CALCULUS HANDOUT 10 HIGHER ORDER DIFFERENTIABILITY. LOCAL EXTREMA - definitions

Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ be a partially differentiable function with respect to every variable $x_i, j = \overline{1, n}$ on A.

SECOND ORDER PARTIAL DERIVATIVES:

• f is two times partially differentiable at a with respect to every variable if all partial derivatives $\frac{\partial f_i}{\partial x_i}$ are partially differentiable at $a \in A$ with respect to every variable x_k .

The partial derivative with respect to the variable x_k of the partial derivative $\frac{\partial f_i}{\partial x_i}$ will be denoted by $\frac{\partial^2 f_i}{\partial x_k \partial x_i}(a)$,

i.e. $\frac{\partial}{\partial x_k} (\frac{\partial f_i}{\partial x_i})(a) = \frac{\partial^2 f_i}{\partial x_k \partial x_i}(a)$ and will be called second order partial derivative of f.

SECOND ORDER FRÉCHET DERIVATIVE:

• f is two times differentiable at the point $a \in A$ if the partial derivatives $\frac{\partial f_i}{\partial x_i}$ are differentiable at a.

The second order Fréchet derivative of
$$f$$
 at the point a is the function $d_a^2 f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$ by the formul $d_a^2 f(u)(v) = \sum_{i=1}^m \left(\sum_{j=1}^n \sum_{k=1}^n \frac{\partial^2 f_i}{\partial x_j \partial x_k}(a) \cdot u_j \cdot v_k \right) e_i$ where $u, v \in \mathbb{R}^n$, $e_i = (0, ..., 0, 1, 0, ..., 0)$, $i = \overline{1, n}$.

a

The second order Fréchet derivative of f at a satisfies $\lim_{u \to 0} \frac{\|d_{a+u}f(v) - d_af(v) - d_a^2f(u)(v)\|}{\|u\|} = 0$ for every $v \in \mathbb{R}^n$.

Mixed derivative theorem of Schwarz:

If the function f is twice differentiable at a, then $\frac{\partial^2 f_i}{\partial x_i \partial x_k}(a) = \frac{\partial^2 f_i}{\partial x_k \partial x_j}(a)$ for any $i = \overline{1, m}$ and $j, k = \overline{1, n}$.

Criterion for second order differentiability:

If the second order partial derivatives $\frac{\partial^2 f_i}{\partial x_i \partial x_k}$ exist in a neighborhood of *a* and they are continuous at *a*, then *f* is two times differentiable at a.

HIGHER ORDER PARTIAL DERIVATIVES:

• f is k-times partially differentiable at $a \in A$ with respect to every variable if f is (k-1)-times partially differentiable with respect to every variable on an open neighborhood of a and every (k-1)-th order partial derivative $\frac{\partial^{k-1} f_i}{\partial x_{j_{k-1}} \cdots \partial x_{j_1}}$ is partially differentiable with respect to every variable x_{j_k} at a.

The k-th order partial derivative of f at a is $\frac{\partial^k f_i}{\partial x_{ik} \partial x_{ik-1} \cdots \partial x_{i_1}}(a) = \frac{\partial}{\partial x_{ik}} (\frac{\partial^{k-1} f_i}{\partial x_{ik-1} \cdots \partial x_{i_1}})(a).$

HIGHER ORDER DIFFERENTIABILITY:

• f is k-times differentiable at a if the partial derivatives of order k-1, $\frac{\partial^{k-1} f_i}{\partial x_{j_{k-1}} \cdots \partial x_{j_1}}$ are differentiable at a.

The **Fréchet derivative of order** k of f at a is the function $d_a^k f : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}^m$ given by

$$d_a^k f(u^1)(u^2)\cdots(u^k) = \sum_{i=1}^m \left(\sum_{j_1=1}^n \sum_{j_2=1}^n \cdots \sum_{j_k=1}^n \frac{\partial^k f_i}{\partial x_{j_k} \cdots \partial x_{j_1}}(a) \cdot u_{j_1}^1 u_{j_2}^2 \cdots u_{j_k}^k\right) e_i$$

The Fréchet derivative of order k of f at a satisfies:

$$\lim_{\|u^k\|\to 0} \frac{\|d_{a+u^k}^{k-1}f(u^1)(u^2)\cdots(u^{k-1}) - d_a^{k-1}f(u^1)(u^2)\cdots(u^{k-1}) - d_a^kf(u^1)(u^2)\cdots(u^k)\|}{\|u^k\|} = 0$$

Mixed derivative theorem:

If the function is k-times differentiable at a, then the following relations hold:

$$\frac{\partial^k f_i}{\partial x_{j_1} \partial x_{j_2} \cdots \partial x_{j_k}}(a) = \frac{\partial^k f_i}{\partial x_{\sigma(j_1)} \partial x_{\sigma(j_2)} \cdots \partial x_{\sigma(j_k)}}(a)$$

Criterion for *k*-times differentiability:

If the partial derivatives of k-th order exist in a neighborhood of a and they are continuous at a, then f is k-times differentiable at a.

FINDING LOCAL EXTREMA

The point $a \in A$ is a **local minimum point** of the function $f : A \subset \mathbb{R}^n \to \mathbb{R}^1$ if there exists a neighborhood $V \subset A$ of a such that $f(a) \leq f(x)$ for any $x \in V$.

The point $a \in A$ is a global minimum point of the function $f : A \subset \mathbb{R}^n \to R^1$ if $f(a) \leq f(x)$ for any $x \in A$. The point $a \in A$ is a local maximum point of the function $f : A \subset \mathbb{R}^n \to R^1$ if there exists a neighborhood $V \subset A$ of a such that $f(a) \geq f(x)$ for any $x \in V$.

The point $a \in A$ is a global maximum point of the function $f : A \subset \mathbb{R}^n \to R^1$ if $f(a) \ge f(x)$ for any $x \in A$.

Necessary condition for local extrema:

If the function $f : A \subset \mathbb{R}^n \to \mathbb{R}^1$ attains a local minimum or maximum value at the point $a \in A$ and all partial derivatives of f exist at a, then $\nabla f(a) = 0$ (i.e. a is a **critical point** of f).

Sufficient condition for local extrema:

Assume that $f: A \subset \mathbb{R}^n \to \mathbb{R}^1$ has continuous second order partial derivatives on A and a is a critical point of f.

1) If
$$d_a^2 f(h)(h) \ge 0$$
 for $h \in \mathbb{R}^n$ and $\det\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right) \ne 0$, then f has a local minimum at a ;
ii) If $d_a^2 f(h)(h) \le 0$ for $h \in \mathbb{R}^n$ and $\det\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right) \ne 0$, then f has a local maximum at a .

Second partial derivative test for functions of two variables:

Consider the function $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ and $a = (a_1, a_2) \in A$ a critical point of f. Consider the Hessian matrix:

$$H_{(a_1,a_2)}f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a_1,a_2) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(a_1,a_2) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(a_1,a_2) & \frac{\partial^2 f}{\partial x_2^2}(a_1,a_2) \end{pmatrix}$$

Consider the principal minors of the Hessian matrix:

$$\Delta_1 = \frac{\partial^2 f}{\partial x_1^2}(a_1, a_2) \quad \text{and} \quad \Delta_2 = \det \left(H_{(a_1, a_2)} f \right)$$

- if $\Delta_1 > 0$ and $\Delta_2 > 0$ then $a = (a_1, a_2)$ is a local minimum point of f;
- if $\Delta_1 < 0$ and $\Delta_2 > 0$ then $a = (a_1, a_2)$ is a local maximum point of f;
- if $\Delta_2 < 0$ then $a = (a_1, a_2)$ is a saddle point of f;
- if $\Delta_2 = 0$ then this test is inconclusive.

LAGRANGE MULTIPLIERS AND CONSTRAINED OPTIMIZATION

Consider a function $f: A \subset \mathbb{R}^n \to \mathbb{R}^1$, where A is an open set and the set $\Gamma \subset A$, defined by:

$$\Gamma = \{ x \in A \mid g_i(x) = 0, \quad i = \overline{1, p} \} \quad \text{where } g_i : A \to \mathbb{R}^1 \text{ and } p < n$$

If the restriction $f|_{\Gamma}$ has an extreme point $a \in \Gamma$, then this is called **conditional extreme point**.

Assume that f and g_i , $i = \overline{1, p}$ are continuously differentiable near the conditional extreme point $a \in \Gamma$ and $\nabla g_i(a), i = \overline{1, p}$ are linearly independent vectors of \mathbb{R}^n . Then there exist some constants $\lambda_1, \lambda_2, ..., \lambda_p$ such that

$$\nabla f(a) = \sum_{i=1}^{p} \lambda_i \nabla g_i(a)$$

Example: Two variables and one constraint:

If we want to maximize (minimize) the function $f : A \subset \mathbb{R}^2 \to \mathbb{R}^1$ subject to the constraint g(x, y) = 0, we first need to solve the system of three equations

$$\left\{ \begin{array}{l} g(x,y)=0\\ \frac{\partial f}{\partial x}(x,y)=\lambda\frac{\partial g}{\partial x}(x,y)\\ \frac{\partial f}{\partial y}(x,y)=\lambda\frac{\partial g}{\partial y}(x,y) \end{array} \right.$$

with respect to the variables x, y, λ . The points (x, y) that we find are the only possible locations of the extrema of f subject to the constraint g(x, y) = 0.

CALCULUS HANDOUT 10 HIGHER ORDER DIFFERENTIABILITY. LOCAL EXTREMA - examples

Ex.1 Compute the first and second order Fréchet derivatives for the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = e^{xy} + 2x^3y^2 + y - 3xy$ at a = (0, 2).

Solution: Compute the first order partial derivatives of the function
$$f$$
.

$$\frac{\partial f}{\partial x} = (e^{xy} + 2x^3y^2 + y - 3xy)'_x = e^{xy} \cdot (xy)'_x + 2y^2 \cdot (x^3)'_x + (y)'_x - 3y \cdot (x)'_x = ye^{xy} + 6x^2y^2 - 3y$$

$$\frac{\partial f}{\partial y} = (e^{xy} + 2x^3y^2 + y - 3xy)'_y = e^{xy} \cdot (xy)'_y + 2x^3 \cdot (y^2)'_y + (y)'_y - 3x \cdot (y)'_y = xe^{xy} + 4x^3y + 1 - 3x$$

$$\Rightarrow \frac{\partial f}{\partial x}(0,2) = 2 \cdot e^{0\cdot 2} + 6 \cdot 0^2 \cdot 2^2 - 3 \cdot 2 = -4 \text{ and } \frac{\partial f}{\partial y}(0,2) = 0 \cdot e^{0\cdot 2} + 4 \cdot 0^3 \cdot 2 + 1 - 3 \cdot 0 = 1$$
The first order Fréchet derivative of the function f at the point $a = (0,2)$ is:

$$d_{(0,2)}f(h_1,h_2) = \nabla f(0,2) \cdot h = (-4,1) \cdot (h_1,h_2) = -4h_1 + h_2$$
Compute the second order partial derivatives of the function f .

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) = (ye^{xy} + 6x^2y^2 - 3y)'_x = ye^{xy} \cdot (xy)'_x + 6y^2 \cdot (x^2)'_x - (3y)'_x = y^2e^{xy} + 12xy^2$$

$$\frac{\partial^2 f}{\partial y\partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) = (ye^{xy} + 6x^2y^2 - 3y)'_y = (y)'_y \cdot e^{xy} + y \cdot e^{xy} \cdot (xy)'_y + 6x^2 \cdot (y^2)'_y - 3 \cdot (y)'_y = e^{xy} + xye^{xy} + 12x^2y - 3$$

$$\frac{\partial^2 f}{\partial x\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) = (xe^{xy} + 4x^3y + 1 - 3x)'_x = (x)'_x \cdot e^{xy} + x \cdot e^{xy} \cdot (xy)'_x + 4y \cdot (x^3)'_x - 3 \cdot (y)'_x = e^{xy} + xye^{xy} + 12x^2y - 3$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) = (xe^{xy} + 4x^3y + 1 - 3x)'_y = xe^{xy} \cdot (xy)'_y + 4x^3 \cdot (y)'_y - (3x)'_y = x^2e^{xy} + 4x^3$$

$$\Rightarrow \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) = (xe^{xy} + 4x^3y + 1 - 3x)'_y = xe^{xy} \cdot (xy)'_y + 4x^3 \cdot (y)'_y - (3x)'_y = x^2e^{xy} + 4x^3$$

The second order Fréchet derivative of the function f at the point a = (0, 2) is:

$$d_{(0,2)}^2 f(u_1, u_2)(v_1, v_2) = \frac{\partial^2 f}{\partial x^2}(0, 2)u_1v_1 + \frac{\partial^2 f}{\partial x \partial y}(0, 2)u_1v_2 + \frac{\partial^2 f}{\partial y \partial x}u_2v_1 + \frac{\partial^2 f}{\partial y^2}(0, 2)u_2v_2$$

= 4u_1v_1 - 2u_1v_2 - 2u_2v_1 + 0 \cdot u_2v_2
= 4u_1v_1 - 2(u_1v_2 + u_2v_1)

Ex.2 Find and classify the critical points of the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$. Solution: Compute the first order partial derivatives of the function f.

$$\frac{\partial f}{\partial x} = (3x^2y + y^3 - 3x^2 - 3y^2 + 2)'x = 3y \cdot (x^2)'_x + (y^3)'_x - 3 \cdot (x^2)'_x - (3y^2)'_x + 2'_x = 6xy - 6x$$

$$\frac{\partial f}{\partial y} = (3x^2y + y^3 - 3x^2 - 3y^2 + 2)'_y = 3x^2 \cdot (y)'_y + (y^3)'_y - (3x^2)'_y - 3 \cdot (y^2)'_y + 2'_y = 3x^2 + 3y^2 - 6y$$

Find the critical points of the function f . Solve the system:

$$\begin{cases} \frac{\partial f}{\partial x} = 0\\ \frac{\partial f}{\partial y} = 0 \end{cases} \Leftrightarrow \begin{cases} 6xy - 6x = 0\\ 3x^2 + 3y^2 - 6y = 0 \end{cases} \qquad 6xy - 6x = 0 \Leftrightarrow 6x(y-1) = 0 \Leftrightarrow x = 0 \text{ or } y = 1 \end{cases}$$
$$x = 0 \Rightarrow 3y^2 - 6y = 0 \Leftrightarrow 3y(y-2) = 0 \Leftrightarrow y = 0 \text{ or } y = 2$$
$$y = 1 \Rightarrow 3x^2 + 3 - 6 = 0 \Leftrightarrow 3x^3 = 3 \Leftrightarrow x^2 = 1 \Leftrightarrow x = 1 \text{ or } x = -1$$
The critical points are $(0,0), (0,2), (1,1)$ §i $(-1,1)$.

Compute the Hessian matrix at each critical point.

$$Hf = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} (6xy - 6x)'_x & (6xy - 6x)'_y \\ (3x^2 + 3y^2 - 6y)'_x & (3x^2 + 3y^2 - 6y)'_y \end{pmatrix} = \begin{pmatrix} 6y - 6 & 6x \\ 6x & 6y - 6 \end{pmatrix}$$
$$H_{(0,0)}f = \begin{pmatrix} -6 & 0 \\ 0 & -6 \end{pmatrix} \qquad \Delta_1 = -6 < 0, \ \Delta_2 = \det(H_{(0,0)}f) = 36 > 0 \Rightarrow (0,0) \text{-local maximum point}$$
$$H_{(0,2)}f = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} \qquad \Delta_1 = 6 > 0, \ \Delta_2 = H_{(0,2)}f = 36 > 0 \Rightarrow (0,2) \text{-local minimum point}$$
$$H_{(1,1)}f = \begin{pmatrix} 0 & 6 \\ 6 & 0 \end{pmatrix} \qquad \Delta_1 = 0, \ \Delta_2 = \det(H_{(1,1)}f) = -36 < 0 \Rightarrow (1,1) \text{-saddle point}$$

 $H_{(-1,1)}f = \begin{pmatrix} 0 & -6\\ -6 & 0 \end{pmatrix} \quad \Delta_1 = 0, \ \Delta_2 = \det(H_{(-1,1)}f) = -36 < 0 \Rightarrow (-1,1) \text{-saddle point}$

Ex.3 Find the maximum and minimum values of the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 4x^2 + 10y^2$ subject to the constraint $x^2 + y^2 = 4$.

Solution: Let $g: \mathbb{R}^2 \to \mathbb{R}, g(x, y) = x^2 + y^2 - 4$. Solve the system:

$$\begin{cases} g(x,y) = 0\\ \frac{\partial f}{\partial x}(x,y) = \lambda \frac{\partial g}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) = \lambda \frac{\partial g}{\partial y}(x,y) \\ \frac{\partial f}{\partial x}(x,y) = (4x^2 + 10y^2)'_x = 8x \\ \frac{\partial f}{\partial x}(x,y) = (x^2 + y^2 - 4)'_x = 2x \\ \frac{\partial f}{\partial x}(x,y) = (4x^2 + 10y^2)'_y = 20y \\ \frac{\partial g}{\partial y}(x,y) = (x^2 + y^2 - 4)'_y = 2y \end{cases}$$

The system becomes

 $\begin{cases} x^2 + y^2 = 4\\ 8x = 2\lambda x\\ 20y = 2\lambda y \end{cases}$

From the second equation, we have: $8x - 2\lambda x = 0 \Leftrightarrow 2x(4 - \lambda) = 0 \Rightarrow x = 0$ or $\lambda = 4$ If x = 0, by substituting in the first equation of the system, we obtain $y^2 = 4 \Leftrightarrow y = \pm 2 \Rightarrow (0, 2)$ and (0, -2) are critical points. If $\lambda = 4$, by plugging in the third equation of the system, we have

 $20y = 8y \Leftrightarrow 12y = 0 \Leftrightarrow y = 0$

Then, replacing y = 0 into the first equation of the system, it results that

 $x^2 = 4 \Leftrightarrow x = \pm 2 \Rightarrow (2,0)$ and (-2,0) are critical points.

Compute the values of the function f at the critical points previously found.

f(0,2) = f(0,-2) = 40 and f(2,0) = f(-2,0) = 16.

Thus, $f_{min} = 16$ at the points (2,0) and (-2,0) and $f_{max} = 40$ at the points (0,2) and (0,-2).

CALCULUS HANDOUT 10 HIGHER ORDER DIFFERENTIABILITY. LOCAL EXTREMA - exercises

1. Compute the first and second order Fréchet derivatives for the following functions:

5. $f(x,y) = e^{x^2 + y^2}$ 1. $f(x,y) = x^3 + 8y^3 - 6xy - 1$ 2. $f(x, y, z) = e^{ax+by+cz}$ 6. f(x, y, z) = xyz3. $f(x, y) = \ln(x + y)$ 7. $f(x_1, x_2, ..., x_p) = \ln(x_1 + a_1)(x_2 + a_2)...(x_p + a_p)$ 8. $f(x, y, z) = \cos xyz$ 4. $f(x, y) = \sin(x + 3y)$ 2. Find and classify the critical points of the following functions of two variables: 1. $f(x,y) = 2x^2 + y^2 + 4x - 4y + 5$ 18. $f(x,y) = x^2 - 2y^2 + xy - 2x - y + 5$ 19. $f(x,y) = 12x + 25y - 2x^2 - 6y^2$ 2. $f(x,y) = 10 + 12x - 12y - 3x^2 - 2y^2$ 3. $f(x,y) = 2x^2 - 3y^2 + 2x - 3y + 7$ 20. $f(x,y) = x^3 + 2y^2 - 27x - 8y$ 21. $f(x,y) = 2(x-y)^2 - x^4 - y^4$ 4. f(x,y) = xy + 3x - 2y + 45. $f(x,y) = 2x^2 + 2xy + y^2 + 4x - 2y + 1$ 22. $f(x,y) = x^2 + y^2 - xy + x + y$ 6. $f(x,y) = x^2 + 4xy + 2y^2 + 4x - 8y + 3$ 23. $f(x,y) = x^3 + 6xy + 3y^2 - 9x$ 7. $f(x,y) = x^3 + y^3 + 3xy + 3$ 24. $f(x,y) = 4xy - 2x^4 - y^2$ 8. $f(x,y) = x^2 - 2xy + y^3 - y$ 25. $f(x, y) = (x \cos y - y \sin y) e^x$ 9. $f(x,y) = x^3 + 8y^3 - 6xy - 1$ 26. $f(x,y) = \ln(x^2 + y^2)$ 10. $f(x,y) = x^4 - y^4 - 2x^2 + 2y^2$ 27. $f(x,y) = e^{\frac{x}{2}}(x+y^2)$ 11. $f(x,y) = x^3 + 8y^3 - 6xy + 1$ 28. $f(x,y) = x^2 + 2y^2 + \pi \cos x \, \cos y$ 12. $f(x,y) = x^3 + 3xy^2 - 15x - 12y$ 29. $f(x,y) = e^{x^2 + y^2} - x^2 - 2y^2$ 13. $f(x,y) = xy - 2x - 2y - x^2 - y^2$ 30. f(x,y) = (1-x)(1-y)(x+y-1)14. $f(x,y) = x^2 + y^4 + 2xy$ 31. $f(x, y, z) = x^3 + y62 + xz^2 + 12xy + 2z$ 15. $f(x,y) = 2 - x^4 + 2x^2 - y^2$ 32. $f(x, y, z) = x^3 - y^2 - z^2 - 12x + 12y + 14z$ 16. $f(x,y) = x^3 - 3x + 3xy^2$ 33. $f(x, y, z) = x^2 + 3y^2 + 2x^2 - 2xy + 2xz$ 17. $f(x,y) = x^3 + y^3 - 3x^2 - 3y^2 - 9x$ 34. $f(x, y, z) = x^2 + y^2 + z^2 - xy + x - 2z$

3. Find the maximum and minimum values (if any) of the following functions subject to the following constraint:

10. $f(x, y) = x^2 + 2y^2; x^2 + y^2 = 1$ 10. $f(x, y) = 2x^2 + 3y^2 - 4x - 5; x^2 + y^2 = 16$ 11. $f(x, y, z) = x^2 + y^2 + z^2; 3x + 2y + z = 6$ 12. $f(x, y, z) = 3x + 2y + z; x^2 + y^2 + z^2 = 1$ 13. $f(x, y, z) = x + y + z; x^2 + 4y^2 + 9z^2 = 36$ 14. $f(x, y, z) = xyz; x^2 + y^2 + z^2 = 1$ 15. $f(x, y, z) = xy + 2z; x^2 + y^2 + z^2 = 36$ 16. $f(x, y, z) = x^2y^2z^2; x^2 + 4y^2 + 9z^2 = 27$

Extra exercises

4. Find the points of the parabola $y = (x - 1)^2$ that are closest to the origin.

5. Find the points of the ellipse $4x^2 + 9y^2 = 36$ that are closest to and farthest from the point (3,2).

6. Consider a right triangle of hypothenuse z and legs x and y, and fixed perimeter P. Maximize its area $A = \frac{xy}{2}$ subject to the constraints x + y + z = P and $x^2 + y^2 = z^2$. In particular, show that the optimal such triangle is isosceles (x = y).