
CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - definitions

JORDAN MEASURABLE SETS IN R2

Consider the set of one dimensional bounded intervals of the form (a, b), [a, b), (a, b], [a, b], where a, b ∈ R.
The cartesian product ∆ = I1 × I2 of two intervals of this type will be called rectangle in R2.
The area of such a rectangle ∆ is defined by area(∆) = length(I1) · length(I2).

Consider the set P of all finite reunions of rectangles ∆: P ∈ P iff there exist ∆1,∆2, ...,∆n such that P =

n⋃
i=1

∆i.

• If P1, P2 ∈ P, then P1 ∪ P2 ∈ P and P1 \ P2 ∈ P.

• For any P ∈ P there exist ∆1,∆2, ...,∆n such that P =

n⋃
i=1

∆i and ∆i ∩∆j = ∅ if i 6= j.

The area of a set P ∈ P is defined by area(P ) =

n∑
i=1

area(∆i) where P =

n⋃
i=1

∆i and ∆1,∆2, ...,∆n are disjoint.

• The area defined in this way for P ∈ P satisfies:

• area(P ) > 0 for P ∈ P
• if P1, P2 ∈ P and P1 ∩ P2 = ∅, then area(P1 ∪ P2) = area(P1) + area(P2)

• it is independent on the decomposition of P in finite union of disjoint intervals.

For a bounded set A ⊂ R2, we define areai(A) = sup
P⊂A,P∈P

area(P ) and areae(A) = inf
P⊃A,P∈P

area(P ).

A bounded set A ⊂ R2 is said Jordan measurable if areai(A) = areae(A).
The area of a Jordan measurable set A ⊂ R2 is defined as area(A) = areai(A) = areae(A).

• If A1 and A2 are Jordan measurable sets, then A1 ∪A2 and A1 \A2 are Jordan measurable.
• If A1 ∩A2 = ∅, then area(A1 ∪A2) = area(A1) + area(A2).

THE RIEMANN-DARBOUX INTEGRAL OF FUNCTIONS OF TWO VARIABLES

Let A be a given bounded and Jordan measurable subset of R2.

A partition P of A is a finite set of disjoint Jordan measurable subsets Ai, i = 1, n of A satisfying:

n⋃
i=1

Ai = A.

The diameter of the set Ai is the number d(Ai) defined by d(Ai) = max
(x′,y′),(x′′,y′′)∈Ai

√
(x′ − x′′)2 + (y′ − y′′)2.

The norm of the partition P is the number ν(P ) = max{d(A1), d(A2), · · · , d(An)}.
Let f : A→ R1 be a bounded function.
Then f is bounded on each part Ai and has a least upper bound Mi and a greatest lower bound mi on Ai.

The upper Darboux sum of f related to P is Uf (P ) =

n∑
i=1

Mi ·area(Ai), where Mi = sup{f(x, y) | (x, y) ∈ Ai}.

The lower Darboux sum of f related to P is Lf (P ) =

n∑
i=1

mi · area(Ai), where mi = inf{f(x, y) | (x, y) ∈ Ai}.

The Riemann sum of f related to P is defined by σf (P ) =

n∑
i=1

f(ξi, ηi) · area(Ai) where (ξi, ηi) ∈ Ai.

• The following inequalities hold Lf (P ) ≤ σf (P ) ≤ Uf (P ).
As f is bounded above and below on A, there exist numbers m and M with m ≤ f(x, y) ≤M for all (x, y) ∈ A.
For any partition P of A we have

m · area(A) = m ·
n∑
i=1

area(Ai) ≤ Lf (P ) ≤ Uf (P ) ≤M ·
n∑
i=1

area(Ai) = M · area(A)

Hence, the sets Lf = {Lf (P ) |P is a partition of A} and Uf = {Uf (P ) |P is a partition of A} are bounded.
We can therefore consider Lf = sup

P
Lf and Uf = inf

P
Uf .

• If f is defined and bounded on A, then Lf ≤ Uf .

A function f defined and bounded on A is Riemann-Darboux integrable on A if Lf = Uf .
This common value is denoted by ∫∫

A

f(x, y) dx dy

and it is called the double integral of f .
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Classes of Riemann-Darboux integrable functions:

• If f is continuous on A and A is Jordan measurable, then f is Riemann-Draboux integrable on A.

A function f is called piecewise-continuous on A if there exists a partition P = {A1, · · · , An} of A and
continuous functions fi, i = 1, n defined on Ai such that f(x) = fi(x) for x ∈ Int(Ai).

• A piecewise-continuous function is Riemann-Darboux integrable and

∫∫
A

f(x, y) dx dy =

n∑
i=1

∫∫
Ai

fi(x, y) dx dy.

Properties of the Riemann-Darboux integral:
If f and g are Riemann-Darboux integrable on A, then all the integrals below exist and the following hold:

(1)

∫∫
A

[αf(x, y) + βg(x, y)] dx dy = α

∫∫
A

f(x, y) dx dy + β

∫∫
A

g(x, y) dx dy, α, β ∈ R1

(2)

∫∫
A

f(x, y) dx dy =

∫∫
A1

f(x, y) dx dy +

∫∫
A2

f(x, y) dx dy where A1 ∪A2 = A and A1 ∩A2 = ∅

(3) if f(x, y) ≤ g(x, y) on A, then

∫∫
A

f(x, y) dx dy ≤
∫∫
A

g(x, y) dx dy

(4)

∣∣∣∣∣∣
∫∫
A

f(x, y) dx dy

∣∣∣∣∣∣ ≤
∫∫
A

|f(x, y)| dx dy

The mean value theorem:
Let f : A→ R1 be integrable on A and satisfying m ≤ f(x, y) ≤M for any (x, y) ∈ A.

Then m · area(A) ≤
∫∫
A

f(x, y) dx dy ≤M · area(A).

Riemann-Darboux integral calculus when A is rectangular:

Assume that A is a rectangle, A = [a, b]× [c, d] and f : A→ R1 is a continuous function. Then:

∫∫
A

f(x, y) dx dy =

b∫
a

 d∫
c

f(x, y) dy

 dx =

d∫
c

 b∫
a

f(x, y) dx

 dy

Therefore, the computation of a double integral on a rectangular domain reduces to the computation of two
successive (or iterated) single-variable integrals.

Riemann-Darboux integral calculus when A is not a rectangle:

Let A the set defined by
A = {((x, y) |x ∈ [a, b] and y ∈ [g(x), h(x)]}

where g, h are continuous functions satisfying g(x) ≤ h(x) for every x ∈ [a, b].

For a continuous function f : A→ R1 we have:

∫∫
A

f(x, y) dx dy =

b∫
a

dx

h(x)∫
g(x)

f(x, y) dy

Change of variables in double integrals:

If A,B ⊂ R2 are Jordan measurable sets, T : B → A is a bijection such that T and T−1 have continuous partial
derivatives and f : A→ R1 is an integrable function, then the following equality holds:∫∫

A

f(x, y) dx dy =

∫∫
B

f(x(ξ, η), y(ξ, η))

∣∣∣∣∣
∣∣∣∣∣ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣
∣∣∣∣∣ dξ dη
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CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - examples

Ex.1 Compute the double integral

∫∫
D

(6xy2) dx dy on the rectangle D = [2, 4]× [1, 2].

Solution:

Method I:∫∫
D

(6xy2) dx dy =

2∫
1

 4∫
2

6xy2 dx

 dy =

2∫
1

6y2

 4∫
2

x dx

 dy

=

2∫
1

6y2

(
x2

2

∣∣∣4
2

)
dy =

2∫
1

3y2 (42 − 22) dy
=

2∫
1

3 · 12y2 dy = 36 ·
2∫

1

y2 dy

= 36 · y
3

3

∣∣∣2
1

= 12 · (23 − 13)

= 12 · 7 = 84

Methd II:∫∫
D

(6xy2) dx dy =

4∫
2

 2∫
1

6xy2 dy

 dx =

4∫
2

 2∫
1

6xy2 dy

 dx

=

4∫
2

6x

 2∫
1

y2 dy

 dx =

4∫
2

6x

(
y3

3

∣∣∣2
1

)
dx

=

4∫
2

2x(23 − 13) dx =

4∫
2

2 · 7x dx

= 14 ·
4∫

2

xdx = 14 · x
2

2

∣∣∣4
2

= 7 · (42 − 22) = 7 · 12 = 84

Ex.2 Compute the double integral

∫∫
D

(4xy − y3) dx dy, where D is the domain bounded by the curves y =
√
x

and y = x3.

Solution:

Determine the domain D.
√
x = x3 |2 ⇔ x = x6 ⇔ x(x5 − 1) = 0⇔ x = 0 or x = 1

⇒ D = {(x, y) ∈ R2 | 0 ≤ x ≤ 1 andx3 ≤ y ≤
√
x}
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Then, we obtain that

∫∫
D

(4xy − y3) dx dy =

∫∫
D

4xy dx dy −
∫∫
D

y3 dx dy =

1∫
0

√
x∫

x3

4xy dy dx−
1∫

0

√
x∫

x3

y3 dy dx

=

1∫
0

4x


√
x∫

x3

y dy

 dx−
1∫

0


√
x∫

x3

y3 dy

 dx =

1∫
0

4x ·
(
y2

2

∣∣∣√x
x3

)
dx−

1∫
0

(
y4

4

∣∣∣√x
x3

)
dx

=

1∫
0

2x · ((
√
x)2 − (x3)2) dx−

1∫
0

(
(
√
x)4

4
− (x3)4

4

)
dx = 2

1∫
0

x(x− x6) dx− 1

4

1∫
0

(x2 − x12) dx

= 2

1∫
0

x2 dx− 2

1∫
0

x7 dx− 1

4

1∫
0

x2 dx+
1

4

1∫
0

x12 dx =
7

4
· x

3

3

∣∣∣1
0
− 2 · x

8

8

∣∣∣1
0

+
1

4
· x

13

13

∣∣∣1
0

=
7

4
· 1

3
− 1

4
+

1

4
· 1

13
=

91− 39 + 3

156
=

55

156

Ex.3 Compute the double integral

∫∫
D

ex
2+y2 dx dy, where D is the unit disk x2 + y2 ≤ 1.

Solution:

Let f : R2 → R, f(x, y) = ex
2+y2 .

We use the polar coordinates{
x = r cos θ 0 ≤ r ≤ 1

y = r sin θ 0 ≤ θ ≤ 2π
⇒ r2 = x2 + y2

⇒ I =

∫∫
D

f(x, y) dx dy =

∫∫
D1

f(x(r, θ), y(rθ)) · |J(r, θ)| dx dy

D1 = {(r, θ) ∈ R2 | 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π}

J(r, θ) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r(cos2 θ + sin2 θ) = r

⇒ I =

2π∫
0

 1∫
0

r · er
2

dr

 dθ =

2π∫
0

(
1

2
er

2
)
dθ =

1

2

2π∫
0

(e1 − e0) dθ

=
1

2
(e− 1) · θ

∣∣∣2π
0

=
1

2
(e− 1)(2π − 0) = π(e− 1)

Ex.4 Compute the triple integral

∫∫∫
D

8xyz dx dy dz, where D = [2, 3]× [1, 2]× [0, 1].

Solution:∫∫∫
D

8xyz dx dy dz =

1∫
0

2∫
1

3∫
2

8xyz dx dy dz =

1∫
0

2∫
1

8yz

 3∫
2

x dx

 dy dz =

1∫
0

2∫
1

8yz ·
(
x2

2

∣∣∣3
2

)
dy dz

=

1∫
0

2∫
1

4yz(32 − 22) dy dz =

1∫
0

2∫
1

20yz dy dz =

1∫
0

20z

 2∫
1

y dy

 dz

=

1∫
0

20z ·
(
y2

2

∣∣∣2
1

)
dz =

1∫
0

10z(22 − 12) dz

=

1∫
0

30z dz = 30

1∫
0

z dz = 30 · z
2

2

∣∣∣1
0

= 15 · (12 − 02) = 15
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CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - exercises

1. Compute the following double integrals on the given rectangles:

1.

∫∫
∆

(3x+ 4y) dx dy, if ∆ = [0, 2]× [0, 4]

2.

∫∫
∆

xy dx dy, if ∆ = [1, 2]× [1, 2]

3.

∫∫
∆

x2y dx dy, if ∆ = [0, 3]× [0, 2]

4.

∫∫
∆

(xy + 7x+ y) dx dy, if ∆ = [0, 3]× [0, 3]

5.

∫∫
∆

(x3y − xy3) dx dy, if ∆ = [1, 3]× [−3,−1]

6.

∫∫
∆

ln(x+ y) dx dy, if ∆ = [0, 1]× [1, 2]

7.

∫∫
∆

cos y

1 + sinx · sin y dx dy, if ∆ =
[
0,
π

2

]
× [0, π]

8.

∫∫
∆

1

(1 + xy)2
dx dy, if ∆ = [0, 1]× [0, 1]

9.

∫∫
∆

y

1 + xy
dx dy, if ∆ = [0, 1]× [0, 1]

10.

∫∫
∆

sin2 x

cos2 y
dx dy, if ∆ =

[
0,
π

2

]
×
[
0,
π

4

]
2. Compute the following double integrals:

1.

∫∫
D

xy dx dy, if D is bounded by the parabola y = x2 and the line y = 2x+ 3.

2.

∫∫
D

x2 dx dy, if D is bounded by the parabola y = 2− x2 and the line y = −4.

3.

∫∫
D

x dx dy, if D is bounded by the parabolas y = x2 and y = 8− x2.

4.

∫∫
D

x dx dy, if D is bounded by the x-axis and the curve y = sinx, 0 ≤ x ≤ π.

5.

∫∫
D

sinx dx dy, if D is bounded by the x-axis and the curve y = cosx, −π/2 ≤ x ≤ π/2.

6.

∫∫
D

xy dx dy, if D is the first quadrant quarter of the circle bounded by x2 + y2 = 1 and the axes.

7.

∫∫
D

1

y
dx dy, if D is the triangle bounded by the lines y = 1, x = e and y = x.

8.

∫∫
D

x2√
x2 + y2

dx dy, if D is bounded by the lines x = 0, y = 1, y = 3
√

2 and y = x.

9.

∫∫
D

(1− y) dx dy, where D = {(x, y) ∈ R2 : x2 + (y − 1)2 ≤ 1, y ≤ x2, x ≥ 0}.

10.

∫∫
D

arcsin
√
x+ y dx dy, if D is bounded by the lines x+ y = 0, x+ y = 1, y = −1 and y = 1.

11.

∫∫
D

1

xy
dx dy, if D is bounded by the curves y2 = 2x, 2 < x < a and xy = 4, y > 0.

12.

∫∫
D

√
xy dx dy, if D is bounded by the curves y = x3, y = x2, x > 0.

13.

∫∫
D

√
x+ y dx dy, if D is the interior of the triangle of vertices 0, A(1, 2) and B(3, 2).

14.

∫∫
D

cos(x+ y) dx dy, if D is bounded by x = 0, y = π, y = x.

15. the area of the domain D bounded by y = x3 + 1 and y = 3x2.

16. the area of the domain D bounded by y = x2 − 1 and y =
1

x2 + 1
.

17. the area of the domain D bounded by y = x2 − 2x and y = sinx.
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3. Using polar coordinates (x = r cos θ, y = r sin θ), compute the following integrals:

1. the area of D = {(x, y) ∈ R2 | x2 + y2 ≤ R2}.

2.

∫∫
D

1

1 + x2 + y2
dx dy, where D = {(x, y) ∈ R2 | y ∈ [0, 1], 0 ≤ x ≤

√
1− y2}.

3.

∫∫
D

1√
4− x2 − y2

dx dy, where D = {(x, y) ∈ R2 | x ∈ [0, 1], 0 ≤ y ≤
√

1− x2}.

4.

∫∫
D

(x2 + y2)3/2 dx dy, where D = {(x, y) ∈ R2 | x ∈ [0, 2], 0 ≤ y ≤
√

4− x2}.

5.

∫∫
D

(x2 + y2) dx dy, where D is bounded by x2 + y2 = 1, y = x
√

3, x = y
√

3, and x > 0.

6.

∫∫
D

y2

x2
dx dy, where D = {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 2x}.

7.

∫∫
D

x+ y

x2 + y2
dx dy, where D = {(x, y) ∈ R2 | x ≤ x2 + y2 ≤ 1, 0 ≤ y ≤ x}.

8.

∫∫
D

(x2 + y2) dx dy, where D is bounded by the curves x2 + y2 = x and x2 + y2 = 2x.

9.

∫∫
D

ex
2+y2 dx dy, where D is given by x2 + y2 ≤ a2.

10.

∫∫
D

√
1− x2 − y2

1 + x2 + y2
dx dy, where D is given by x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

4. Compute the triple integral

∫∫∫
D

f(x, y, z) dx dy dz for the following functions:

1. f(x, y, z) = xy sin z, where D = [0, π]× [0, π]× [0, π].

2. f(x, y, z) = xz + y, where D = [−1, 1]× [0, 2]× [1, 3].

3. f(x, y, z) = xy, where D is given by 1 ≤ x ≤ 2, −2 ≤ y ≤ −1, 0 ≤ z ≤ 1

2
.

4. f(x, y, z) =
1

(1 + x+ y + z)3
, where D is bounded by the planes x = 0, y = 0, z = 0 and x+ y + z = 1.

5. f(x, y, z) = xy
√
z, where D is bounded by z = 0, z = y, y = x2, y = 1.

6. f(x, y, z) =
√
x2 + y2 + z2, where D is given by x2 + y2 + z2 ≤ 2.

7. f(x, y, z) = 1, where D = {(x, y, z) ∈ R3 | (x− a)2 + (y − b)2 + (z − c)2 ≤ R2}.
8. f(x, y, z) = y2, where D = {(x, y, z) ∈ R3 | y ≥ 0 and x2 + y2 + z2 ≤ 1}.

9. f(x, y, z) =
xyz

x2 + y2 + z2
, where D ⊂ R3 is bounded by (x2 + y2 + z2)2 = xy, where z ≥ 0.

10. f(x, y, z) = x2 + y2 + z2, where D = {(x, y, z) ∈ R3 | x2 + y2 ≤ z ∈ [0, 1]}.

11. f(x, y, z) = z, where D =

{
(x, y, z) | x

2

a2
+
y2

b2
+
z2

c2
≤ 1

}
.

12. f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
, where D is given by

x2

a2
+
y2

b2
+
z2

c2
≤ 1.

13. f(x, y, z) =
1√

x2 + y2 + (z − 2)2
, where D is bounded by x2 + y2 ≤ 1 and −1 ≤ z ≤ 1.

14. f(x, y, z) = z, where D is given by x2 + y2 ≤ z2, 0 ≤ z ≤ 1.
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