CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - definitions

JORDAN MEASURABLE SETS IN R?

Consider the set of one dimensional bounded intervals of the form (a,b), [a,b), (a,b], [a,b], where a,b € R.
The cartesian product A = I x I of two intervals of this type will be called rectangle in R?.
The area of such a rectangle A is defined by area(A) = length(I1) - length(I2).

Consider the set P of all finite reunions of rectangles A: P € P iff there exist A1, Ag, ..., A, such that P = U A;.
i=1

o If P, P, € P, then PLUP, € P and Pl\PQGP.
e For any P € P there exist A1, As, ..., A, such that P = U A;and A, NA; =0 if i # 5.

=1

The area of a set P € P is defined by area(P) = Zar@a(Ai) where P = U A; and A1, As, ..., A, are disjoint.
i=1 i=1
e The area defined in this way for P € P satisfies:

e area(P) >0 for P € P
o if P, € P and P1 N Py =), then area(P1 U P,) = area(Py) + area(P,)

e it is independent on the decomposition of P in finite union of disjoint intervals.

For a bounded set A C R?, we define area;(A) = sup area(P) and areac(A) = _inf area(P).
PCA,PEP PDA,PeP

A bounded set A C R? is said Jordan measurable if area;(A) = area.(A).
The area of a Jordan measurable set A C R? is defined as area(A) = area;(A) = area.(A).

e If A; and A, are Jordan measurable sets, then A1 U Az and A; \ Az are Jordan measurable.
o If A1 N Ay =0, then area(A; U Az) = area(A1) + area(As2).

THE RIEMANN-DARBOUX INTEGRAL OF FUNCTIONS OF TWO VARIABLES

Let A be a given bounded and Jordan measurable subset of R

A partition P of A is a finite set of disjoint Jordan measurable subsets A;, i = 1,n of A satisfying: U A, = A
i=1
The diameter of the set A; is the number d(A;) defined by d(A;) = ( )I(nax e Vi — a2+ (y —y")2.
z/,y/ s z//’,y// c i
The norm of the partition P is the number v(P) = max{d(A1),d(Az2), - ,d(An)}.

Let f : A — R' be a bounded function.
Then f is bounded on each part A; and has a least upper bound M; and a greatest lower bound m; on A;.

The upper Darboux sum of f related to P is Uy (P) = Z M; -area(A;), where M; = sup{f(z,y)|(z,y) € Ai}.
i=1

The lower Darboux sum of f related to P is Ly(P) = Zmi -area(A;), where m; = inf{f(z,y) | (z,y) € Ai}.
=1

The Riemann sum of f related to P is defined by o;(P) = Z f(&,mi) - area(A;) where (&,m:) € A;.
i=1

e The following inequalities hold L¢(P) < o¢(P) < Us(P).
As f is bounded above and below on A, there exist numbers m and M with m < f(z,y) < M for all (z,y) € A.
For any partition P of A we have

m - area(A) =m - Z area(A;) < Ly(P) <Uy(P)< M - Zarea(Ai) =M - area(A)
i=1 =1
Hence, the sets Ly = {Ly(P)|P is a partition of A} and Uy = {U;(P)| P 1is a partition of A} are bounded.

We can therefore consider L5 = sup Ly and Uy = igf Uy.
P

o If f is defined and bounded on A, then £; < Uj.
A function f defined and bounded on A is Riemann-Darboux integrable on A if Ly = Uy.

This common value is denoted by
[ty deay
A

and it is called the double integral of f.



Classes of Riemann-Darboux integrable functions:

e If f is continuous on A and A is Jordan measurable, then f is Riemann-Draboux integrable on A.

A function f is called piecewise-continuous on A if there exists a partition P = {A1,---,A,} of A and
continuous functions f;, i = 1,n defined on A; such that f(z) = fi(z) for z € Int(A;).

e A piecewise-continuous function is Riemann-Darboux integrable and / / f(z,y)dedy = Z / / fi(z,y) dz dy.
i =1+,

Properties of the Riemann-Darboux integral:
If f and g are Riemann-Darboux integrable on A, then all the integrals below exist and the following hold:

//afxy + Bg(z,y)] dxdy—a//fxydxdy+ﬂ// (z,y)dzdy, a,f € R*

//f(xy dxdy—//f T,y dmdy+/ f(z,y)dx dy where Ay UAs = Aand A1 NAy =0

()1ff(xy)<g(xy)onAthen//f dxdy<// (2, y) do dy

o |[[ tewydzay) < [[110)ldzay
A A

The mean value theorem:
Let f: A — R" be integrable on A and satisfying m < f(x,y) < M for any (z,y) € A.

Then m - area(A) < / flz,y)dedy < M - area(A).
A

Riemann-Darboux integral calculus when A is rectangular:

Assume that A is a rectangle, A = [a,b] X [c,d] and f: A — R' is a continuous function. Then:

d

/ f(w,y)dzdy—/b /df(a:,y)dy do= [ /bf@c,y)dx dy
A a c a

Therefore, the computation of a double integral on a rectangular domain reduces to the computation of two
successive (or iterated) single-variable integrals.
Riemann-Darboux integral calculus when A is not a rectangle:
Let A the set defined by
A=A{((z,y) [z €[a,b] and y € [g(x), h(z)]}
where g, h are continuous functions satisfying g(z) < h(z) for every = € [a, b].

For a continuous function f : A — R we have:

h(z)

//fmyd:cdy—/d:v/fxy

g(x)

Change of variables in double integrals:

If A, B C R? are Jordan measurable sets, T : B — A is a bijection such that 7" and 7! have continuous partial
derivatives and f : A — R! is an integrable function, then the following equality holds:

b2 Oz
// f(@,y) de dy = // f(w(ﬁ,n),y(é,n))’ % 9 || dedn
A B ot o




CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - examples

Ex.1 Compute the double integral //(nyQ) dz dy on the rectangle D = [2,4] x [1,2].

D
Solution:

Method I:

2 /4 2 4
//(nyz)dxdy /(/ny d:c) dyf/ﬁy2 (/xdm) dy
D 1 2

2
/6 2( )dy:/3y2(42—22) dy
1
2
/3 12y dy = 36 - /gﬁdy
1 1

) 3 3
:36-—‘ —12.(28 1
71, ( )

2.7T=84

Methd II:

4/ 2 4 /2
//(nyg)dxdy:/ (/6xy2dy> dxz/ (/nyQdy) dx
D 1 2 \1
2 4 5
/y2dy) d:v:/Gm(y— )dm

31
1 2

4
= [ 22(2° —1%)dx :/2 7z dx
2

2

4
2

4
2
x
=14 . dr =14 - —
/.’E:I’ 2

2
=7-4-2)=7-12=84

Ex.2 Compute the double integral //(4xy - yg) dz dy, where D is the domain bounded by the curves y = \/x

and y = 2°.

Solution:

Determine the domain D.

V=2 Por=1c2@® -1)=0s2z=00z=1
= D={(z,y) ER? | 0<z <1andz® <y <z}



Then, we obtain that

1 Vz
//(4Iy—y3)dxdy://4myd:cdy—//y3dxdy://4mydydaz—/
D D D 0 23 0

1 VT 1 VT 1 1
= [4 dy | d iy | de = [ae (17 a v
= T ydy T — Yy’ dy T = T - s T — s T
0 23 0 \u3 0 0
1 Way @) 1]
2/2:15 ((\/5)2—(x3)2)dm—/< 1 4 >da:: /w(m—xG)dm—Z/(aEQ—xu)da‘
0 0
1 1 1 1 5 s 15
1 7 x° |1 z° |1 x|l
—9 2 4w — 9 7 _7/ 2 1 12, _ ° 7‘ _9. %X 1 x
/mdw /mdm 1 a:dx—|—4 r ~dx 1 31 O+ 3l
0 0 0 0
_rl_1 1 1 _91-39+3 55
4 3 4 4 13 156 156

Ex.3 Compute the double integral // CZQerQ dx dy, where D is the unit disk z? 4+ ¢* < 1.

D
Solution:

Let f:R? = R, f(z,y) = ey,

We use the polar coordinates
{x-rcos@ 0<r<i1

2 2 2
=>r°=x" +
y =rsinf 0<6<2mr Y

. é [ f iy = Z / F(@(r,0),y(r6)) - 1T (r,6) | da dy

Dy ={(r0)cR*|0<r<land0<0<2nr}

cosf) —rsinf
sinf  rcos@

27 1 27 27
:>I:/ /r-eTzdr d&:/(%e”) dezé/(elfeo)de
0 0 0

- %(e )27 —0) = (e — 1)

J(r,0) =

=rcos’f +rsin® 0 = r(cos® 0 +sin?0) = r

— o

=—(e—1)-0

[\]

0
Ex.4 Compute the triple integral /// 8xyzdx dy dz, where D = [2,3] x [1,2] x [0,1].
Solution:

1
///Sxyzda:dydz :/
D 0

1

1 2

_— P —

3 12 3 1
/Sxyzdxdydz://&yz (/xdﬂc) dydz:/
2 01 0

/2
1

I
Ot~

1
4yz(32 722)dydz://20yzdydz:/202
0 1

1

0
¥’ |2
/202’» (? ) dz:/10z(22 —1%)dz
1
0
1
21

0
1
z
/302dz:30/zdz:30-—
2 lo
0
15

0

(1P=0%) =15



CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - exercises

1. Compute the following double integrals on the given rectangles:

1. //(3x+4y) dx dy, it A =10,2] x [0, 4] 6. //ln(:chy)datdy, if A=10,1] x [1,2]

A A
. . cos Y . _ z

2. //a:ydwdy, if A=11,2] x[1,2] 7. //71+sinx~sinydxdy’ if A [0,2] x [0, 7]
A A

3. //Idexdy, if A =1[0,3] x [0,2] 8. //md;cdy, if A=1[0,1] x [0,1]
A A

s //(my—l—?x—l—y)dmd%ifA:[O,?)}><[0,3] 9. //lfx da dy, it A = [0,1] x [0, 1]
A A Y

.2

5. //(w‘?’y—wyg)d:rd% if A=1[1,3]x[-3,-1]  10. // T drdy, it A = [0,3] x [0, 5}

/¢ /e cos? y 2 4

2. Compute the following double integrals:

1. // xy dx dy, if D is bounded by the parabola y = 2 and the line y = 2z + 3.
D

[\]

. // z? dx dy, if D is bounded by the parabola y = 2 — 22 and the line y = —4.
D

w

. //xdx dy, if D is bounded by the parabolas y = 2? and y = 8 — 2.
D

I

. //mdac dy, if D is bounded by the z-axis and the curve y =sinz, 0 <z < 7.
D

ot

. // sinz dz dy, if D is bounded by the z-axis and the curve y = cosz, —7/2 <z < /2.
D

(=]

. // xzydx dy, if D is the first quadrant quarter of the circle bounded by 2% + 3? = 1 and the axes.
D

1
7. // —dzdy, if D is the triangle bounded by the lines y =1, z = e and y = x.
. Y
22
8. //\/%dxdy, if D is bounded by the lines z =0,y =1, y = ¥/2 and y = =.
= +y
D

©
A

. //(1fy)d:vdy, where D = {(z,y) € R* : 2> + (y —1)* <1, y < &%, = > 0}.

D

10. // arcsin y/x + y dx dy, if D is bounded by the linesz+y=0,z+y=1,y=—1and y = 1.
D

11. // S dx dy, if D is bounded by the curves y*> = 2z, 2 < < a and zy = 4, y > 0.

x

/. Yy

12. // Vzy de dy, if D is bounded by the curves y = 22, y = 2%, > 0.
D

13. // V@ + ydz dy, if D is the interior of the triangle of vertices 0, A(1,2) and B(3,2).
D

14. // cos(z +y)dxdy, if D is bounded by x =0,y =7, y = .
D

15. the area of the domain D bounded by y = 23 + 1 and y = 3z°.

1
241
17. the area of the domain D bounded by y = 22 — 2z and y = sin .

16. the area of the domain D bounded by y = 2? — 1 and y =



3. Using polar coordinates (x = 7 cos 6, y = rsinf), compute the following integrals:

1. the area of D = {(z,y) € R? | 2* +y* < R?*}.

1
2. //ﬁdmdy,whereD:{(%y)ERQ|y€[071],0§m§\/1—y2}.
ta2ty
D
3. //ﬁdwdy, where D = {(z,y) € R* |2 € [0,1], 0 <y < V1 — 22}
p VETET Y
+ //<x2+y2>3/2dxdy, where D = {(z,y) € R* |z €[0,2], 0 <y < V4 —a?}.
D
5. //(1’2 +y%) dx dy, where D is bounded by 2% + 4% =1, y = 2v/3, = = yv/3, and z > 0.
Y
6. //dedy7 where D = {(z,y) € R? | 1 < 2? +y* < 2z}.
//xﬁi%dmdy,whereD:{(x,y)€R2|m§x2+y2§1,OSny}.
8. //(x2+y2)dxdy, where D is bounded by the curves 22 + y? = z and z? 4+ y* = 2.

9. // Y gy dy, where D is given by z* + ¢* < .

2 _
10. // 1+§2+y2 dx dy, where D is given by 2 + 4> < 1,z >0, y > 0.

4. Compute the triple integral /// f(z,y, z) dz dy dz for the following functions:
D

1. f(z,y,2) = zysinz, where D = [0, 7] X [0, 7] x [0, 7].
2. f(z,y,2) =2z +y, where D = [—1,1] x [0,2] x [1, 3].

3. f(z,y,2) =y, where Disgiven by 1 <z <2, —2<y<-1,0<z<

N —

1

4. f(z,y,2) = ——— =, where D is bounded by the planes z =0,y =0, z=0and z +y+ 2 = 1.
f(y)(+x+y+)3vv y the p Yy Yy
5. f(z,y,2) = xy\/z, where D is bounded by 2 =0, z =y, y = 2%, y = 1.
6. flz,y,2) = /22 + 42 + 22, where D is given by x? 4+ ¢* + 2% < 2.
7. f(z,y,2) =1, where D = {(z,9,2) € R® | (z — a)* + (y — b)? + (z — ¢)® < R*}.
8. f(x,y,2) =y°, where D = {(z,y,2) €R® |y >0 and 22 +¢*>+ 22 <1}
9. f(z,y,2) = WyirwwhereDCRS is bounded by (2 + y* + 2%)? = xy, where z > 0.
10. f(z,y,2) =2 +y° + 2%, where D = {(z,y,2) € R* | 2” + y*> < z € [0,1]}.
2y 22

11 fo9,2) == whereD:{u,y,zM A gl}.

2 2 22 2 2
12. f(ac,y,z)_%—&—%—l— ,Whereleglvenby +?Z—2+i—2§1.

1
Vr2 +y2 + (2 — 2)2
14. f(z,y,2) = z, where D is given by 2® + 9> < 2%, 0< 2z < 1.

13. f(z,y,2) = , where D is bounded by 2?2 +y?> <1 and —1 <z < 1.



