CALCULUS HANDOUT 11-LINE INTEGRALS - definitions

ELEMENTARY CURVES

An elementary curve is a set of points $C \subset \mathbb{R}^{3}$ for which there exists a closed interval $[a, b] \subset \mathbb{R}$ and a function $\varphi:[a, b] \rightarrow C$ which is bijective on $[a, b)$ and smooth (of class C^{1}).
The points $A=\varphi(a)$ and $B=\varphi(b)$ are called the end points of the curve.
The function φ is called a parametric representation of the curve.
The vector $\varphi^{\prime}(t)$ is tangent to the curve at the point $\varphi(t)$.
An elementary closed curve is a curve with parametric representation φ such that $\varphi(a)=\varphi(b)$.
! Any elementary curve possesses an infinity of parametric representations.
! The end points of an elementary curve are independent of the parametric representation of the curve.
The length of the elementary curve C with parametric representation $\varphi:[a, b] \rightarrow C$ is given by:

$$
l=\int_{a}^{b}\left\|\varphi^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\dot{\varphi}_{1}^{2}(t)+\dot{\varphi_{2}^{2}}(t)+\dot{\varphi}_{3}^{2}(t)} d t
$$

! The curve length is independent of the parametric representation of the curve C.
The arc length of the elementary curve C with representation φ is defined as

$$
d s=\left\|\varphi^{\prime}(t)\right\| d t=\sqrt{\dot{\varphi}_{1}^{2}(t)+{\dot{\varphi_{2}}}^{2}(t)+\dot{\varphi}_{3}^{2}(t)} d t
$$

LINE INTEGRALS

Let f be a continuous function defined at least at each point of the curve C, with representation $\varphi:[a, b] \rightarrow C$.
Line integral of first type (with respect to the arc length)

$$
\int_{C} f d s=\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \cdot \sqrt{\dot{\varphi}_{1}^{2}(t)+\dot{\varphi}_{2}^{2}(t)+\dot{\varphi}_{3}^{2}(t)} d t
$$

Line integrals of second type (with respect to coordinate variables)
The line integral of f along C with respect to x, y and z :

$$
\begin{aligned}
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \varphi_{1}^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \varphi_{2}^{\prime}(t) d t \\
\int_{C} f(x, y, z) d z & =\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right) \varphi_{3}^{\prime}(t) d t
\end{aligned}
$$

Green's theorem in the plane

Let R be a closed bounded region in the x, y plane whose boundary C consists of finite many elementary curves. Let $f(x, y)$ and $g(x, y)$ be functions which are continuous and have continuous partial derivatives of first order everywhere in some domain containing R. Then the following equality holds:

$$
\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y=\oint_{C} f d x+g d y
$$

The integration being taken along the entire boundary C of R such that R is on the left as one moves on C.

CALCULUS HANDOUT 11 - LINE INTEGRALS - examples

Ex. 1 evaluate the line integrals
a) $\int_{C} f(x, y) d s$
b) $\int_{C} f(x, y) d x$;
c) $\int_{C} f(x, y) d y$,
where $f(x, y)=x^{2}+y^{2}$ 'si $C: x=4 t-1, y=3 t+1, t \in[-1,1]$.
Solution:

$$
\left.\begin{array}{l}
\left\{\begin{array} { l }
{ x = 4 t - 1 } \\
{ y = 3 t + 1 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \varphi _ { 1 } (t) = 4 t - 1 } \\
{ \varphi _ { 2 } (t) = 3 t + 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\dot{\varphi_{1}}(t)=4 \\
\dot{\varphi}_{2}(t)=3
\end{array}\right.\right.\right. \\
t \in[-1,1] \Rightarrow a=-1, b=1
\end{array}\right] \begin{aligned}
\text { a) } \int_{C} f(x, y) d s=\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t)\right) \cdot \sqrt{\left(\dot{\varphi}_{1}(t)\right)^{2}+\left(\dot{\varphi}_{2}(t)\right)^{2}} d t
\end{aligned} \begin{aligned}
\Rightarrow \int_{C} f(x, y) d s & =\int_{-1}^{1}\left((4 t-1)^{2}+(3 t+1)^{2}\right) \cdot \sqrt{3^{3}+4^{2}} d t=\int_{-1}^{1}\left(16 t^{2}-8 t+1+9 t^{2}+6 t+1\right) \cdot \sqrt{9+16} d t \\
& =5 \int_{-1}^{1}\left(25 t^{2}-2 t+2\right) d t=125 \int_{-1}^{1} t^{2} d t-10 \int_{-1}^{1} t d t+10 \int_{-1}^{1} d t=\left.125 \cdot \frac{t^{3}}{3}\right|_{-1} ^{1}-\left.10 \cdot \frac{t^{2}}{2}\right|_{-1} ^{1}+\left.10 t\right|_{-1} ^{1} \\
& =125\left(\frac{1^{3}}{3}-\frac{(-1)^{3}}{3}\right)-10\left(\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}\right)+10(1-(-1))=125 \cdot \frac{2}{3}+20=\frac{250+60}{3}=\frac{310}{3}
\end{aligned}
$$

b) $\int_{C} f(x, y) d x=\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t)\right) \cdot \dot{\varphi}_{1}(t) d t$

$$
\begin{aligned}
\Rightarrow \int_{C} f(x, y) d x & =\int_{-1}^{1}\left((4 t-1)^{2}+(3 t+1)^{2}\right) \cdot 4 d t=4 \int_{-1}^{1}\left(16 t^{2}-8 t+1+9 t^{2}+6 t+1\right) d t \\
& =4 \int_{-1}^{1}\left(25 t^{2}-2 t+2\right) d t=100 \int_{-1}^{1} t^{2} d t-8 \int_{-1}^{1} t d t+8 \int_{-1}^{1} d t=\left.100 \cdot \frac{t^{3}}{3}\right|_{-1} ^{1}-\left.8 \cdot \frac{t^{2}}{2}\right|_{-1} ^{1}+\left.8 t\right|_{-1} ^{1} \\
& =100\left(\frac{1^{3}}{3}-\frac{(-1)^{3}}{3}\right)-8\left(\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}\right)+8(1-(-1))=\frac{200}{3}+16=\frac{200+48}{3}=\frac{248}{3}
\end{aligned}
$$

c) $\int_{C} f(x, y) d y=\int_{a}^{b} f\left(\varphi_{1}(t), \varphi_{2}(t)\right) \cdot \dot{\varphi_{2}}(t) d t$

$$
\begin{aligned}
\Rightarrow \int_{C} f(x, y) d y & =\int_{-1}^{1}\left((4 t-1)^{2}+(3 t+1)^{2}\right) \cdot 3 d t=3 \int_{-1}^{1}\left(16 t^{2}-8 t+1+9 t^{2}+6 t+1\right) d t \\
& =3 \int_{-1}^{1}\left(25 t^{2}-2 t+2\right) d t=75 \int_{-1}^{1} t^{2} d t-6 \int_{-1}^{1} t d t+6 \int_{-1}^{1} d t=\left.75 \cdot \frac{t^{3}}{3}\right|_{-1} ^{1}-\left.6 \cdot \frac{t^{2}}{2}\right|_{-1} ^{1}+\left.6 t\right|_{-1} ^{1} \\
& =75\left(\frac{1^{3}}{3}-\frac{(-1)^{3}}{3}\right)-6\left(\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}\right)+6(1-(-1))=\frac{150}{3}+12=\frac{150+24}{3}=\frac{174}{3}
\end{aligned}
$$

Ex. 2 Using Green's theorem, evaluate the integral: $\oint_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y$, where C is the boundary of the region $R=\left\{(x, y) \in \mathbb{R}: 0 \leq x \leq 1,2 x^{2} \leq y \leq 2 x\right\}$ (consider positive orientation - counterclockwise).
Solution:
Green's formula: $\oint_{C} f d x+g d y=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y$, where

$$
\left\{\begin{array} { l }
{ f = x ^ { 2 } - y ^ { 2 } } \\
{ g = 2 x y }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{\partial f}{\partial y}=-2 y \\
\frac{\partial g}{\partial x}=2 y
\end{array}\right.\right.
$$

$$
\begin{aligned}
\Rightarrow \oint_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y & =\iint_{R}(2 y-(-2 y)) d x d y=\int_{0}^{1}\left(\int_{2 x^{2}}^{2 x} 4 y d y\right) d x=\int_{0}^{1}\left(\left.4 \cdot \frac{y^{2}}{2}\right|_{2 x^{2}} ^{2 x}\right) d x \\
& =\int_{0}^{1}\left(2(2 x)^{2}-2\left(2 x^{2}\right)^{2}\right) d x=\int_{0}^{1}\left(8 x^{2}-8 x^{4}\right) d x=8 \int_{0}^{1} x^{2} d x-8 \int_{0}^{1} x^{4} d x \\
& =\left.8 \cdot \frac{x^{3}}{3}\right|_{0} ^{1}-\left.8 \cdot \frac{x^{5}}{5}\right|_{0} ^{1}=\frac{8}{3}-\frac{8}{5}=\frac{40-24}{15}=\frac{16}{15}
\end{aligned}
$$

CALCULUS HANDOUT 11-LINE INTEGRALS - exercises

1. In the following exercises, evaluate the line integrals:

$$
\int_{C} f(x, y) d s \quad \int_{C} f(x, y) d x \quad \int_{C} f(x, y) d y
$$

1. $f(x, y)=x+y$ and $C: x=e^{t}+1, y=e^{t}-1, t \in[0, \ln 2]$
2. $f(x, y)=2 x-y$ and $C: x=\sin t, y=\cos t, t \in[0, \pi / 2]$
3. $f(x, y)=x y$ and $C: x=3 t, y=t^{4}, t \in[0,1]$
4. $f(x, y)=x y$ and C is the part of the graph of $y=x^{2}$ from $A(-1,1)$ to $B(2,4)$
5. $f(x, y)=y^{2}$ and C is the part of the graph of $x=y^{3}$ from $A(-1,-1)$ to $B(1,1)$
6. $f(x, y)=y \sqrt{x}$ and C is the part of the graph of $y^{2}=x^{3}$ from $A(1,1)$ to $B(4,8)$
7. $f(x, y)=x^{2} y$ and C consists of the line segments $A B$ and $B C$ where $A(-1,1), B(2,1)$ and $C(2,5)$
8. $f(x, y)=x^{2}+y^{2}$ and C is the arc of the circle $x^{2}+y^{2}=1$ from $A(1,0)$ to $B(-1,0)$
9. $f(x, y)=x+y$ and $C: x=a \cos ^{3} t, y=a \sin ^{3} t$ between $A(a, 0)$ and $B(0, a), a \in \mathbb{R}$
10. $f(x, y)=\sqrt{y(2-y)}$ and $C: x=t-\sin t, y=1-\cos t, t \in[0, \pi / 2]$
11. Using Green's theorem, evaluate the following integrals (consider positive orientation - counterclockwise):
12. $\oint_{C} y d x+2 x d y$ where C is the boundary of the square $0 \leq x \leq 1,0 \leq y \leq 1$
13. $\oint_{C} y^{3} d x+\left(x^{3}+3 y^{2} x\right) d y$ where C is the boundary of the region $y=x^{2}$ and $y=x, x \in[0,1]$
14. $\oint_{C} 2 x y d x+\left(e^{x}+x^{2}\right) d y$ where C is the boundary of the triangle with vertices $(0,0),(1,0),(1,1)$
15. $\oint_{C}-x y^{2} d x+x^{2} y d y$ where C is the boundary of the region in the first quadrant bounded by $y=1-x^{2}$
16. $\oint_{C}\left(x+y^{2}\right) d x+\left(y+x^{2}\right) d y$ where C is the square with vertices $(\pm 1, \pm 1)$
17. $\oint_{C}\left(x^{2}+y^{2}\right) d x-2 x y d y$ where C is the boundary of the triangle bounded by the lines $x=0, y=0, x+y=1$
18. $\oint_{C}\left(y+e^{x}\right) d x+\left(2 x^{2}+\cos y\right) d y$ where C is the boundary of the triangle with vertices $(0,0),(1,1),(2,0)$
19. $\oint_{C}\left(-y^{2}+e^{e^{x}}\right) d x+\arctan y d y$ where C is the boundary of the region between the parabolas $y=x^{2}, x=y^{2}$
20. $\oint_{C} y^{2} d x+(2 x-3 y) d y$ where C is the circle $x^{2}+y^{2}=9$
21. $\oint_{C}(x-y) d x+y d y$ where C is the boundary of the region between $O x$ and the graph of $y=\sin x, x \in[0, \pi]$

Extra exercises

3. Compute the line integrals of first type $\int_{C} f(x, y, z) d s$ for:
4. $f(x, y, z)=x y^{3}$ and C is the line segment $y=2 x$ in the plane $O x y$ from $A(-1,-2,0)$ to $B(1,2,0)$
5. $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{2}$ and C is the helix $\varphi(t)=(\cos t, \sin t, t)$ from $A(1,0,0)$ to $B(1,0,6 \pi)$
6. $f(x, y, z)=x y z$ and C is the straight line segment from $A(1,-1,2)$ to $B(3,2,5)$
7. $f(x, y, z)=2 x+9 x y$ and $C: x=t, y=t^{2}, z=t^{3}, t \in[0,1]$
8. $f(x, y, z)=x y$ and C is the elliptical helix $x=4 \cos t, y=9 \sin t, z=7 t, t \in[0,5 \pi / 2]$
9. Compute the line integral of second type $\int_{C} x^{2} y d x+(x-z) d y+x y z d z$ in each of the following cases:
10. C is the arc of parabola $y=x^{2}$ in the plane $z=2$ from $A(0,0,2)$ to $B(1,1,2)$
11. C is the straight line segment $x=y, z=2$, from $A(0,0,2)$ to $B(1,1,2)$
