $\lim_{n \to \infty} ca_n = cA$ for any $c \in \mathbb{R}$.

- 2. (sum rule) $\lim_{n \to \infty} (a_n + b_n) = A + B$
- 3. (product rule) $\lim_{n \to \infty} a_n b_n = AB$ 4. (quotient rule) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$ (assuming that $b_n \neq 0$ and $B \neq 0$)

Squeeze law for sequences:

If $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$ then $\lim_{n \to \infty} b_n = L$ as well.

L'Hospital rule for sequences:

Suppose that $a_n = f(n)$ and $b_n = g(n) \neq 0$ where f and g differentiable functions satisfying either **a.** $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0 \text{ or } \mathbf{b.} \quad \lim_{x \to \infty} f(x) = \pm \infty \text{ and } \lim_{x \to \infty} g(x) = \pm \infty.$ Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} \text{ (provided that the limit on the right hand side exists as a finite real number or is equal to <math>\pm \infty$).

Stolz-Cesaro Lemma:

If (a_n) and (b_n) are two sequences such that (b_n) is positive, strictly increasing and unbounded, then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$ (provided that the limit on the right hand side exists).

Cauchy-d'Alembert Lemma:

If (a_n) is a sequence of positive real numbers then $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \sqrt[n]{a_n}$ (provided that one of the two limits exist).

CALCULUS HANDOUT 1 - SEQUENCES: examples

Ex. 1: Let's prove rigorously, based on the definition, that $a_n = \frac{1}{\sqrt{n}}$ converges to 0.

Solution:

Let $\varepsilon > 0$.

Then

$$\left|\frac{1}{\sqrt{n}} - 0\right| < \varepsilon \Leftrightarrow \frac{1}{\sqrt{n}} < \varepsilon\right|^2 \Leftrightarrow \frac{1}{n} < \varepsilon^2 \Leftrightarrow n > \frac{1}{\varepsilon^2}.$$

Consider $N(\varepsilon) = \left[\frac{1}{\varepsilon^2}\right] + 1.$

Then, for any $\varepsilon > 0$, there exists $N = N(\varepsilon) = \left[\frac{1}{\varepsilon^2}\right] + 1 \in \mathbb{N}$ such that for any $n \in \mathbb{N}, n \ge N$, we have

$$\left|a_n - 0\right| < \varepsilon.$$

Thus, $\lim_{n \to \infty} a_n = 0.$

Ex. 2: We compute
$$\lim_{n \to \infty} \frac{3n^2 - 1}{5n^2 + 10n}$$
.

Solution:

$$\lim_{n \to \infty} \frac{3n^2 - 1}{5n^2 + 10n} = \lim_{n \to \infty} \frac{n^2 \left(3 - \frac{1}{n^2}\right)}{n^2 \left(5 + \frac{10}{n}\right)} = \lim_{n \to \infty} \frac{3 - \frac{1}{n^2}}{5 + \frac{10}{n}} = \frac{3}{5}$$

Ex. 3: We compute $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} a_n$ for the sequence $a_n = (-1)^n$.

Solution:

$$n = 2k \qquad \Rightarrow a_{2k} = (-1)^{2k} = 1 \underset{n \to \infty}{\longrightarrow} 1$$
$$n = 2k + 1 \Rightarrow a_{2k+1} = (-1)^{2k+1} = -1 \underset{n \to \infty}{\longrightarrow} -1$$

The set of limit points is $\mathcal{L}(a_n) = \{-1, 1\}.$

Then

$$\lim_{n \to \infty} a_n = \inf \mathcal{L}(a_n) = \inf \{-1, 1\} = -1$$
$$\lim_{n \to \infty} a_n = \sup \mathcal{L}(a_n) = \sup \{-1, 1\} = 1$$

Remark: As $\lim_{n \to \infty} a_n = -1 \neq 1 = \overline{\lim_{n \to \infty}} a_n$, it follows that $\lim_{n \to \infty} a_n$ doesn't exist.

Ex. 4: We compute
$$\lim_{n \to \infty} \frac{\cos n}{2^n}$$
. Solution:

Let $n \in \mathbb{N}$. Then

$$-1 \le \cos n^2 \le 1 \left| \left| \frac{1}{2^n} \right| \le \frac{1}{2^n} \le -\frac{1}{2^n} \le \frac{1}{2^n} \le \frac{1}{2^n}$$
As $\lim_{n \to \infty} \left(-\frac{1}{2^n} \right) = \lim_{n \to \infty} \frac{1}{2^n} = 0$, applying the squeeze rule, it follows that $\lim_{n \to \infty} \frac{\cos n^2}{2^n} = 0$.

Ex. 5: We compute $\lim_{n \to \infty} a_n$, where $a_n = \frac{e^{2n}}{n}$.

Solution:

Let $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{e^{2x}}{x}$. We can easily see that $f(n) = a(n) = a_n$.

Then, applying l'Hospital's rule, we obtain

$$\lim_{n \to \infty} \frac{e^{2n}}{n} = \lim_{x \to \infty} \frac{e^{2x}}{x} = \lim_{x \to \infty} \frac{2e^{2x}}{1} = +\infty.$$

Ex. 6: We compute
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n}$$
.

Solution:

Denote $a_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$ and $b_n = n$.

We have that $b_n \nearrow \infty$ (exercise-prove it).

Then, applying the Stolz-Cesaro lemma, it follows that

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{n} = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} =$$

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)}{n+1-n} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Ex. 7: We compute $\lim_{n \to \infty} \sqrt[n]{n^2}$.

Solution:

Denote $a_n = n^2$.

Then, for any $n \in \mathbb{N}$, we have $a_n \ge 0$.

Applying Cauchy-d'Alembert's lemma, we obtain

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) = \lim_{n \to \infty} 1 + 2\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^2} = 1 + 2 \cdot 0 + 0 = 1.$$

CALCULUS HANDOUT 1 - SEQUENCES: exercises

- Prove rigorously that the sequence a_n = ¹/_n is convergent to 0.
 Prove rigorously that the sequence a_n = ²ⁿ/_{5n-3} is convergent to ²/₅.
- 3. Prove rigorously that the sequence $a_n = 1 + \left(\frac{9}{10}\right)^n$ is convergent to 1.
- 4. Compute the limits of the following sequences:

$$1. \ a_{n} = \left(1 - \frac{2}{n^{2}}\right)^{n}$$

$$8. \ a_{n} = \frac{1}{n+1} \left(\frac{1}{\ln 2} + \frac{1}{\ln 3} + \dots + \frac{1}{\ln(n+2)}\right)$$

$$9. \ a_{n} = \frac{1}{n+1} \sum_{k=1}^{n+1} \frac{1}{k}$$

$$9. \ a_{n} = \frac{1}{n+1} \sum_{k=1}^{n+1} \frac{1}{k}$$

$$10. \ a_{n} = \frac{1^{p} + 2^{p} + \dots + n^{p}}{n^{p+1}}, \ p \in \mathbb{N}$$

$$11. \ a_{n} = \sqrt[n]{n}$$

$$12. \ a_{n} = \sqrt[n]{n!}$$

$$13. \ a_{n} = \sqrt[n]{\frac{(n!)^{2}}{(2n+1)!}}$$

$$14. \ a_{n} = \frac{1}{n} \sqrt{(n+1)(n+2)\cdots(2n-1)}$$

5. Find $\liminf_{n\to\infty} x_n$ and $\limsup_{n\to\infty} x_n$ for each of the following sequences:

1.
$$a_n = \begin{cases} 0, & n = 2k + 1 \\ 1, & n = 2k \end{cases}$$

2. $a_n = \begin{cases} 1, & n = 3k \\ \frac{1}{n}, & n = 3k + 1 \\ n, & n = 3k + 2 \end{cases}$
3. $a_n = \cos(n\pi)$
4. $a_n = \frac{n}{n+1} \sin^2\left(\frac{n\pi}{4}\right)$
5. $a_n = \frac{[na]}{n+1}, a \in \mathbb{R}^*$
6. $a_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$
7. $a_n = \frac{n^{(-1)^n}}{n} + \sin^2\frac{n\pi}{4}$
8. $\cos^n\frac{2n\pi}{3}$

Extra exercises

6. Let (F_n) be the Fibonacci sequence given by the recurrence relation $F_{n+2} = F_{n+1} + F_n$, with $F_0 = F_1 = 1$. Show that $\lim_{n \to \infty} \frac{F_{n+1}}{F_n}$ exists and is equal to $\frac{1 + \sqrt{5}}{2}$.

7. Let the sequence (a_n) be defined recursively as follows:

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 4)$

Prove by induction that $a_n < 4$ for each n and that (a_n) is an increasing sequence. Find the limit of this sequence.