
CALCULUS HANDOUT 1 - SEQUENCES: definitions, properties, theorems

A sequence of real numbers is a function n 7→ an whose domain is the set of positive integers N and
whose values belong to the set of real numbers R. Usual notation: (an).

A sequence (an) is increasing if an ≤ an+1 for all n ∈ N.
A sequence (an) is decreasing if an ≥ an+1 for all n ∈ N.
A sequence which is either increasing or decreasing is called monotonic sequence.

A sequence (an) is bounded if there exists a number M such that |an| ≤M for all n ∈ N.

The sequence of real numbers (an) converges to the real number L (or has the limit L) if for any ε > 0
there exists N = N(ε) ∈ N such that |an − L| < ε for any n ≥ N .

→ If (an) converges to L, then any subsequence (ank
) of the sequence (an) converges to L.

→ Not every sequence has a limit (see for instance, the sequence an = (−1)n).
→ If the limit of a sequence (an) exists, then it is unique.
→ If the sequence (an) converges to L, then it is bounded.

The limit of (an) is said to be +∞ if for any M > 0 there is NM such that an > M for n > NM .
The limit of (an) is said to be −∞ if for any M > 0 there is NM such that an < −M for n > NM .

The set of limit points (denoted by L(an)) of the sequence (an) is the collection of points x ∈ R for
which there exists a subsequence (ank

) of the sequence (an) such that lim
nk→∞

ank
= x.

→ The sequence (an) converges and lim
n→+∞

an = L if and only if L(an) = {L}.

The limit superior of a sequence (an) is supL(an). It is usually denoted by lim sup
n→∞

an or by lim
n→∞

an.

The limit inferior of a sequence (an) is inf L(an). It is usually is denoted by lim inf
n→∞

an or lim
n→∞

an.

Bounded monotonic sequence property:
Every bounded monotonic sequence converges (to a finite real number).

Bolzano-Weierstrass Theorem:
Any bounded sequence (an) of real numbers contains a convergent subsequence.

Limit laws for sequences:
If the limits lim

n→∞
an = A and lim

n→∞
bn = B exist (so A and B are real numbers) then:

1. (scalar product rule) lim
n→∞

can = cA for any c ∈ R.

2. (sum rule) lim
n→∞

(an + bn) = A+B

3. (product rule) lim
n→∞

anbn = AB

4. (quotient rule) lim
n→∞

an
bn

=
A

B
(assuming that bn 6= 0 and B 6= 0)

Squeeze law for sequences:
If an ≤ bn ≤ cn for all n ∈ N and lim

n→∞
an = L = lim

n→∞
cn then lim

n→∞
bn = L as well.

L’Hospital rule for sequences:
Suppose that an = f(n) and bn = g(n) 6= 0 where f and g differentiable functions satisfying either
a. lim

x→∞
f(x) = lim

x→∞
g(x) = 0 or b. lim

x→∞
f(x) = ±∞ and lim

x→∞
g(x) = ±∞. Then

lim
n→∞

an
bn

= lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
(provided that the limit on the right hand side exists as a finite real

number or is equal to ±∞).

Stolz-Cesaro Lemma:
If (an) and (bn) are two sequences such that (bn) is positive, strictly increasing and unbounded, then

lim
n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

(provided that the limit on the right hand side exists).

Cauchy-d’Alembert Lemma:

If (an) is a sequence of positive real numbers then lim
n→∞

an+1

an
= lim

n→∞
n
√
an (provided that one of the two

limits exist).
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CALCULUS HANDOUT 1 - SEQUENCES: examples

Ex. 1: Let’s prove rigorously, based on the definition, that an =
1√
n

converges to 0.

Solution:

Let ε > 0.

Then∣∣∣ 1√
n
− 0
∣∣∣ < ε⇔ 1√

n
< ε
∣∣∣2 ⇔ 1

n
< ε2 ⇔ n >

1

ε2
.

Consider N(ε) =

[
1

ε2

]
+ 1.

Then, for any ε > 0, there exists N = N(ε) =

[
1

ε2

]
+ 1 ∈ N such that for any n ∈ N, n ≥ N , we have∣∣∣an − 0

∣∣∣ < ε.

Thus, lim
n→∞

an = 0.

Ex. 2: We compute lim
n→∞

3n2 − 1

5n2 + 10n
.

Solution:

lim
n→∞

3n2 − 1

5n2 + 10n
= lim

n→∞

n2
(
3− 1

n2

)
n2
(
5 + 10

n

) = lim
n→∞

3− 1
n2

5 + 10
n

=
3

5

Ex. 3: We compute lim
n→∞

an and lim
n→∞

an for the sequence an = (−1)n.

Solution:

n = 2k ⇒ a2k = (−1)2k = 1 −→
n→∞

1

n = 2k + 1⇒ a2k+1 = (−1)2k+1 = −1 −→
n→∞

−1

The set of limit points is L(an) = {−1, 1}.

Then

lim
n→∞

an = inf L(an) = inf{−1, 1} = −1

lim
n→∞

an = supL(an) = sup{−1, 1} = 1

Remark: As lim
n→∞

an = −1 6= 1 = lim
n→∞

an, it follows that lim
n→∞

an doesn’t exist.

Ex. 4: We compute lim
n→∞

cosn2

2n
.

Solution:

Let n ∈ N. Then

− 1 ≤ cosn2 ≤ 1
∣∣∣ · 1

2n

⇔− 1

2n
≤ cosn2

2n
≤ 1

2n

As lim
n→∞

(
− 1

2n

)
= lim

n→∞

1

2n
= 0, applying the squeeze rule, it follows that lim

n→∞

cosn2

2n
= 0.

2



Ex. 5: We compute lim
n→∞

an, where an =
e2n

n
.

Solution:

Let f : R→ R, f(x) =
e2x

x
.

We can easily see that f(n) = a(n) = an.

Then, applying l′Hospital’s rule, we obtain

lim
n→∞

e2n

n
= lim

x→∞

e2x

x
= lim

x→∞

2e2x

1
= +∞.

Ex. 6: We compute lim
n→∞

1 + 1
2 + ...+ 1

n

n
.

Solution:

Denote an = 1 +
1

2
+ ...+

1

n
and bn = n.

We have that bn ↗∞ (exercise-prove it).

Then, applying the Stolz-Cesaro lemma, it follows that

lim
n→∞

1 + 1
2 + ...+ 1

n

n
= lim

n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

=

= lim
n→∞

1 + 1
2 + ...+ 1

n + 1
n+1 −

(
1 + 1

2 + ...+ 1
n

)
n+ 1− n

= lim
n→∞

1

n+ 1
= 0.

Ex. 7: We compute lim
n→∞

n
√
n2.

Solution:

Denote an = n2.

Then, for any n ∈ N, we have an ≥ 0.

Applying Cauchy-d′Alembert’s lemma, we obtain

lim
n→∞

n
√
an = lim

n→∞

an+1

an
= lim

n→∞

(n+ 1)2

n2
= lim

n→∞

n2 + 2n+ 1

n2
= lim

n→∞

n2
(
1 + 2

n + 1
n2

)
n2

=

= lim
n→∞

(
1 +

2

n
+

1

n2

)
= lim

n→∞
1 + 2 lim

n→∞

1

n
+ lim

n→∞

1

n2
= 1 + 2 · 0 + 0 = 1.
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CALCULUS HANDOUT 1 - SEQUENCES: exercises

1. Prove rigorously that the sequence an =
1

n
is convergent to 0.

2. Prove rigorously that the sequence an =
2n

5n− 3
is convergent to

2

5
.

3. Prove rigorously that the sequence an = 1 +

(
9

10

)n

is convergent to 1.

4. Compute the limits of the following sequences:

1. an =

(
1− 2

n2

)n

2. an =
sinn

3n

3. an =
1 + (−1)n√

n

4. an =
lnn

nx
, x ∈ R

5. an =
n2005

(n+ 1)x − nx
, x > 0

6. an =
1 + 1

2 + ...+ 1
n+1

ln(n+ 1)

7. an =
1 +
√

2 + ...+ n
√
n

n

8. an =
1

n+ 1

(
1

ln 2
+

1

ln 3
+ ...+

1

ln(n+ 2)

)
9. an =

1

n+ 1

n+1∑
k=1

1

k

10. an =
1p + 2p + ...+ np

np+1
, p ∈ N

11. an = n
√
n

12. an =
n
√
n!

13. an = n

√
(n!)2

(2n+ 1)!

14. an =
1

n
n
√

(n+ 1)(n+ 2) · · · (2n− 1)

5. Find lim inf
n→∞

xn and lim sup
n→∞

xn for each of the following sequences:

1. an =

{
0, n = 2k + 1
1, n = 2k

2. an =



1, n = 3k

1

n
, n = 3k + 1

n, n = 3k + 2

3. an = cos(nπ)

4. an =
n

n+ 1
sin2

(nπ
4

)
5. an =

[na]

n+ 1
, a ∈ R?

6. an =
(−1)n

n
+

1 + (−1)n

2

7. an =
n(−1)

n

n
+ sin2 nπ

4

8. cosn
2nπ

3

Extra exercises

6. Let (Fn) be the Fibonacci sequence given by the recurrence relation Fn+2 = Fn+1 + Fn, with

F0 = F1 = 1. Show that lim
n→∞

Fn+1

Fn
exists and is equal to

1 +
√

5

2
.

7. Let the sequence (an) be defined recursively as follows:

a1 = 2 an+1 =
1

2
(an + 4)

Prove by induction that an < 4 for each n and that (an) is an increasing sequence. Find the limit of this
sequence.
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