Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a partially differentiable function with respect to every variable $x_{j}, j=\overline{1, n}$ on A.

SECOND ORDER PARTIAL DERIVATIVES:

- f is two times partially differentiable at a with respect to every variable if all partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ are partially differentiable at $a \in A$ with respect to every variable x_{k}.
The partial derivative with respect to the variable x_{k} of the partial derivative $\frac{\partial f_{i}}{\partial x_{j}}$ will be denoted by $\frac{\partial^{2} f_{i}}{\partial x_{k} \partial x_{j}}(a)$, i.e. $\frac{\partial}{\partial x_{k}}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)(a)=\frac{\partial^{2} f_{i}}{\partial x_{k} \partial x_{j}}(a)$ and will be called second order partial derivative of f.

SECOND ORDER FRÉCHET DERIVATIVE:

- f is two times differentiable at the point $a \in A$ if the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ are differentiable at a.

The second order Fréchet derivative of f at the point a is the function $d_{a}^{2} f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by the formula $d_{a}^{2} f(u)(v)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}(a) \cdot u_{j} \cdot v_{k}\right) e_{i}$ where $u, v \in \mathbb{R}^{n}, e_{i}=(0, \ldots, 0,1,0, \ldots, 0), i=\overline{1, n}$.
The second order Fréchet derivative of f at a satisfies $\lim _{u \rightarrow 0} \frac{\left\|d_{a+u} f(v)-d_{a} f(v)-d_{a}^{2} f(u)(v)\right\|}{\|u\|}=0$ for every $v \in \mathbb{R}^{n}$.
Mixed derivative theorem of Schwarz:
If the function f is twice differentiable at a, then $\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}(a)=\frac{\partial^{2} f_{i}}{\partial x_{k} \partial x_{j}}(a)$ for any $i=\overline{1, m}$ and $j, k=\overline{1, n}$.
Criterion for second order differentiability:
If the second order partial derivatives $\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}$ exist in a neighborhood of a and they are continuous at a, then f is two times differentiable at a.

HIGHER ORDER PARTIAL DERIVATIVES:

- f is k-times partially differentiable at $a \in A$ with respect to every variable if f is ($k-1$)-times partially differentiable with respect to every variable on an open neighborhood of a and every ($k-1$)-th order partial derivative $\frac{\partial^{k-1} f_{i}}{\partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}$ is partially differentiable with respect to every variable $x_{j_{k}}$ at a.
The k-th order partial derivative of f at a is $\frac{\partial^{k} f_{i}}{\partial x_{j_{k}} \partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}(a)=\frac{\partial}{\partial x_{j_{k}}}\left(\frac{\partial^{k-1} f_{i}}{\partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}\right)(a)$.

HIGHER ORDER DIFFERENTIABILITY:

- f is k-times differentiable at a if the partial derivatives of order $k-1, \frac{\partial^{k-1} f_{i}}{\partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}$ are differentiable at a.

The Fréchet derivative of order k of f at a is the function $d_{a}^{k} f: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
d_{a}^{k} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k}\right)=\sum_{i=1}^{m}\left(\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \frac{\partial^{k} f_{i}}{\partial x_{j_{k}} \cdots \partial x_{j_{1}}}(a) \cdot u_{j_{1}}^{1} u_{j_{2}}^{2} \cdots u_{j_{k}}^{k}\right) e_{i}
$$

The Fréchet derivative of order k of f at a satisfies:

$$
\lim _{\left\|u^{k}\right\| \rightarrow 0} \frac{\left\|d_{a+u^{k}}^{k-1} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k-1}\right)-d_{a}^{k-1} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k-1}\right)-d_{a}^{k} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k}\right)\right\|}{\left\|u^{k}\right\|}=0
$$

Mixed derivative theorem:
If the function is k-times differentiable at a, then the following relations hold:

$$
\frac{\partial^{k} f_{i}}{\partial x_{j_{1}} \partial x_{j_{2}} \cdots \partial x_{j_{k}}}(a)=\frac{\partial^{k} f_{i}}{\partial x_{\sigma\left(j_{1}\right)} \partial x_{\sigma\left(j_{2}\right)} \cdots \partial x_{\sigma\left(j_{k}\right)}}(a)
$$

Criterion for k-times differentiability:
If the partial derivatives of k-th order exist in a neighborhood of a and they are continuous at a, then f is k-times differentiable at a.

FINDING LOCAL EXTREMA

The point $a \in A$ is a local minimum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow R^{1}$ if there exists a neighborhood $V \subset A$ of a such that $f(a) \leq f(x)$ for any $x \in V$.
The point $a \in A$ is a global minimum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow R^{1}$ if $f(a) \leq f(x)$ for any $x \in A$.
The point $a \in A$ is a local maximum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow R^{1}$ if there exists a neighborhood $V \subset A$ of a such that $f(a) \geq f(x)$ for any $x \in V$.
The point $a \in A$ is a global maximum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow R^{1}$ if $f(a) \geq f(x)$ for any $x \in A$.

Necessary condition for local extrema:

If the function $f: A \subset \mathbb{R}^{n} \rightarrow R^{1}$ attains a local minimum or maximum value at the point $a \in A$ and all partial derivatives of f exist at a, then $\nabla f(a)=0$ (i.e. a is a critical point of f).
Sufficient condition for local extrema:
Assume that $f: A \subset \mathbb{R}^{n} \rightarrow R^{1}$ has continuous second order partial derivatives on A and a is a critical point of f.
i) If $d_{a}^{2} f(h)(h) \geq 0$ for $h \in \mathbb{R}^{n}$ and $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right) \neq 0$, then f has a local minimum at a;
ii) If $d_{a}^{2} f(h)(h) \leq 0$ for $h \in \mathbb{R}^{n}$ and $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right) \neq 0$, then f has a local maximum at a.

Second partial derivative test for functions of two variables:

Consider the function $f: A \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $a=\left(a_{1}, a_{2}\right) \in A$ a critical point of f. Consider the Hessian matrix:

$$
H_{\left(a_{1}, a_{2}\right)} f=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left(a_{1}, a_{2}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(a_{1}, a_{2}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\left(a_{1}, a_{2}\right) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left(a_{1}, a_{2}\right)
\end{array}\right)
$$

Consider the principal minors of the Hessian matrix:

$$
\Delta_{1}=\frac{\partial^{2} f}{\partial x_{1}^{2}}\left(a_{1}, a_{2}\right) \quad \text { and } \quad \Delta_{2}=\operatorname{det}\left(H_{\left(a_{1}, a_{2}\right)} f\right)
$$

- if $\Delta_{1}>0$ and $\Delta_{2}>0$ then $a=\left(a_{1}, a_{2}\right)$ is a local minimum point of f;
- if $\Delta_{1}<0$ and $\Delta_{2}>0$ then $a=\left(a_{1}, a_{2}\right)$ is a local maximum point of f;
- if $\Delta_{2}<0$ then $a=\left(a_{1}, a_{2}\right)$ is a saddle point of f;
- if $\Delta_{2}=0$ then this test is inconclusive.

LAGRANGE MULTIPLIERS AND CONSTRAINED OPTIMIZATION

Consider a function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, where A is an open set and the set $\Gamma \subset A$, defined by:

$$
\Gamma=\left\{x \in A \mid g_{i}(x)=0, \quad i=\overline{1, p}\right\} \quad \text { where } g_{i}: A \rightarrow \mathbb{R}^{1} \text { and } p<n
$$

If the restriction $\left.f\right|_{\Gamma}$ has an extreme point $a \in \Gamma$, then this is called conditional extreme point.
Assume that f and $g_{i}, i=\overline{1, p}$ are continuously differentiable near the conditional extreme point $a \in \Gamma$ and $\nabla g_{i}(a), i=\overline{1, p}$ are linearly independent vectors of \mathbb{R}^{n}. Then there exist some constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ such that

$$
\nabla f(a)=\sum_{i=1}^{p} \lambda_{i} \nabla g_{i}(a)
$$

Example: Two variables and one constraint:

If we want to maximize (minimize) the function $f: A \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ subject to the constraint $g(x, y)=0$, we first need to solve the system of three equations

$$
\left\{\begin{array}{l}
g(x, y)=0 \\
\frac{\partial f}{\partial x}(x, y)=\lambda \frac{\partial g}{\partial x}(x, y) \\
\frac{\partial f}{\partial y}(x, y)=\lambda \frac{\partial g}{\partial y}(x, y)
\end{array}\right.
$$

with respect to the variables x, y, λ. The points (x, y) that we find are the only possible locations of the extrema of f subject to the constraint $g(x, y)=0$.

CALCULUS HANDOUT 10
 HIGHER ORDER DIFFERENTIABILITY. LOCAL EXTREMA - examples

Ex. 1 Compute the first and second order Fréchet derivatives for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=$ $e^{x y}+2 x^{3} y^{2}+y-3 x y$ at $a=(0,2)$.
Solution: Compute the first order partial derivatives of the function f.
$\frac{\partial f}{\partial x}=\left(e^{x y}+2 x^{3} y^{2}+y-3 x y\right)_{x}^{\prime}=e^{x y} \cdot(x y)_{x}^{\prime}+2 y^{2} \cdot\left(x^{3}\right)_{x}^{\prime}+(y)_{x}^{\prime}-3 y \cdot(x)_{x}^{\prime}=y e^{x y}+6 x^{2} y^{2}-3 y$
$\frac{\partial f}{\partial y}=\left(e^{x y}+2 x^{3} y^{2}+y-3 x y\right)_{y}^{\prime}=e^{x y} \cdot(x y)_{y}^{\prime}+2 x^{3} \cdot\left(y^{2}\right)_{y}^{\prime}+(y)_{y}^{\prime}-3 x \cdot(y)_{y}^{\prime}=x e^{x y}+4 x^{3} y+1-3 x$
$\Rightarrow \frac{\partial f}{\partial x}(0,2)=2 \cdot e^{0 \cdot 2}+6 \cdot 0^{2} \cdot 2^{2}-3 \cdot 2=-4$ and $\frac{\partial f}{\partial y}(0,2)=0 \cdot e^{0 \cdot 2}+4 \cdot 0^{3} \cdot 2+1-3 \cdot 0=1$
The first order Fréchet derivative of the function f at the point $a=(0,2)$ is:
$d_{(0,2)} f\left(h_{1}, h_{2}\right)=\nabla f(0,2) \cdot h=(-4,1) \cdot\left(h_{1}, h_{2}\right)=-4 h_{1}+h_{2}$
Compute the second order partial derivatives of the function f.
$\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\left(y e^{x y}+6 x^{2} y^{2}-3 y\right)_{x}^{\prime}=y e^{x y} \cdot(x y)_{x}^{\prime}+6 y^{2} \cdot\left(x^{2}\right)_{x}^{\prime}-(3 y)_{x}^{\prime}=y^{2} e^{x y}+12 x y^{2}$
$\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\left(y e^{x y}+6 x^{2} y^{2}-3 y\right)_{y}^{\prime}=(y)_{y}^{\prime} \cdot e^{x y}+y \cdot e^{x y} \cdot(x y)_{y}^{\prime}+6 x^{2} \cdot\left(y^{2}\right)_{y}^{\prime}-3 \cdot(y)_{y}^{\prime}=e^{x y}+x y e^{x y}+12 x^{2} y-3$
$\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\left(x e^{x y}+4 x^{3} y+1-3 x\right)_{x}^{\prime}=(x)_{x}^{\prime} \cdot e^{x y}+x \cdot e^{x y} \cdot(x y)_{x}^{\prime}+4 y \cdot\left(x^{3}\right)_{x}^{\prime}-3 \cdot(y)_{x}^{\prime}=e^{x y}+x y e^{x y}+12 x^{2} y-3$
$\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\left(x e^{x y}+4 x^{3} y+1-3 x\right)_{y}^{\prime}=x e^{x y} \cdot(x y)_{y}^{\prime}+4 x^{3} \cdot(y)_{y}^{\prime}-(3 x)_{y}^{\prime}=x^{2} e^{x y}+4 x^{3}$
$\Rightarrow \frac{\partial^{2} f}{\partial x^{2}}(0,2)=4, \frac{\partial^{2} f}{\partial x \partial y}(0,2)=\frac{\partial^{2} f}{\partial y \partial x}=-2$ and $\frac{\partial^{2} f}{\partial y^{2}}(0,2)=0$ (check!)
The second order Fréchet derivative of the function f at the point $a=(0,2)$ is:

$$
\begin{aligned}
d_{(0,2)}^{2} f\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) & =\frac{\partial^{2} f}{\partial x^{2}}(0,2) u_{1} v_{1}+\frac{\partial^{2} f}{\partial x \partial y}(0,2) u_{1} v_{2}+\frac{\partial^{2} f}{\partial y \partial x} u_{2} v_{1}+\frac{\partial^{2} f}{\partial y^{2}}(0,2) u_{2} v_{2} \\
& =4 u_{1} v_{1}-2 u_{1} v_{2}-2 u_{2} v_{1}+0 \cdot u_{2} v_{2} \\
& =4 u_{1} v_{1}-2\left(u_{1} v_{2}+u_{2} v_{1}\right)
\end{aligned}
$$

Ex. 2 Find and classify the critical points of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2$.
Solution: Compute the first order partial derivatives of the function f.
$\frac{\partial f}{\partial x}=\left(3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2\right)^{\prime} x=3 y \cdot\left(x^{2}\right)_{x}^{\prime}+\left(y^{3}\right)_{x}^{\prime}-3 \cdot\left(x^{2}\right)_{x}^{\prime}-\left(3 y^{2}\right)_{x}^{\prime}+2_{x}^{\prime}=6 x y-6 x$
$\frac{\partial f}{\partial y}=\left(3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2\right)_{y}^{\prime}=3 x^{2} \cdot(y)_{y}^{\prime}+\left(y^{3}\right)_{y}^{\prime}-\left(3 x^{2}\right)_{y}^{\prime}-3 \cdot\left(y^{2}\right)_{y}^{\prime}+2_{y}^{\prime}=3 x^{2}+3 y^{2}-6 y$
Find the critical points of the function f. Solve the system:
$\left\{\begin{array}{l}\frac{\partial f}{\partial x}=0 \\ \frac{\partial f}{\partial y}=0\end{array} \Leftrightarrow\left\{\begin{array}{ll}6 x y-6 x & =0 \\ 3 x^{2}+3 y^{2}-6 y & =0\end{array} \quad 6 x y-6 x=0 \Leftrightarrow 6 x(y-1)=0 \Leftrightarrow x=0\right.\right.$ or $y=1$
$x=0 \Rightarrow 3 y^{2}-6 y=0 \Leftrightarrow 3 y(y-2)=0 \Leftrightarrow y=0$ or $y=2$
$y=1 \Rightarrow 3 x^{2}+3-6=0 \Leftrightarrow 3 x^{3}=3 \Leftrightarrow x^{2}=1 \Leftrightarrow x=1$ or $x=-1$
The critical points are $(0,0),(0,2),(1,1)$ si $(-1,1)$.
Compute the Hessian matrix at each critical point.
$H f=\left(\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right)=\left(\begin{array}{cc}(6 x y-6 x)_{x}^{\prime} & (6 x y-6 x)_{y}^{\prime} \\ \left(3 x^{2}+3 y^{2}-6 y\right)_{x}^{\prime} & \left(3 x^{2}+3 y^{2}-6 y\right)_{y}^{\prime}\end{array}\right)=\left(\begin{array}{cc}6 y-6 & 6 x \\ 6 x & 6 y-6\end{array}\right)$
$H_{(0,0)} f=\left(\begin{array}{cc}-6 & 0 \\ 0 & -6\end{array}\right) \quad \Delta_{1}=-6<0, \Delta_{2}=\operatorname{det}\left(H_{(0,0)} f\right)=36>0 \Rightarrow(0,0)$-local maximum point
$H_{(0,2)} f=\left(\begin{array}{cc}6 & 0 \\ 0 & 6\end{array}\right) \quad \Delta_{1}=6>0, \Delta_{2}=H_{(0,2)} f=36>0 \Rightarrow(0,2)$-local minimum point
$H_{(1,1)} f=\left(\begin{array}{cc}0 & 6 \\ 6 & 0\end{array}\right) \quad \Delta_{1}=0, \Delta_{2}=\operatorname{det}\left(H_{(1,1)} f\right)=-36<0 \Rightarrow(1,1)$-saddle point
$H_{(-1,1)} f=\left(\begin{array}{cc}0 & -6 \\ -6 & 0\end{array}\right) \quad \Delta_{1}=0, \Delta_{2}=\operatorname{det}\left(H_{(-1,1)} f\right)=-36<0 \Rightarrow(-1,1)$-saddle point
Ex. 3 Find the maximum and minimum values of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=4 x^{2}+10 y^{2}$ subject to the constraint $x^{2}+y^{2}=4$.
Solution: Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, g(x, y)=x^{2}+y^{2}-4$. Solve the system:
$\left\{\begin{array}{l}g(x, y)=0 \\ \frac{\partial f}{\partial x}(x, y)=\lambda \frac{\partial g}{\partial x}(x, y) \\ \frac{\partial f}{\partial y}(x, y)=\lambda \frac{\partial g}{\partial y}(x, y)\end{array}\right.$
$\begin{array}{ll}\frac{\partial f}{\partial x}(x, y)=\left(4 x^{2}+10 y^{2}\right)_{x}^{\prime}=8 x & \frac{\partial g}{\partial x}(x, y)=\left(x^{2}+y^{2}-4\right)_{x}^{\prime}=2 x \\ \frac{\partial f}{\partial x}(x, y)=\left(4 x^{2}+10 y^{2}\right)_{y}^{\prime}=20 y & \frac{\partial g}{\partial y}(x, y)=\left(x^{2}+y^{2}-4\right)_{y}^{\prime}=2 y\end{array}$
The system becomes
$\left\{\begin{array}{l}x^{2}+y^{2}=4 \\ 8 x=2 \lambda x \\ 20 y=2 \lambda y\end{array}\right.$
From the second equation, we have: $8 x-2 \lambda x=0 \Leftrightarrow 2 x(4-\lambda)=0 \Rightarrow x=0$ or $\lambda=4$
If $x=0$, by substituting in the first equation of the system, we obtain
$y^{2}=4 \Leftrightarrow y= \pm 2 \Rightarrow(0,2)$ and $(0,-2)$ are critical points.
If $\lambda=4$, by plugging in the third equation of the system, we have
$20 y=8 y \Leftrightarrow 12 y=0 \Leftrightarrow y=0$
Then, replacing $y=0$ into the first equation of the system, it results that $x^{2}=4 \Leftrightarrow x= \pm 2 \Rightarrow(2,0)$ and $(-2,0)$ are critical points.
Compute the values of the funtion f at the critical points previously found.
$f(0,2)=f(0,-2)=40$ and $f(2,0)=f(-2,0)=16$.
Thus, $f_{\text {min }}=16$ at the points $(2,0)$ and $(-2,0)$ and $f_{\max }=40$ at the points $(0,2)$ and $(0,-2)$.

CALCULUS HANDOUT 10
 HIGHER ORDER DIFFERENTIABILITY. LOCAL EXTREMA - exercises

1. Compute the first and second order Fréchet derivatives for the following functions:
2. $f(x, y)=x^{3}+8 y^{3}-6 x y-1$
3. $f(x, y)=e^{x^{2}+y^{2}}$
$f(x, y, z)=e^{a x+b y+c z}$
4. $f(x, y, z)=x y z$
$f(x, y)=\ln (x+y)$
5. $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\ln \left(x_{1}+a_{1}\right)\left(x_{2}+a_{2}\right) \ldots\left(x_{p}+a_{p}\right)$
6. $f(x, y)=\sin (x+3 y)$
7. $f(x, y, z)=\cos x y z$
8. Find and classify the critical points of the following functions of two variables:
9. $f(x, y)=2 x^{2}+y^{2}+4 x-4 y+5$
$f(x, y)=10+12 x-12 y-3 x^{2}-2 y^{2}$
$f(x, y)=2 x^{2}-3 y^{2}+2 x-3 y+7$
$f(x, y)=x y+3 x-2 y+4$
$f(x, y)=2 x^{2}+2 x y+y^{2}+4 x-2 y+1$
$f(x, y)=x^{2}+4 x y+2 y^{2}+4 x-8 y+3$
$f(x, y)=x^{3}+y^{3}+3 x y+3$
$f(x, y)=x^{2}-2 x y+y^{3}-y$
$f(x, y)=x^{3}+8 y^{3}-6 x y-1$
$f(x, y)=x^{4}-y^{4}-2 x^{2}+2 y^{2}$
$f(x, y)=x^{3}+8 y^{3}-6 x y+1$
$f(x, y)=x^{3}+3 x y^{2}-15 x-12 y$
$f(x, y)=x y-2 x-2 y-x^{2}-y^{2}$
$f(x, y)=x^{2}+y^{4}+2 x y$
$f(x, y)=2-x^{4}+2 x^{2}-y^{2}$
$f(x, y)=x^{3}-3 x+3 x y^{2}$
$f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y^{2}-9 x$
10. $f(x, y)=x^{2}-2 y^{2}+x y-2 x-y+5$
11. $f(x, y)=12 x+25 y-2 x^{2}-6 y^{2}$
12. $f(x, y)=x^{3}+2 y^{2}-27 x-8 y$
13. $f(x, y)=2(x-y)^{2}-x^{4}-y^{4}$
14. $f(x, y)=x^{2}+y^{2}-x y+x+y$
15. $f(x, y)=x^{3}+6 x y+3 y^{2}-9 x$
16. $f(x, y)=4 x y-2 x^{4}-y^{2}$
17. $f(x, y)=(x \cos y-y \sin y) e^{x}$
18. $f(x, y)=\ln \left(x^{2}+y^{2}\right)$
19. $f(x, y)=e^{\frac{x}{2}}\left(x+y^{2}\right)$
20. $f(x, y)=x^{2}+2 y^{2}+\pi \cos x \cos y$
21. $f(x, y)=e^{x^{2}+y^{2}}-x^{2}-2 y^{2}$
22. $f(x, y)=(1-x)(1-y)(x+y-1)$
23. $f(x, y, z)=x^{3}+y 62+x z^{2}+12 x y+2 z$
24. $f(x, y, z)=x^{3}-y^{2}-z^{2}-12 x+12 y+14 z$
25. $f(x, y, z)=x^{2}+3 y^{2}+2 x^{2}-2 x y+2 x z$
26. $f(x, y, z)=x^{2}+y^{2}+z^{2}-x y+x-2 z$
27. Find the maximum and minimum values (if any) of the following functions subject to the following constraint:
28. $f(x, y)=2 x+y ; x^{2}+y^{2}=1$
29. $f(x, y)=x^{2}+2 y^{2} ; x^{2}+y^{2}=1$
30. $f(x, y)=x+y ; x^{2}+4 y^{2}=1$
31. $f(x, y)=2 x^{2}+3 y^{2}-4 x-5 ; x^{2}+y^{2}=16$
32. $f(x, y)=x^{2}-y^{2} ; x^{2}+y^{2}=4$
33. $f(x, y, z)=x^{2}+y^{2}+z^{2} ; 3 x+2 y+z=6$
$f(x, y)=x^{2}+y^{2} ; 2 x+3 y=6$
34. $f(x, y, z)=3 x+2 y+z ; x^{2}+y^{2}+z^{2}=1$
35. $f(x, y)=x y ; 4 x^{2}+9 y^{2}=36$
36. $f(x, y, z)=x+y+z ; x^{2}+4 y^{2}+9 z^{2}=36$
37. $f(x, y)=4 x^{2}+9 y^{2} ; x^{2}+y^{2}=1$
38. $f(x, y, z)=x y z ; x^{2}+y^{2}+z^{2}=1$
39. $f(x, y)=3 x+y ; x^{2}+y^{2}=10$
40. $f(x, y, z)=x y+2 z ; x^{2}+y^{2}+z^{2}=36$
41. $f(x, y)=x^{2}+y^{2}+4 x-4 y ; x^{2}+y^{2}=9$
42. $f(x, y, z)=x^{2} y^{2} z^{2} ; x^{2}+4 y^{2}+9 z^{2}=27$

Extra exercises

4. Find the points of the parabola $y=(x-1)^{2}$ that are closest to the origin.
5. Find the points of the ellipse $4 x^{2}+9 y^{2}=36$ that are closest to and farthest from the point $(3,2)$.
6. Consider a right triangle of hypothenuse z and legs x and y, and fixed perimeter P. Maximize its area $A=\frac{x y}{2}$ subject to the constraints $x+y+z=P$ and $x^{2}+y^{2}=z^{2}$. In particular, show that the optimal such triangle is isosceles $(x=y)$.
