CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - definitions

JORDAN MEASURABLE SETS IN \mathbb{R}^2

Consider the set of one dimensional bounded intervals of the form (a,b), [a,b], (a,b], [a,b], where $a,b \in \mathbb{R}$. The cartesian product $\Delta = I_1 \times I_2$ of two intervals of this type will be called **rectangle** in \mathbb{R}^2 . The **area** of such a rectangle Δ is defined by $area(\Delta) = length(I_1) \cdot length(I_2)$.

Consider the set \mathcal{P} of all finite reunions of rectangles Δ : $P \in \mathcal{P}$ iff there exist $\Delta_1, \Delta_2, ..., \Delta_n$ such that $P = \bigcup \Delta_i$.

• If $P_1, P_2 \in \mathcal{P}$, then $P_1 \cup P_2 \in \mathcal{P}$ and $P_1 \setminus P_2 \in \mathcal{P}$.

• For any $P \in \mathcal{P}$ there exist $\Delta_1, \Delta_2, ..., \Delta_n$ such that $P = \bigcup_{i=1}^n \Delta_i$ and $\Delta_i \cap \Delta_j = \emptyset$ if $i \neq j$. The **area** of a set $P \in \mathcal{P}$ is defined by $area(P) = \sum_{i=1}^n area(\Delta_i)$ where $P = \bigcup_{i=1}^n \Delta_i$ and $\Delta_1, \Delta_2, ..., \Delta_n$ are disjoint. • The area defined in this way for $P \in \mathcal{P}$ satisfies:

- - area(P) > 0 for $P \in \mathcal{P}$
 - if $P_1, P_2 \in \mathcal{P}$ and $P_1 \cap P_2 = \emptyset$, then $area(P_1 \cup P_2) = area(P_1) + area(P_2)$
 - it is independent on the decomposition of P in finite union of disjoint intervals.

For a bounded set $A \subset \mathbb{R}^2$, we define $area_i(A) = \sup_{P \subset A, P \in \mathcal{P}} area(P)$ and $area_e(A) = \inf_{P \supset A, P \in \mathcal{P}} area(P)$.

A bounded set $A \subset \mathbb{R}^2$ is said **Jordan measurable** if $area_i(A) = area_e(A)$. The **area** of a Jordan measurable set $A \subset \mathbb{R}^2$ is defined as $area(A) = area_i(A) = area_e(A)$.

• If A_1 and A_2 are Jordan measurable sets, then $A_1 \cup A_2$ and $A_1 \setminus A_2$ are Jordan measurable.

• If $A_1 \cap A_2 = \emptyset$, then $area(A_1 \cup A_2) = area(A_1) + area(A_2)$.

THE RIEMANN-DARBOUX INTEGRAL OF FUNCTIONS OF TWO VARIABLES

Let A be a given bounded and Jordan measurable subset of \mathbb{R}^2 .

A partition P of A is a finite set of disjoint Jordan measurable subsets A_i , $i = \overline{1, n}$ of A satisfying: $\bigcup_{i=1}^n A_i = A$. The diameter of the set A_i is the number $d(A_i)$ defined by $d(A_i) = \max_{\substack{(x',y'), (x'',y'') \in A_i}} \sqrt{(x' - x'')^2 + (y' - y'')^2}$.

The norm of the partition P is the number $\nu(P) = \max\{d(A_1), d(A_2), \cdots, d(A_n)\}$ Let $f: A \to \mathbb{R}^1$ be a bounded function.

Then f is bounded on each part A_i and has a least upper bound M_i and a greatest lower bound m_i on A_i .

The **upper Darboux sum** of f related to P is $U_f(P) = \sum_{i=1}^n M_i \cdot area(A_i)$, where $M_i = \sup\{f(x,y) \mid (x,y) \in A_i\}$.

The lower **Darboux sum** of f related to P is $L_f(P) = \sum_{i=1}^n m_i \cdot area(A_i)$, where $m_i = \inf\{f(x,y) \mid (x,y) \in A_i\}$.

The **Riemann sum** of f related to P is defined by $\sigma_f(P) = \sum_{i=1}^{n} f(\xi_i, \eta_i) \cdot area(A_i)$ where $(\xi_i, \eta_i) \in A_i$. • The following inequalities hold $L_f(P) \leq \sigma_f(P) \leq U_f(P)$.

As f is bounded above and below on A, there exist numbers m and M with $m \leq f(x,y) \leq M$ for all $(x,y) \in A$. For any partition P of A we have

$$m \cdot area(A) = m \cdot \sum_{i=1}^{n} area(A_i) \le L_f(P) \le U_f(P) \le M \cdot \sum_{i=1}^{n} area(A_i) = M \cdot area(A)$$

Hence, the sets $L_f = \{L_f(P) | P \text{ is a partition of } A\}$ and $U_f = \{U_f(P) | P \text{ is a partition of } A\}$ are bounded. We can therefore consider $\mathcal{L}_f = \sup_P L_f$ and $\mathcal{U}_f = \inf_P U_f$.

• If f is defined and bounded on A, then $\mathcal{L}_f \leq \mathcal{U}_f$.

A function f defined and bounded on A is **Riemann-Darboux integrable** on A if $\mathcal{L}_f = \mathcal{U}_f$. This common value is denoted by

$$\iint\limits_A f(x,y)\,dx\,dy$$

and it is called the **double integral** of f.

Classes of Riemann-Darboux integrable functions:

• If f is continuous on \overline{A} and \overline{A} is Jordan measurable, then f is Riemann-Draboux integrable on \overline{A} .

A function f is called **piecewise-continuous** on A if there exists a partition $P = \{A_1, \dots, A_n\}$ of A and continuous functions f_i , $i = \overline{1, n}$ defined on A_i such that $f(x) = f_i(x)$ for $x \in Int(A_i)$.

• A piecewise-continuous function is Riemann-Darboux integrable and
$$\iint_A f(x,y) \, dx \, dy = \sum_{i=1}^n \iint_{A_i} f_i(x,y) \, dx \, dy.$$

Properties of the Riemann-Darboux integral:

If f and g are Riemann-Darboux integrable on A, then all the integrals below exist and the following hold:

(1)
$$\iint_{A} [\alpha f(x,y) + \beta g(x,y)] dx dy = \alpha \iint_{A} f(x,y) dx dy + \beta \iint_{A} g(x,y) dx dy, \ \alpha, \beta \in \mathbb{R}^{1}$$

(2)
$$\iint_{A} f(x,y) dx dy = \iint_{A_{1}} f(x,y) dx dy + \iint_{A_{2}} f(x,y) dx dy \text{ where } A_{1} \cup A_{2} = A \text{ and } A_{1} \cap A_{2} = \emptyset$$

(2)
$$\iint_{A} f(x,y) \leq x(x,y) \leq x(x,y) dx dy + \iint_{A_{2}} f(x,y) dx dy = \int_{A_{2}} f(x,y) dx dy = 0$$

(3) if
$$f(x,y) \le g(x,y)$$
 on A , then $\iint_A f(x,y) \, dx \, dy \le \iint_A g(x,y) \, dx \, dy$

(4)
$$\left| \iint_{A} f(x,y) \, dx \, dy \right| \leq \iint_{A} |f(x,y)| \, dx \, dy$$

The mean value theorem:

Let $f: A \to \mathbb{R}^1$ be integrable on A and satisfying $m \leq f(x, y) \leq M$ for any $(x, y) \in A$. Then $m \cdot area(A) \leq \iint_{i=1}^{i=1} f(x, y) \, dx \, dy \leq M \cdot area(A)$.

Riemann-Darboux integral calculus when A is rectangular:

Assume that A is a rectangle, $A = [a, b] \times [c, d]$ and $f : A \to \mathbb{R}^1$ is a continuous function. Then:

$$\iint\limits_{A} f(x,y) \, dx \, dy = \int\limits_{a}^{b} \left(\int\limits_{c}^{d} f(x,y) \, dy \right) \, dx = \int\limits_{c}^{d} \left(\int\limits_{a}^{b} f(x,y) \, dx \right) \, dy$$

Therefore, the computation of a double integral on a rectangular domain reduces to the computation of two successive (or *iterated*) single-variable integrals.

Riemann-Darboux integral calculus when A is not a rectangle:

Let A the set defined by

$$A = \{((x, y) \,|\, x \in [a, b] \text{ and } y \in [g(x), h(x)]\}$$

where g, h are continuous functions satisfying $g(x) \leq h(x)$ for every $x \in [a, b]$. For a continuous function $f : A \to \mathbb{R}^1$ we have:

$$\iint\limits_A f(x,y) \, dx \, dy = \int\limits_a^b \, dx \int\limits_{g(x)}^{h(x)} f(x,y) \, dy$$

Change of variables in double integrals:

If $A, B \subset \mathbb{R}^2$ are Jordan measurable sets, $T: B \to A$ is a bijection such that T and T^{-1} have continuous partial derivatives and $f: A \to \mathbb{R}^1$ is an integrable function, then the following equality holds:

$$\iint_{A} f(x,y) \, dx \, dy = \iint_{B} f(x(\xi,\eta), y(\xi,\eta)) \left\| \begin{array}{c} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{array} \right\| \, d\xi \, d\eta$$

Ex.1 Compute the double integral $\iint_{D} (6xy^2) dx dy$ on the rectangle $D = [2, 4] \times [1, 2]$.

Solution: Method I:

$$\iint_{D} (6xy^{2}) \, dx \, dy = \int_{1}^{2} \left(\int_{2}^{4} 6xy^{2} \, dx \right) \, dy = \int_{1}^{2} 6y^{2} \left(\int_{2}^{4} x \, dx \right) \, dy$$
$$= \int_{1}^{2} 6y^{2} \left(\frac{x^{2}}{2} \Big|_{2}^{4} \right) \, dy = \int_{1}^{2} 3y^{2} \left(4^{2} - 2^{2} \right) \, dy$$
$$= \int_{1}^{2} 3 \cdot 12y^{2} \, dy = 36 \cdot \int_{1}^{2} y^{2} \, dy$$
$$= 36 \cdot \frac{y^{3}}{3} \Big|_{1}^{2} = 12 \cdot (2^{3} - 1^{3})$$
$$= 12 \cdot 7 = 84$$

Methd II:

$$\iint_{D} (6xy^{2}) \, dx \, dy = \int_{2}^{4} \left(\int_{1}^{2} 6xy^{2} \, dy \right) \, dx = \int_{2}^{4} \left(\int_{1}^{2} 6xy^{2} \, dy \right) \, dx$$
$$= \int_{2}^{4} 6x \left(\int_{1}^{2} y^{2} \, dy \right) \, dx = \int_{2}^{4} 6x \left(\frac{y^{3}}{3} \Big|_{1}^{2} \right) \, dx$$
$$= \int_{2}^{4} 2x(2^{3} - 1^{3}) \, dx = \int_{2}^{4} 2 \cdot 7x \, dx$$
$$= 14 \cdot \int_{2}^{4} x \, dx = 14 \cdot \frac{x^{2}}{2} \Big|_{2}^{4}$$
$$= 7 \cdot (4^{2} - 2^{2}) = 7 \cdot 12 = 84$$

Ex.2 Compute the double integral $\iint_D (4xy - y^3) dx dy$, where D is the domain bounded by the curves $y = \sqrt{x}$ and $y = x^3$.

Solution:

Determine the domain D.

$$\begin{split} \sqrt{x} &= x^3 \mid^2 \Leftrightarrow x = x^6 \Leftrightarrow x(x^5 - 1) = 0 \Leftrightarrow x = 0 \text{ or } x = 1 \\ \Rightarrow D &= \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \text{ and} x^3 \le y \le \sqrt{x}\} \end{split}$$

Then, we obtain that

$$\begin{split} \iint_{D} (4xy - y^{3}) \, dx \, dy &= \iint_{D} 4xy \, dx \, dy - \iint_{D} y^{3} \, dx \, dy = \int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} 4xy \, dy \, dx - \int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} y^{3} \, dy \, dx \\ &= \int_{0}^{1} 4x \left(\int_{x^{3}}^{\sqrt{x}} y \, dy \right) \, dx - \int_{0}^{1} \left(\int_{x^{3}}^{\sqrt{x}} y^{3} \, dy \right) \, dx = \int_{0}^{1} 4x \cdot \left(\frac{y^{2}}{2} \Big|_{x^{3}}^{\sqrt{x}} \right) \, dx - \int_{0}^{1} \left(\frac{y^{4}}{4} \Big|_{x^{3}}^{\sqrt{x}} \right) \, dx \\ &= \int_{0}^{1} 2x \cdot \left((\sqrt{x})^{2} - (x^{3})^{2} \right) \, dx - \int_{0}^{1} \left(\frac{(\sqrt{x})^{4}}{4} - \frac{(x^{3})^{4}}{4} \right) \, dx = 2 \int_{0}^{1} x(x - x^{6}) \, dx - \frac{1}{4} \int_{0}^{1} (x^{2} - x^{12}) \, dx \\ &= 2 \int_{0}^{1} x^{2} \, dx - 2 \int_{0}^{1} x^{7} \, dx - \frac{1}{4} \int_{0}^{1} x^{2} \, dx + \frac{1}{4} \int_{0}^{1} x^{12} \, dx = \frac{7}{4} \cdot \frac{x^{3}}{3} \Big|_{0}^{1} - 2 \cdot \frac{x^{8}}{8} \Big|_{0}^{1} + \frac{1}{4} \cdot \frac{x^{13}}{13} \Big|_{0}^{1} \\ &= \frac{7}{4} \cdot \frac{1}{3} - \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{13} = \frac{91 - 39 + 3}{156} = \frac{55}{156} \end{split}$$

Ex.3 Compute the double integral $\iint_{D} e^{x^2+y^2} dx dy$, where D is the unit disk $x^2 + y^2 \le 1$.

Solution:

Let $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = e^{x^2 + y^2}$. We use the polar coordinates $\begin{cases} x=r\cos\theta & \quad 0\leq r\leq 1\\ y=r\sin\theta & \quad 0\leq\theta\leq 2\pi \end{cases} \Rightarrow r^2=x^2+y^2$ $\Rightarrow I = \iint_{\neg \neg} f(x,y) \, dx \, dy = \iint_{\neg \neg} f(x(r,\theta), y(r\theta)) \cdot |J(r,\theta)| \, dx \, dy$ $D_1 = \{ (r, \theta) \in \mathbb{R}^2 \mid 0 \le r \le 1 \text{ and } 0 \le \theta \le 2\pi \}$ $J(r, \theta) = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r \cos^2 \theta + r \sin^2 \theta = r(\cos^2 \theta + \sin^2 \theta) = r$ $\Rightarrow I = \int_{0}^{2\pi} \left(\int_{0}^{1} r \cdot e^{r^2} dr \right) d\theta = \int_{0}^{2\pi} \left(\frac{1}{2} e^{r^2} \right) d\theta = \frac{1}{2} \int_{0}^{2\pi} (e^1 - e^0) d\theta$ $=\frac{1}{2}(e-1)\cdot\theta\Big|_{0}^{2\pi}=\frac{1}{2}(e-1)(2\pi-0)=\pi(e-1)$

Ex.4 Compute the triple integral $\iiint_D 8xyz \, dx \, dy \, dz$, where $D = [2,3] \times [1,2] \times [0,1]$.

Solution:

$$\iiint_{D} 8xyz \, dx \, dy \, dz = \int_{0}^{1} \int_{1}^{2} \int_{2}^{3} 8xyz \, dx \, dy \, dz = \int_{0}^{1} \int_{1}^{2} 8yz \left(\int_{2}^{3} x \, dx\right) \, dy \, dz = \int_{0}^{1} \int_{1}^{2} 8yz \cdot \left(\frac{x^{2}}{2}\Big|_{2}^{3}\right) \, dy \, dz$$
$$= \int_{0}^{1} \int_{1}^{2} 4yz(3^{2} - 2^{2}) \, dy \, dz = \int_{0}^{1} \int_{1}^{2} 20yz \, dy \, dz = \int_{0}^{1} 20z \left(\int_{1}^{2} y \, dy\right) \, dz$$
$$= \int_{0}^{1} 20z \cdot \left(\frac{y^{2}}{2}\Big|_{1}^{2}\right) \, dz = \int_{0}^{1} 10z(2^{2} - 1^{2}) \, dz$$
$$= \int_{0}^{1} 30z \, dz = 30 \int_{0}^{1} z \, dz = 30 \cdot \frac{z^{2}}{2}\Big|_{0}^{1}$$
$$= 15 \cdot (1^{2} - 0^{2}) = 15$$

CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - exercises

1. Compute the following double integrals on the given rectangles: $\int f$

$$1. \iint_{\Delta} (3x + 4y) \, dx \, dy, \text{ if } \Delta = [0, 2] \times [0, 4]$$

$$2. \iint_{\Delta} xy \, dx \, dy, \text{ if } \Delta = [1, 2] \times [1, 2]$$

$$3. \iint_{\Delta} x^2 y \, dx \, dy, \text{ if } \Delta = [0, 3] \times [0, 2]$$

$$4. \iint_{\Delta} (xy + 7x + y) \, dx \, dy, \text{ if } \Delta = [0, 3] \times [0, 3]$$

$$5. \iint_{\Delta} (x^3 y - xy^3) \, dx \, dy, \text{ if } \Delta = [1, 3] \times [-3, -1]$$

$$5. \iint_{\Delta} (x^3 y - xy^3) \, dx \, dy, \text{ if } \Delta = [1, 3] \times [-3, -1]$$

$$6. \iint_{\Delta} \ln(x + y) \, dx \, dy, \text{ if } \Delta = [0, 1] \times [1, 2]$$

$$7. \iint_{\Delta} \frac{\cos y}{1 + \sin x \cdot \sin y} \, dx \, dy, \text{ if } \Delta = [0, \frac{\pi}{2}] \times [0, \pi]$$

$$8. \iint_{\Delta} \frac{1}{(1 + xy)^2} \, dx \, dy, \text{ if } \Delta = [0, 1] \times [0, 1]$$

$$9. \iint_{\Delta} \frac{\sin^2 x}{\cos^2 y} \, dx \, dy, \text{ if } \Delta = [0, \frac{\pi}{2}] \times [0, \frac{\pi}{4}]$$

2. Compute the following double integrals:

1.
$$\iint_{D} xy \, dx \, dy$$
, if D is bounded by the parabola $y = x^2$ and the line $y = 2x + 3$.
2.
$$\iint_{D} x^2 \, dx \, dy$$
, if D is bounded by the parabola $y = 2 - x^2$ and the line $y = -4$.
3.
$$\iint_{D} x \, dx \, dy$$
, if D is bounded by the parabolas $y = x^2$ and $y = 8 - x^2$.
4.
$$\iint_{D} x \, dx \, dy$$
, if D is bounded by the x -axis and the curve $y = \sin x$, $0 \le x \le \pi$.
5.
$$\iint_{D} y \, dx \, dy$$
, if D is bounded by the x -axis and the curve $y = \cos x$, $-\pi/2 \le x \le \pi/2$.
6.
$$\iint_{D} x \, y \, dx \, dy$$
, if D is the first quadrant quarter of the circle bounded by $x^2 + y^2 = 1$ and the axes.
7.
$$\iint_{D} \frac{1}{y} \, dx \, dy$$
, if D is the triangle bounded by the lines $y = 1$, $x = e$ and $y = x$.
8.
$$\iint_{D} \frac{x^2}{\sqrt{x^2 + y^2}} \, dx \, dy$$
, if D is bounded by the lines $x = 0$, $y = 1$, $y = \sqrt[3]{2}$ and $y = x$.
9.
$$\iint_{D} (1 - y) \, dx \, dy$$
, where $D = \{(x, y) \in \mathbb{R}^2 : x^2 + (y - 1)^2 \le 1$, $y \le x^2$, $x \ge 0$ }.
10.
$$\iint_{D} \frac{1}{xy} \, dx \, dy$$
, if D is bounded by the lines $x + y = 0$, $x + y = 1$, $y = -1$ and $y = 1$.
11.
$$\iint_{D} \frac{1}{xy} \, dx \, dy$$
, if D is bounded by the curves $y^2 = 2x$, $2 < x < a$ and $xy = 4$, $y > 0$.
12.
$$\iint_{D} \sqrt{xy} \, dx \, dy$$
, if D is bounded by the curves $y = x^3$, $y = x^2$, $x > 0$.
13.
$$\iint_{D} \sqrt{x + y} \, dx \, dy$$
, if D is bounded by $x = 0$, $y = \pi$, $y = x$.
14.
$$\iint_{D} \cos(x + y) \, dx \, dy$$
, if D is bounded by $x = 0$, $y = \pi$, $y = x$.
15. the area of the domain D bounded by $x = 0$, $y = \pi$, $y = x$.
16. the area of the domain D bounded by $y = x^2 - 1$ and $y = \frac{1}{x^2 + 1}$.
17. the area of the domain D bounded by $y = x^2 - 2x$ and $y = \sin x$.

- 3. Using polar coordinates $(x = r \cos \theta, y = r \sin \theta)$, compute the following integrals:
- 1. the area of $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le R^2\}.$ 2. $\iint_{-\infty} \frac{1}{1+x^2+y^2} \, dx \, dy, \text{ where } D = \{(x,y) \in \mathbb{R}^2 \mid y \in [0,1], \, 0 \le x \le \sqrt{1-y^2} \}.$ 3. $\iint_{-} \frac{1}{\sqrt{4 - x^2 - y^2}} \, dx \, dy, \text{ where } D = \{(x, y) \in \mathbb{R}^2 \mid x \in [0, 1], \, 0 \le y \le \sqrt{1 - x^2} \}.$ 4. $\iint (x^2 + y^2)^{3/2} \, dx \, dy, \text{ where } D = \{(x, y) \in \mathbb{R}^2 \mid x \in [0, 2], \, 0 \le y \le \sqrt{4 - x^2} \}.$ 5. $\iint (x^2 + y^2) \, dx \, dy$, where *D* is bounded by $x^2 + y^2 = 1$, $y = x\sqrt{3}$, $x = y\sqrt{3}$, and x > 0. 6. $\iint \frac{y^2}{x^2} \, dx \, dy, \text{ where } D = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 2x\}.$ 7. $\iint \frac{x+y}{x^2+y^2} \, dx \, dy, \text{ where } D = \{(x,y) \in \mathbb{R}^2 \mid x \le x^2+y^2 \le 1, \ 0 \le y \le x\}.$ 8. $\iint (x^2 + y^2) dx dy$, where D is bounded by the curves $x^2 + y^2 = x$ and $x^2 + y^2 = 2x$. 9. $\iint e^{x^2 + y^2} dx dy$, where D is given by $x^2 + y^2 \le a^2$. 10. $\iint \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} \, dx \, dy$, where *D* is given by $x^2+y^2 \le 1, x \ge 0, y \ge 0$. 4. Compute the triple integral $\iiint f(x, y, z) \, dx \, dy \, dz$ for the following functions: 1. $f(x, y, z) = xy \sin z$, where $D = [0, \pi] \times [0, \pi] \times [0, \pi]$. 2. f(x, y, z) = xz + y, where $D = [-1, 1] \times [0, 2] \times [1, 3]$. 3. f(x, y, z) = xy, where D is given by $1 \le x \le 2, -2 \le y \le -1, 0 \le z \le \frac{1}{2}$. 4. $f(x, y, z) = \frac{1}{(1 + x + y + z)^3}$, where D is bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1. 5. $f(x, y, z) = xy\sqrt{z}$, where D is bounded by $z = 0, z = y, y = x^2, y = 1$. 6. $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, where D is given by $x^2 + y^2 + z^2 \le 2$. 7. f(x, y, z) = 1, where $D = \{(x, y, z) \in \mathbb{R}^3 \mid (x - a)^2 + (y - b)^2 + (z - c)^2 \le R^2\}$ 8. $f(x, y, z) = y^2$, where $D = \{(x, y, z) \in \mathbb{R}^3 \mid y \ge 0 \text{ and } x^2 + y^2 + z^2 \le 1\}$. 9. $f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$, where $D \subset \mathbb{R}^3$ is bounded by $(x^2 + y^2 + z^2)^2 = xy$, where $z \ge 0$. 10. $f(x, y, z) = x^2 + y^2 + z^2$, where $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z \in [0, 1]\}.$ 11. f(x, y, z) = z, where $D = \left\{ (x, y, z) \mid \frac{x^2}{a^2} + \frac{y^2}{h^2} + \frac{z^2}{c^2} \le 1 \right\}$. 12. $f(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$, where D is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$. 13. $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + (z - 2)^2}}$, where D is bounded by $x^2 + y^2 \le 1$ and $-1 \le z \le 1$. 14. f(x, y, z) = z, where D is given by $x^2 + y^2 \le z^2$, $0 \le z \le 1$.