CALCULUS HANDOUT 11-DOUBLE AND TRIPLE INTEGRALS - definitions

JORDAN MEASURABLE SETS IN \mathbb{R}^{2}

Consider the set of one dimensional bounded intervals of the form $(a, b),[a, b),(a, b],[a, b]$, where $a, b \in \mathbb{R}$.
The cartesian product $\Delta=I_{1} \times I_{2}$ of two intervals of this type will be called rectangle in \mathbb{R}^{2}.
The area of such a rectangle Δ is defined by $\operatorname{area}(\Delta)=$ length $\left(I_{1}\right) \cdot$ length $\left(I_{2}\right)$.
Consider the set \mathcal{P} of all finite reunions of rectangles $\Delta: P \in \mathcal{P}$ iff there exist $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ such that $P=\bigcup_{i=1}^{n} \Delta_{i}$.

- If $P_{1}, P_{2} \in \mathcal{P}$, then $P_{1} \cup P_{2} \in \mathcal{P}$ and $P_{1} \backslash P_{2} \in \mathcal{P}$.
- For any $P \in \mathcal{P}$ there exist $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ such that $P=\bigcup_{i=1}^{n} \Delta_{i}$ and $\Delta_{i} \cap \Delta_{j}=\emptyset$ if $i \neq j$.

The area of a set $P \in \mathcal{P}$ is defined by $\operatorname{area}(P)=\sum_{i=1}^{n} \operatorname{area}\left(\Delta_{i}\right)$ where $P=\bigcup_{i=1}^{n} \Delta_{i}$ and $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ are disjoint.

- The area defined in this way for $P \in \mathcal{P}$ satisfies:
- $\operatorname{area}(P)>0$ for $P \in \mathcal{P}$
- if $P_{1}, P_{2} \in \mathcal{P}$ and $P_{1} \cap P_{2}=\emptyset$, then $\operatorname{area}\left(P_{1} \cup P_{2}\right)=\operatorname{area}\left(P_{1}\right)+\operatorname{area}\left(P_{2}\right)$
- it is independent on the decomposition of P in finite union of disjoint intervals.

For a bounded set $A \subset \mathbb{R}^{2}$, we define $\operatorname{area}_{i}(A)=\sup _{P \subset A, P \in \mathcal{P}} \operatorname{area}(P)$ and $\operatorname{area}_{e}(A)=\inf _{P \supset A, P \in \mathcal{P}} \operatorname{area}(P)$.
A bounded set $A \subset \mathbb{R}^{2}$ is said Jordan measurable if $\operatorname{area}_{i}(A)=\operatorname{area}_{e}(A)$.
The area of a Jordan measurable set $A \subset \mathbb{R}^{2}$ is defined as $\operatorname{area}(A)=\operatorname{area}_{i}(A)=\operatorname{area}_{e}(A)$.

- If A_{1} and A_{2} are Jordan measurable sets, then $A_{1} \cup A_{2}$ and $A_{1} \backslash A_{2}$ are Jordan measurable.
- If $A_{1} \cap A_{2}=\emptyset$, then $\operatorname{area}\left(A_{1} \cup A_{2}\right)=\operatorname{area}\left(A_{1}\right)+\operatorname{area}\left(A_{2}\right)$.

THE RIEMANN-DARBOUX INTEGRAL OF FUNCTIONS OF TWO VARIABLES

Let A be a given bounded and Jordan measurable subset of \mathbb{R}^{2}.
A partition P of A is a finite set of disjoint Jordan measurable subsets $A_{i}, i=\overline{1, n}$ of A satisfying: $\bigcup^{n} A_{i}=A$.
The diameter of the set A_{i} is the number $d\left(A_{i}\right)$ defined by $d\left(A_{i}\right)=\max _{\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in A_{i}} \sqrt{\left(x^{\prime}-x^{\prime \prime}\right)^{2}+\left(y^{\prime}-y^{\prime \prime}\right)^{2}}$.
The norm of the partition P is the number $\nu(P)=\max \left\{d\left(A_{1}\right), d\left(A_{2}\right), \cdots, d\left(A_{n}\right)\right\}$.
Let $f: A \rightarrow \mathbb{R}^{1}$ be a bounded function.
Then f is bounded on each part A_{i} and has a least upper bound M_{i} and a greatest lower bound m_{i} on A_{i}.
The upper Darboux sum of f related to P is $U_{f}(P)=\sum_{i=1}^{n} M_{i} \cdot \operatorname{area}\left(A_{i}\right)$, where $M_{i}=\sup \left\{f(x, y) \mid(x, y) \in A_{i}\right\}$.
The lower Darboux sum of f related to P is $L_{f}(P)=\sum_{i=1}^{n} m_{i} \cdot \operatorname{area}\left(A_{i}\right)$, where $m_{i}=\inf \left\{f(x, y) \mid(x, y) \in A_{i}\right\}$.
The Riemann sum of f related to P is defined by $\sigma_{f}(P)=\sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \cdot \operatorname{area}\left(A_{i}\right)$ where $\left(\xi_{i}, \eta_{i}\right) \in A_{i}$.

- The following inequalities hold $L_{f}(P) \leq \sigma_{f}(P) \leq U_{f}(P)$.

As f is bounded above and below on A, there exist numbers m and M with $m \leq f(x, y) \leq M$ for all $(x, y) \in A$. For any partition P of A we have

$$
m \cdot \operatorname{area}(A)=m \cdot \sum_{i=1}^{n} \operatorname{area}\left(A_{i}\right) \leq L_{f}(P) \leq U_{f}(P) \leq M \cdot \sum_{i=1}^{n} \operatorname{area}\left(A_{i}\right)=M \cdot \operatorname{area}(A)
$$

Hence, the sets $L_{f}=\left\{L_{f}(P) \mid P\right.$ is a partition of $\left.A\right\}$ and $U_{f}=\left\{U_{f}(P) \mid P\right.$ is a partition of $\left.A\right\}$ are bounded. We can therefore consider $\mathcal{L}_{f}=\sup _{P} L_{f}$ and $\mathcal{U}_{f}=\inf _{P} U_{f}$.

- If f is defined and bounded on A, then $\mathcal{L}_{f} \leq \mathcal{U}_{f}$.

A function f defined and bounded on A is Riemann-Darboux integrable on A if $\mathcal{L}_{f}=\mathcal{U}_{f}$.
This common value is denoted by

$$
\iint_{A} f(x, y) d x d y
$$

and it is called the double integral of f.

Classes of Riemann-Darboux integrable functions:

- If f is continuous on \bar{A} and \bar{A} is Jordan measurable, then f is Riemann-Draboux integrable on \bar{A}.

A function f is called piecewise-continuous on A if there exists a partition $P=\left\{A_{1}, \cdots, A_{n}\right\}$ of A and continuous functions $f_{i}, i=\overline{1, n}$ defined on A_{i} such that $f(x)=f_{i}(x)$ for $x \in \operatorname{Int}\left(A_{i}\right)$.

- A piecewise-continuous function is Riemann-Darboux integrable and $\iint_{A} f(x, y) d x d y=\sum_{i=1}^{n} \iint_{A_{i}} f_{i}(x, y) d x d y$.

Properties of the Riemann-Darboux integral:
If f and g are Riemann-Darboux integrable on A, then all the integrals below exist and the following hold:
(1) $\iint_{A}[\alpha f(x, y)+\beta g(x, y)] d x d y=\alpha \iint_{A} f(x, y) d x d y+\beta \iint_{A} g(x, y) d x d y, \alpha, \beta \in \mathbb{R}^{1}$
(2) $\iint_{A}^{A} f(x, y) d x d y=\iint_{A_{1}} f(x, y) d x d y+\iint_{A_{2}} f(x, y) d x d y$ where $A_{1} \cup A_{2}=A$ and $A_{1} \cap A_{2}=\emptyset$
(3) if $f(x, y) \leq g(x, y)$ on A, then $\iint_{A} f(x, y) d x d y \leq \iint_{A} g(x, y) d x d y$
(4) $\left|\iint_{A} f(x, y) d x d y\right| \leq \iint_{A}|f(x, y)| d x d y$

The mean value theorem:
Let $f: A \rightarrow \mathbb{R}^{1}$ be integrable on A and satisfying $m \leq f(x, y) \leq M$ for any $(x, y) \in A$.
Then $m \cdot \operatorname{area}(A) \leq \iint_{A} f(x, y) d x d y \leq M \cdot \operatorname{area}(A)$.
Riemann-Darboux integral calculus when A is rectangular:
Assume that A is a rectangle, $A=[a, b] \times[c, d]$ and $f: A \rightarrow \mathbb{R}^{1}$ is a continuous function. Then:

$$
\iint_{A} f(x, y) d x d y=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

Therefore, the computation of a double integral on a rectangular domain reduces to the computation of two successive (or iterated) single-variable integrals.
Riemann-Darboux integral calculus when A is not a rectangle:
Let A the set defined by

$$
A=\{((x, y) \mid x \in[a, b] \text { and } y \in[g(x), h(x)]\}
$$

where g, h are continuous functions satisfying $g(x) \leq h(x)$ for every $x \in[a, b]$.
For a continuous function $f: A \rightarrow \mathbb{R}^{1}$ we have:

$$
\iint_{A} f(x, y) d x d y=\int_{a}^{b} d x \int_{g(x)}^{h(x)} f(x, y) d y
$$

Change of variables in double integrals:

If $A, B \subset \mathbb{R}^{2}$ are Jordan measurable sets, $T: B \rightarrow A$ is a bijection such that T and T^{-1} have continuous partial derivatives and $f: A \rightarrow \mathbb{R}^{1}$ is an integrable function, then the following equality holds:

$$
\iint_{A} f(x, y) d x d y=\iint_{B} f(x(\xi, \eta), y(\xi, \eta))\left\|\begin{array}{|cc}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right\| d \xi d \eta
$$

CALCULUS HANDOUT 11-DOUBLE AND TRIPLE INTEGRALS - examples

Ex. 1 Compute the double integral $\iint_{D}\left(6 x y^{2}\right) d x d y$ on the rectangle $D=[2,4] \times[1,2]$.
Solution:
Method I:

$$
\begin{aligned}
\iint_{D}\left(6 x y^{2}\right) d x d y & =\int_{1}^{2}\left(\int_{2}^{4} 6 x y^{2} d x\right) d y=\int_{1}^{2} 6 y^{2}\left(\int_{2}^{4} x d x\right) d y \\
& =\int_{1}^{2} 6 y^{2}\left(\left.\frac{x^{2}}{2}\right|_{2} ^{4}\right) d y=\int_{1}^{2} 3 y^{2}\left(4^{2}-2^{2}\right) d y \\
& =\int_{1}^{2} 3 \cdot 12 y^{2} d y=36 \cdot \int_{1}^{2} y^{2} d y \\
& =\left.36 \cdot \frac{y^{3}}{3}\right|_{1} ^{2}=12 \cdot\left(2^{3}-1^{3}\right) \\
& =12 \cdot 7=84
\end{aligned}
$$

Methd II:

$$
\begin{aligned}
\iint_{D}\left(6 x y^{2}\right) d x d y & =\int_{2}^{4}\left(\int_{1}^{2} 6 x y^{2} d y\right) d x=\int_{2}^{4}\left(\int_{1}^{2} 6 x y^{2} d y\right) d x \\
& =\int_{2}^{4} 6 x\left(\int_{1}^{2} y^{2} d y\right) d x=\int_{2}^{4} 6 x\left(\left.\frac{y^{3}}{3}\right|_{1} ^{2}\right) d x \\
& =\int_{2}^{4} 2 x\left(2^{3}-1^{3}\right) d x=\int_{2}^{4} 2 \cdot 7 x d x \\
& =14 \cdot \int_{2}^{4} x d x=\left.14 \cdot \frac{x^{2}}{2}\right|_{2} ^{4} \\
& =7 \cdot\left(4^{2}-2^{2}\right)=7 \cdot 12=84
\end{aligned}
$$

Ex. 2 Compute the double integral $\iint_{D}\left(4 x y-y^{3}\right) d x d y$, where D is the domain bounded by the curves $y=\sqrt{x}$ and $y=x^{3}$.
Solution:
Determine the domain D.
$\sqrt{x}=\left.x^{3}\right|^{2} \Leftrightarrow x=x^{6} \Leftrightarrow x\left(x^{5}-1\right)=0 \Leftrightarrow x=0$ or $x=1$
$\Rightarrow D=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1\right.$ and $\left.x^{3} \leq y \leq \sqrt{x}\right\}$

Then, we obtain that

$$
\begin{aligned}
\iint_{D}\left(4 x y-y^{3}\right) d x d y & =\iint_{D} 4 x y d x d y-\iint_{D} y^{3} d x d y=\int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} 4 x y d y d x-\int_{0}^{1} \int_{x^{3}}^{\sqrt{x}} y^{3} d y d x \\
& =\int_{0}^{1} 4 x\left(\int_{x^{3}}^{\sqrt{x}} y d y\right) d x-\int_{0}^{1}\left(\int_{x^{3}}^{\sqrt{x}} y^{3} d y\right) d x=\int_{0}^{1} 4 x \cdot\left(\left.\frac{y^{2}}{2}\right|_{x^{3}} ^{\sqrt{x}}\right) d x-\int_{0}^{1}\left(\left.\frac{y^{4}}{4}\right|_{x^{3}} ^{\sqrt{x}}\right) d x \\
& =\int_{0}^{1} 2 x \cdot\left((\sqrt{x})^{2}-\left(x^{3}\right)^{2}\right) d x-\int_{0}^{1}\left(\frac{(\sqrt{x})^{4}}{4}-\frac{\left(x^{3}\right)^{4}}{4}\right) d x=2 \int_{0}^{1} x\left(x-x^{6}\right) d x-\frac{1}{4} \int_{0}^{1}\left(x^{2}-x^{12}\right) d x \\
& =2 \int_{0}^{1} x^{2} d x-2 \int_{0}^{1} x^{7} d x-\frac{1}{4} \int_{0}^{1} x^{2} d x+\frac{1}{4} \int_{0}^{1} x^{12} d x=\left.\frac{7}{4} \cdot \frac{x^{3}}{3}\right|_{0} ^{1}-\left.2 \cdot \frac{x^{8}}{8}\right|_{0} ^{1}+\left.\frac{1}{4} \cdot \frac{x^{13}}{13}\right|_{0} ^{1} \\
& =\frac{7}{4} \cdot \frac{1}{3}-\frac{1}{4}+\frac{1}{4} \cdot \frac{1}{13}=\frac{91-39+3}{156}=\frac{55}{156}
\end{aligned}
$$

Ex. 3 Compute the double integral $\iint_{D} e^{x^{2}+y^{2}} d x d y$, where D is the unit disk $x^{2}+y^{2} \leq 1$.
Solution:
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=e^{x^{2}+y^{2}}$.
We use the polar coordinates

$$
\begin{aligned}
& \left\{\begin{array}{ll}
x=r \cos \theta & 0 \leq r \leq 1 \\
y=r \sin \theta & 0 \leq \theta \leq 2 \pi
\end{array} \Rightarrow r^{2}=x^{2}+y^{2}\right. \\
& \Rightarrow I=\iint_{D} f(x, y) d x d y=\iint_{D_{1}} f(x(r, \theta), y(r \theta)) \cdot|J(r, \theta)| d x d y \\
& D_{1}=\left\{(r, \theta) \in \mathbb{R}^{2} \mid 0 \leq r \leq 1 \text { and } 0 \leq \theta \leq 2 \pi\right\} \\
& J(r, \theta)=\left|\begin{array}{ll}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r \\
& \Rightarrow I=\int_{0}^{2 \pi}\left(\int_{0}^{1} r \cdot e^{r^{2}} d r\right) d \theta=\int_{0}^{2 \pi}\left(\frac{1}{2} e^{r^{2}}\right) d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left(e^{1}-e^{0}\right) d \theta \\
& \quad=\left.\frac{1}{2}(e-1) \cdot \theta\right|_{0} ^{2 \pi}=\frac{1}{2}(e-1)(2 \pi-0)=\pi(e-1)
\end{aligned}
$$

Ex. 4 Compute the triple integral $\iiint_{D} 8 x y z d x d y d z$, where $D=[2,3] \times[1,2] \times[0,1]$.
Solution:

$$
\begin{aligned}
\iiint_{D} 8 x y z d x d y d z & =\int_{0}^{1} \int_{1}^{2} \int_{2}^{3} 8 x y z d x d y d z=\int_{0}^{1} \int_{1}^{2} 8 y z\left(\int_{2}^{3} x d x\right) d y d z=\int_{0}^{1} \int_{1}^{2} 8 y z \cdot\left(\left.\frac{x^{2}}{2}\right|_{2} ^{3}\right) d y d z \\
& =\int_{0}^{1} \int_{1}^{2} 4 y z\left(3^{2}-2^{2}\right) d y d z=\int_{0}^{1} \int_{1}^{2} 20 y z d y d z=\int_{0}^{1} 20 z\left(\int_{1}^{2} y d y\right) d z \\
& =\int_{0}^{1} 20 z \cdot\left(\left.\frac{y^{2}}{2}\right|_{1} ^{2}\right) d z=\int_{0}^{1} 10 z\left(2^{2}-1^{2}\right) d z \\
& =\int_{0}^{1} 30 z d z=30 \int_{0}^{1} z d z=\left.30 \cdot \frac{z^{2}}{2}\right|_{0} ^{1} \\
& =15 \cdot\left(1^{2}-0^{2}\right)=15
\end{aligned}
$$

CALCULUS HANDOUT 11 - DOUBLE AND TRIPLE INTEGRALS - exercises

1. Compute the following double integrals on the given rectangles:
2. $\iint_{\Delta}(3 x+4 y) d x d y$, if $\Delta=[0,2] \times[0,4]$
3. $\iint_{\Delta} x y d x d y$, if $\Delta=[1,2] \times[1,2]$
4. $\iint_{\Delta} x^{2} y d x d y$, if $\Delta=[0,3] \times[0,2]$
5. $\iint_{\Delta}(x y+7 x+y) d x d y$, if $\Delta=[0,3] \times[0,3]$
6. $\iint_{\Delta}\left(x^{3} y-x y^{3}\right) d x d y$, if $\Delta=[1,3] \times[-3,-1]$
7. $\iint_{\Delta} \ln (x+y) d x d y$, if $\Delta=[0,1] \times[1,2]$
8. $\iint_{\Delta} \frac{\cos y}{1+\sin x \cdot \sin y} d x d y$, if $\Delta=\left[0, \frac{\pi}{2}\right] \times[0, \pi]$
9. $\iint_{\Delta} \frac{1}{(1+x y)^{2}} d x d y$, if $\Delta=[0,1] \times[0,1]$
10. $\iint_{\Delta} \frac{y}{1+x y} d x d y$, if $\Delta=[0,1] \times[0,1]$
11. $\iint_{\Delta} \frac{\sin ^{2} x}{\cos ^{2} y} d x d y$, if $\Delta=\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{4}\right]$
12. Compute the following double integrals:
13. $\iint_{D} x y d x d y$, if D is bounded by the parabola $y=x^{2}$ and the line $y=2 x+3$.
14. $\iint_{D} x^{2} d x d y$, if D is bounded by the parabola $y=2-x^{2}$ and the line $y=-4$.
15. $\iint_{D} x d x d y$, if D is bounded by the parabolas $y=x^{2}$ and $y=8-x^{2}$.
16. $\iint_{D} x d x d y$, if D is bounded by the x-axis and the curve $y=\sin x, 0 \leq x \leq \pi$.
17. $\iint_{D} \sin x d x d y$, if D is bounded by the x-axis and the curve $y=\cos x,-\pi / 2 \leq x \leq \pi / 2$.
18. $\iint_{D} x y d x d y$, if D is the first quadrant quarter of the circle bounded by $x^{2}+y^{2}=1$ and the axes.
19. $\iint_{D} \frac{1}{y} d x d y$, if D is the triangle bounded by the lines $y=1, x=e$ and $y=x$.
20. $\iint_{D} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y$, if D is bounded by the lines $x=0, y=1, y=\sqrt[3]{2}$ and $y=x$.
21. $\iint_{D}(1-y) d x d y$, where $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y-1)^{2} \leq 1, y \leq x^{2}, x \geq 0\right\}$.
22. $\iint_{D} \arcsin \sqrt{x+y} d x d y$, if D is bounded by the lines $x+y=0, x+y=1, y=-1$ and $y=1$.
23. $\iint_{D} \frac{1}{x y} d x d y$, if D is bounded by the curves $y^{2}=2 x, 2<x<a$ and $x y=4, y>0$.
24. $\iint_{D} \sqrt{x y} d x d y$, if D is bounded by the curves $y=x^{3}, y=x^{2}, x>0$.
25. $\iint_{D} \sqrt{x+y} d x d y$, if D is the interior of the triangle of vertices $0, A(1,2)$ and $B(3,2)$.
26. $\iint_{D} \cos (x+y) d x d y$, if D is bounded by $x=0, y=\pi, y=x$.
27. the area of the domain D bounded by $y=x^{3}+1$ and $y=3 x^{2}$.
28. the area of the domain D bounded by $y=x^{2}-1$ and $y=\frac{1}{x^{2}+1}$.
29. the area of the domain D bounded by $y=x^{2}-2 x$ and $y=\sin x$.
30. Using polar coordinates $(x=r \cos \theta, y=r \sin \theta)$, compute the following integrals:
31. the area of $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq R^{2}\right\}$.
32. $\iint_{D} \frac{1}{1+x^{2}+y^{2}} d x d y$, where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \in[0,1], 0 \leq x \leq \sqrt{1-y^{2}}\right\}$.
33. $\iint_{D} \frac{1}{\sqrt{4-x^{2}-y^{2}}} d x d y$, where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[0,1], 0 \leq y \leq \sqrt{1-x^{2}}\right\}$.
34. $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d x d y$, where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[0,2], 0 \leq y \leq \sqrt{4-x^{2}}\right\}$.
35. $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$, where D is bounded by $x^{2}+y^{2}=1, y=x \sqrt{3}, x=y \sqrt{3}$, and $x>0$.
36. $\iint_{D} \frac{y^{2}}{x^{2}} d x d y$, where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x^{2}+y^{2} \leq 2 x\right\}$.
37. $\iint_{D} \frac{x+y}{x^{2}+y^{2}} d x d y$, where $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq x^{2}+y^{2} \leq 1,0 \leq y \leq x\right\}$.
38. $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$, where D is bounded by the curves $x^{2}+y^{2}=x$ and $x^{2}+y^{2}=2 x$.
39. $\iint_{D} e^{x^{2}+y^{2}} d x d y$, where D is given by $x^{2}+y^{2} \leq a^{2}$.
40. $\iint_{D} \sqrt{\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}}} d x d y$, where D is given by $x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0$.
41. Compute the triple integral $\iiint_{D} f(x, y, z) d x d y d z$ for the following functions:
42. $f(x, y, z)=x y \sin z$, where $D=[0, \pi] \times[0, \pi] \times[0, \pi]$.
43. $f(x, y, z)=x z+y$, where $D=[-1,1] \times[0,2] \times[1,3]$.
44. $f(x, y, z)=x y$, where D is given by $1 \leq x \leq 2,-2 \leq y \leq-1,0 \leq z \leq \frac{1}{2}$.
45. $f(x, y, z)=\frac{1}{(1+x+y+z)^{3}}$, where D is bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
46. $f(x, y, z)=x y \sqrt{z}$, where D is bounded by $z=0, z=y, y=x^{2}, y=1$.
47. $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$, where D is given by $x^{2}+y^{2}+z^{2} \leq 2$.
48. $f(x, y, z)=1$, where $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \leq R^{2}\right\}$.
49. $f(x, y, z)=y^{2}$, where $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y \geq 0 \quad\right.$ and $\left.\quad x^{2}+y^{2}+z^{2} \leq 1\right\}$.
50. $f(x, y, z)=\frac{x y z}{x^{2}+y^{2}+z^{2}}$, where $D \subset \mathbb{R}^{3}$ is bounded by $\left(x^{2}+y^{2}+z^{2}\right)^{2}=x y$, where $z \geq 0$.
51. $f(x, y, z)=x^{2}+y^{2}+z^{2}$, where $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq z \in[0,1]\right\}$.
52. $f(x, y, z)=z$, where $D=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right.\right\}$.
53. $f(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}$, where D is given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$.
54. $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+(z-2)^{2}}}$, where D is bounded by $x^{2}+y^{2} \leq 1$ and $-1 \leq z \leq 1$.
55. $f(x, y, z)=z$, where D is given by $x^{2}+y^{2} \leq z^{2}, 0 \leq z \leq 1$.
