CALCULUS HANDOUT 1-SEQUENCES: definitions, properties, theorems

A sequence of real numbers is a function $n \mapsto a_{n}$ whose domain is the set of positive integers \mathbb{N} and whose values belong to the set of real numbers \mathbb{R}. Usual notation: $\left(a_{n}\right)$.

A sequence $\left(a_{n}\right)$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$.
A sequence (a_{n}) is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.
A sequence which is either increasing or decreasing is called monotonic sequence.
A sequence $\left(a_{n}\right)$ is bounded if there exists a number M such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
The sequence of real numbers $\left(a_{n}\right)$ converges to the real number L (or has the limit L) if for any $\varepsilon>0$ there exists $N=N(\varepsilon) \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\varepsilon$ for any $n \geq N$.
\rightarrow If $\left(a_{n}\right)$ converges to L, then any subsequence $\left(a_{n_{k}}\right)$ of the sequence $\left(a_{n}\right)$ converges to L.
\rightarrow Not every sequence has a limit (see for instance, the sequence $\left.a_{n}=(-1)^{n}\right)$.
\rightarrow If the limit of a sequence $\left(a_{n}\right)$ exists, then it is unique.
\rightarrow If the sequence $\left(a_{n}\right)$ converges to L, then it is bounded.
The limit of $\left(a_{n}\right)$ is said to be $+\infty$ if for any $M>0$ there is N_{M} such that $a_{n}>M$ for $n>N_{M}$.
The limit of $\left(a_{n}\right)$ is said to be $-\infty$ if for any $M>0$ there is N_{M} such that $a_{n}<-M$ for $n>N_{M}$.
The set of limit points (denoted by $\mathcal{L}\left(a_{n}\right)$) of the sequence $\left(a_{n}\right)$ is the collection of points $x \in \mathbb{R}$ for which there exists a subsequence $\left(a_{n_{k}}\right)$ of the sequence $\left(a_{n}\right)$ such that $\lim _{n_{k} \rightarrow \infty} a_{n_{k}}=x$.
\rightarrow The sequence $\left(a_{n}\right)$ converges and $\lim _{n \rightarrow+\infty} a_{n}=L$ if and only if $\mathcal{L}\left(a_{n}\right)=\{L\}$.
The limit superior of a sequence $\left(a_{n}\right)$ is $\sup \mathcal{L}\left(a_{n}\right)$. It is usually denoted by $\limsup _{n \rightarrow \infty} a_{n}$ or by $\varlimsup_{n \rightarrow \infty} a_{n}$.
The limit inferior of a sequence $\left(a_{n}\right)$ is $\inf \mathcal{L}\left(a_{n}\right)$. It is usually is denoted by $\liminf _{n \rightarrow \infty} a_{n}$ or $\underset{n \rightarrow \infty}{\lim } a_{n}$.

Bounded monotonic sequence property:

Every bounded monotonic sequence converges (to a finite real number).

Bolzano-Weierstrass Theorem:

Any bounded sequence $\left(a_{n}\right)$ of real numbers contains a convergent subsequence.

Limit laws for sequences:

If the limits $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$ exist (so A and B are real numbers) then:

1. (scalar product rule) $\lim _{n \rightarrow \infty} c a_{n}=c A$ for any $c \in \mathbb{R}$.
2. (sum rule) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B$
3. (product rule) $\lim _{n \rightarrow \infty} a_{n} b_{n}=A B$
4. (quotient rule) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B}$ (assuming that $b_{n} \neq 0$ and $B \neq 0$)

Squeeze law for sequences:

If $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} c_{n}$ then $\lim _{n \rightarrow \infty} b_{n}=L$ as well.

L'Hospital rule for sequences:

Suppose that $a_{n}=f(n)$ and $b_{n}=g(n) \neq 0$ where f and g differentiable functions satisfying either
a. $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=0$ or b. $\lim _{x \rightarrow \infty} f(x)= \pm \infty$ and $\lim _{x \rightarrow \infty} g(x)= \pm \infty$. Then
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ (provided that the limit on the right hand side exists as a finite real number or is equal to $\pm \infty$).

Stolz-Cesaro Lemma:

If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are two sequences such that $\left(b_{n}\right)$ is positive, strictly increasing and unbounded, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ (provided that the limit on the right hand side exists).

Cauchy-d'Alembert Lemma:

If $\left(a_{n}\right)$ is a sequence of positive real numbers then $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ (provided that one of the two limits exist).

CALCULUS HANDOUT 1 - SEQUENCES: examples

Ex. 1: Let's prove rigorously, based on the definition, that $a_{n}=\frac{1}{\sqrt{n}}$ converges to 0 .

Solution:

Let $\varepsilon>0$.
Then
$\left|\frac{1}{\sqrt{n}}-0\right|<\varepsilon \Leftrightarrow \frac{1}{\sqrt{n}}<\left.\varepsilon\right|^{2} \Leftrightarrow \frac{1}{n}<\varepsilon^{2} \Leftrightarrow n>\frac{1}{\varepsilon^{2}}$.
Consider $N(\varepsilon)=\left[\frac{1}{\varepsilon^{2}}\right]+1$.
Then, for any $\varepsilon>0$, there exists $N=N(\varepsilon)=\left[\frac{1}{\varepsilon^{2}}\right]+1 \in \mathbb{N}$ such that for any $n \in \mathbb{N}, n \geq N$, we have $\left|a_{n}-0\right|<\varepsilon$.
Thus, $\lim _{n \rightarrow \infty} a_{n}=0$.
Ex. 2: We compute $\lim _{n \rightarrow \infty} \frac{3 n^{2}-1}{5 n^{2}+10 n}$.
Solution:
$\lim _{n \rightarrow \infty} \frac{3 n^{2}-1}{5 n^{2}+10 n}=\lim _{n \rightarrow \infty} \frac{n^{2}\left(3-\frac{1}{n^{2}}\right)}{n^{2}\left(5+\frac{10}{n}\right)}=\lim _{n \rightarrow \infty} \frac{3-\frac{1}{n^{2}}}{5+\frac{10}{n}}=\frac{3}{5}$

Ex. 3: We compute $\underset{n \rightarrow \infty}{\lim } a_{n}$ and $\varlimsup_{n \rightarrow \infty} a_{n}$ for the sequence $a_{n}=(-1)^{n}$.
Solution:
$n=2 k \quad \Rightarrow a_{2 k}=(-1)^{2 k}=1 \underset{n \rightarrow \infty}{\longrightarrow} 1$
$n=2 k+1 \Rightarrow a_{2 k+1}=(-1)^{2 k+1}=-1 \underset{n \rightarrow \infty}{\longrightarrow}-1$
The set of limit points is $\mathcal{L}\left(a_{n}\right)=\{-1,1\}$.
Then

$$
\begin{aligned}
& \varliminf_{n \rightarrow \infty} a_{n}=\inf \mathcal{L}\left(a_{n}\right)=\inf \{-1,1\}=-1 \\
& \varlimsup_{n \rightarrow \infty} a_{n}=\sup \mathcal{L}\left(a_{n}\right)=\sup \{-1,1\}=1
\end{aligned}
$$

Remark: As $\underset{n \rightarrow \infty}{\lim _{n}} a_{n}=-1 \neq 1=\varlimsup_{n \rightarrow \infty} a_{n}$, it follows that $\lim _{n \rightarrow \infty} a_{n}$ doesn't exist.
Ex. 4: We compute $\lim _{n \rightarrow \infty} \frac{\cos n^{2}}{2^{n}}$.

Solution:

Let $n \in \mathbb{N}$. Then

$$
-1 \leq \cos n^{2} \leq 1 \left\lvert\, \cdot \frac{1}{2^{n}}\right.
$$

$\Leftrightarrow-\frac{1}{2^{n}} \leq \frac{\cos n^{2}}{2^{n}} \leq \frac{1}{2^{n}}$
As $\lim _{n \rightarrow \infty}\left(-\frac{1}{2^{n}}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$, applying the squeeze rule, it follows that $\lim _{n \rightarrow \infty} \frac{\cos n^{2}}{2^{n}}=0$.

Ex. 5: We compute $\lim _{n \rightarrow \infty} a_{n}$, where $a_{n}=\frac{e^{2 n}}{n}$.
Solution:
Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\frac{e^{2 x}}{x}$.
We can easily see that $f(n)=a(n)=a_{n}$.
Then, applying l'Hospital's rule, we obtain
$\lim _{n \rightarrow \infty} \frac{e^{2 n}}{n}=\lim _{x \rightarrow \infty} \frac{e^{2 x}}{x}=\lim _{x \rightarrow \infty} \frac{2 e^{2 x}}{1}=+\infty$.
Ex. 6: We compute $\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{n}$.
Solution:
Denote $a_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$ and $b_{n}=n$.
We have that $b_{n} \nearrow \infty$ (exercise-prove it).
Then, applying the Stolz-Cesaro lemma, it follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{n}=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\ldots+\frac{1}{n}+\frac{1}{n+1}-\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)}{n+1-n}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0
\end{aligned}
$$

Ex. 7: We compute $\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}}$.

Solution:

Denote $a_{n}=n^{2}$.
Then, for any $n \in \mathbb{N}$, we have $a_{n} \geq 0$.
Applying Cauchy-d'Alembert's lemma, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)}{n^{2}}= \\
& \quad=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)=\lim _{n \rightarrow \infty} 1+2 \lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=1+2 \cdot 0+0=1 .
\end{aligned}
$$

CALCULUS HANDOUT 1-SEQUENCES: exercises

1. Prove rigorously that the sequence $a_{n}=\frac{1}{n}$ is convergent to 0 .
2. Prove rigorously that the sequence $a_{n}=\frac{2 n}{5 n-3}$ is convergent to $\frac{2}{5}$.
3. Prove rigorously that the sequence $a_{n}=1+\left(\frac{9}{10}\right)^{n}$ is convergent to 1 .
4. Compute the limits of the following sequences:
5. $a_{n}=\left(1-\frac{2}{n^{2}}\right)^{n}$
6. $a_{n}=\frac{\sin n}{3^{n}}$
7. $a_{n}=\frac{1+(-1)^{n}}{\sqrt{n}}$
8. $a_{n}=\frac{\ln n}{n^{x}}, x \in \mathbb{R}$
9. $a_{n}=\frac{n^{2005}}{(n+1)^{x}-n^{x}}, x>0$
10. $a_{n}=\frac{1+\frac{1}{2}+\ldots+\frac{1}{n+1}}{\ln (n+1)}$
11. $a_{n}=\frac{1+\sqrt{2}+\ldots+\sqrt[n]{n}}{n}$
12. $a_{n}=\frac{1}{n+1}\left(\frac{1}{\ln 2}+\frac{1}{\ln 3}+\ldots+\frac{1}{\ln (n+2)}\right)$
13. $a_{n}=\frac{1}{n+1} \sum_{k=1}^{n+1} \frac{1}{k}$
14. $a_{n}=\frac{1^{p}+2^{p}+\ldots+n^{p}}{n^{p+1}}, p \in \mathbb{N}$
15. $a_{n}=\sqrt[n]{n}$
16. $a_{n}=\sqrt[n]{n!}$
17. $a_{n}=\sqrt[n]{\frac{(n!)^{2}}{(2 n+1)!}}$
18. $a_{n}=\frac{1}{n} \sqrt[n]{(n+1)(n+2) \cdots(2 n-1)}$
19. Find $\liminf _{n \rightarrow \infty} x_{n}$ and $\limsup _{n \rightarrow \infty} x_{n}$ for each of the following sequences:
20. $a_{n}= \begin{cases}0, & n=2 k+1 \\ 1, & n=2 k\end{cases}$
21. $a_{n}=\frac{n}{n+1} \sin ^{2}\left(\frac{n \pi}{4}\right)$
22. $a_{n}= \begin{cases}1, & n=3 k \\ \frac{1}{n}, & n=3 k+1 \\ n, & n=3 k+2\end{cases}$
23. $a_{n}=\frac{[n a]}{n+1}, a \in \mathbb{R}^{\star}$
24. $a_{n}=\frac{(-1)^{n}}{n}+\frac{1+(-1)^{n}}{2}$
25. $a_{n}=\cos (n \pi)$
26. $a_{n}=\frac{n^{(-1)^{n}}}{n}+\sin ^{2} \frac{n \pi}{4}$
27. $\cos ^{n} \frac{2 n \pi}{3}$

Extra exercises

6. Let $\left(F_{n}\right)$ be the Fibonacci sequence given by the recurrence relation $F_{n+2}=F_{n+1}+F_{n}$, with $F_{0}=F_{1}=1$. Show that $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$ exists and is equal to $\frac{1+\sqrt{5}}{2}$.
7. Let the sequence $\left(a_{n}\right)$ be defined recursively as follows:

$$
a_{1}=2 \quad a_{n+1}=\frac{1}{2}\left(a_{n}+4\right)
$$

Prove by induction that $a_{n}<4$ for each n and that $\left(a_{n}\right)$ is an increasing sequence. Find the limit of this sequence.

