
Algorithms and Data Structures (II)

Gabriel Istrate

April 29, 2020

Where we are (II)

Why did we want dynamic sets to start with ?
To improve algorithms.
Today: brief respite from data structures.
Computational geometry
Time permitting: graph algorithms.
We’ll see some algorithms that use stacks, queues, red-black trees.

Computational geometry

Studies algorithms for geometric problems.
Applications: computer graphics, robotics, VLSI, CAD.
More applications: protein folding, molecular modeling, GIS.
Huge area ! Only a sampler.
Scientific conference: SOCG
Software: CGAL.

Caution
The biggest "enemy" to algorithms in computational geometry: degeneracy.
Three points are collinear, three lines intersect at the same point, etc.
Algorithms need patching to deal with degenerate situations.
In the interest of teaching: Ignore it.

Want to know more ?

Second book: can LEGALLY download pdf from Springer. See message on theelearning forum for address (or search for it on Google).

Computational geometry

Input: set of points {pi}, pi = (xi, yi). Example: polygon P = (p0, p1, . . . , pn).Given p1 = (x1, y1) and p2 = (x2, y2), convex combination: any point p3 = (x3, y3)such that x3 = λx1 + (1 − λ)x2, λ ∈ [0, 1], similarly y3 = λy1 + (1 − λ)y2.

Cross products

Using Cross products

Procedures DIRECTION and ON-SEGMENT

Testing whether two segments intersect

QUICK REJECT: two segments cannot intersect if their BOUNDING BOXES don’t.
Smallest rectangle containing the segment with sides parallel to the xy axes.
Bounding box of p1p2, pi = (xi, yi) is rectangle with corners
(min(x1, x2),min(y1, y2), (min(x1, x2),max(y1, y2) (max(x1, x2),max(y1, y2) and
(max(x1, x2),min(y1, y2).

Straddling

Second stage: check whether each segment "straddles" the other.
A segment p1p2 straddles a line if point p1 lies on one side of the line and pointp2 lies on the other side. If p1 or p2 lies on the line, then we say that thesegment straddles the line. Two line segments intersect if and only if they passthe quick rejection test and each segment straddles the line containing theother.

Straddling

Testing whether two segments intersect

Testing whether any two segments intersect

Given: n segments v1, . . . vn.To test: do any two segments intersect ?
Uses technique called sweeping.
Running time: O(n log n). Naive algorithm O(n2).
SWEEPING: an imaginary vertical sweep line passes through the given set ofgeometric objects, usually from left to right. The spatial dimension that thesweep line moves across, in this case the x-dimension, is treated as a dimensionof time.
Provides method for ordering geometric objects, usually by placing them into adynamic data structure, and for taking advantage of relationships among them.
line-segment-intersection algorithm: considers all line-segment endpoints inleft-to-right order and checks for an intersection each time it encounters anendpoint.

Sweeping

Maintaining sweep line

Sweeping algorithms: maintain two sets of data.
sweep-line status: gives the relationships among objects intersected by thesweep line.
event-point schedule: sequence of x-coordinates, ordered from left to right,that defines the halting positions of the sweep line.
Call each such halting position an event point. Changes to the sweep-line statusoccur only at event points.
Sweep-line status: total order T .
INSERT(T, s), DELETE(T, s).
ABOVE(T, s): return segment above s in T .
BELOW(T, s): return segment below s in T .
We can perform each of the above operations in O(log n) time using red-blacktrees.

Algorithm

Algorithm: example

Algorithm: correctness/performance

Can only fail by not reporting intersecting segments.
p = leftmost intersection point, breaking ties by choosing the one with thelowest y-coordinate. a and b = the segments that intersect at p.
No intersections occur to the left of p ⇒ the order given by T is correct at allpoints to the left of p.
no three segments intersect at the same point⇒ there exists a sweep line z atwhich a and b become consecutive in the total order.
z is to the left of p or goes through p.
There exists segment endpoint q on z that is the event point at which a and bbecome consecutive.
If p is on z, then q = p. If p is not on z, then q is to the left of p. In either case, theorder given by T is correct just before q is processed.

Algorithm: correctness/performance

Either a or b is inserted into T , and the other segment is above or below it in thetotal order. Lines 4-7 detect this case.
Segments a and b are already in T , and a segment between them in the totalorder is deleted, making a and b become consecutive. Lines 8-11.
In either case, the intersection p is found.
2n insert/delete/tests. Taking O(log n) time.

Convex hull

Convex hull of a set of points: smallest convex polygon that contains the set ofpoints.
place elastic rubber band around set of points and let it shrink.
Two algorithms: Graham’s Scan O(n log n).
Jarvis’s March O(n · h), h the number of points on the convex hull.
Other algorithms:
Incremental: points sorted from left to right forming sequence p1, . . . , pn. Atstage i add pi to convex hull CH(p1, . . . , pi−1), forming CH(p1, . . . , pi).Divide-and-conquer: divide into leftmost n/2 points and rightmost n/2 points.Compute convex hulls and combine them.
Prune-and-search method.

Convex hull

Graham’s scan

Maintains a stack S of candidate points.
Each point of Q is pushed onto the stack.
Points not in CH(Q) eventually popped from the stack.
TOP(S), NEXT − TO − TOP(S): stack functions, do not change its contents.
Stack returned by the algorithm: points of CH(Q) in counterclockwise order.

Convex hull algorithm

Graham’s Scan:Example

Graham’s Scan:Example

Graham’s Scan: Correctness and Performance

Invariant: at the beginning of each iteration of the for loop stack S contains(from bottom to top) exactly the vertices of CH(Qi−1) in counterclockwise order.Line 1: θ(n) time.
Sorting θ(n log n) time.
Testing for left/right turn: vector product θ(1) time.
The rest of the algorithm O(n) time.

Graham’s Scan: Correctness

Jarvis’s March

uses a technique known as gift wrapping.
Simulates wrapping a piece of paper around set Q.
Start at the same point p0 as in Graham’s scan.
Pull the paper to the right, then higher until it touches a point. This point is avertex in the convex hull. Continue this way until we come back to p0.Formally: start at p0. Choose p1 as the point with the smallest polar angle fromp0. Choose p2 as the point with the smallest polar angle from p1 . . .
. . . until we reached the highest point pk.We have constructed the right chain.
Construct the left chain by starting from pk and measuring polar angles withrespect to the negative x-axis.

Jarvis’s March

Finding closest points

W.r.t. euclidean distance.
Brute force: θ(n2).
Divide and conquer algorithm with O(n log n) complexity.

Finding closest points: Idea

Each iteration: subset P ⊆ Q, arrays X and Y .
Points in X are sorted in increasing order of their x coordinates.
Points in Y are sorted in increasing order of their y coordinates.
To maintain upper bound cannot afford to sort in each iteration.
|P| ≤ 3: brute force. Otherwise recursive divide-and-conquer.
Divide: Find a vertical line l that bisects set P into two sets PL and PR such that
|PL | = ⌈|P|/2⌉, |PR | = ⌊|P|/2⌋, all points of PL to the left, all points of PR to theright.
XL: subarray that contains point of PL, XR: subarray that contains point of PR.Similarly for Y .

Finding closest points (III)

Conquer. Recursive calls: PL, XL, YL and PR, XR, YR. Returns smallest distances δLand δR.Combine. δ = min{δL, δR}.Have to test whether some point in PL is at distance < δ from some point in PR.Both such points, if they exist, are within the 2δ -wide strip around l.
Create an array Y ′ which is Y with all points not in the 2δ -wide strip around lremoved, sorted by y-coordinate.
For each point p in Y ′ try to find points in Y ′ at distance less than δ .
Only the 7 points that follow p need to be considered.
Compute smallest such distance δ ′. If δ ′ < δ we found a better pair. Otherwise
δ is the smallest distance.
Correctness, implementation nontrivial.

Finding closest points (IV)

Correctness & complexity

For each point: Consider the δ × 2δ rectangle centered at line l.
At most 8 points within this rectangle.
Assuming δL lower than δR, it follows that δR among the next 7 points following
δL.O(n log n) bound from recurrence T(n) = 2T(n/2) + O(n).
Main difficulty: making sure that XL, XR, YL, YR, Y ′ sorted by appropriatecoordinate.
Key observation: in each call we wish to form a sorted subset of a sorted array.
Splitting the array into two halves.
Can be viewed as the inverse of the operation MERGE in MERGESORT .
How to get sorted arrays in the first place ? presort. θ(n log n).

Splitting: Pseudocode

length[YL] = length[YR] = 0;
for i = 1 to length[Y]
if (Y[i] ∈ PL)
{length[YL]++;YL[length[YL]] = Y[i];
}
else
{length[YR] + +;YR[length[YR]] = Y[i];
}

}

And now for something totally different ...

Graph algorithms.

We live in a highly connected world ...

... and that’s important.

A certain disease from Wuhan, China has dramatic effects all over the planet ...
A software bug in the alarm system at the control room of FirstEnergy, in Akron,Ohio knocks out the power grid in the whole Northeast United States (2003).

To understand, for my (and your) generation

How do real networks look like ?
How do network properties impactthe processes that take place onthem ?

Some real networks

Figure: (a). Air traffic map of the U.S. (b). Physical Internet

Marriage Networks of important families in Medieval Florence.

Interactome ...

Part of the DISC1 interactome, with genes represented by text in boxes andinteractions noted by lines between the genes. From Hennah and Porteous (2009).

... or even ...

xserver-xorg-core

x11-xkb-utils

xserver-common

libxshmfence1

libxkbfile1

libc6

libx11-6

libxt6

libxaw7

libgcc1

libx11-data

libsm6

libxext6

x11-common

lsb-base

libxmu6

libxpm4

xkb-data

gcc-6-base

What’s so interesting about networks ?

Small worlds: everyone is "not very far from everyone".

(a). Distribution of heights in the U.S. population.
(b). Degree distribution (aproximately) power law. Few "tall" people, "many" well

connected people

Want to read something interesting ?

By the way, not only in America ...

Want to read something even more interesting ?

What’s in it for us, Computer Scientists ?

Can you study large networkswithout good algorithms ?

To conclude: Many Models and Applications

Social networks: who knows who
The Web graph: which page links to which
The Internet graph: which router links to which
Citation graphs: who references whose papers
Planar graphs: which country is next to which
Well-shaped meshes: pretty pictures with triangles
Geometric graphs: who is near who

Definitions

A graph G = (V, E)
V is the set of vertices (also called nodes)
E is the set of edges

▶ E ⊆ V × V , i.e., E is a relation between vertices
▶ an edge e = (u, v) ∈ V is a pair of vertices u ∈ V and v ∈ V

An undirected graph is characterized by a symmetric relation between vertices
▶ an edge is a set e = {u, v} of two vertices

Definitions

A graph G = (V, E)
V is the set of vertices (also called nodes)
E is the set of edges
▶ E ⊆ V × V , i.e., E is a relation between vertices
▶ an edge e = (u, v) ∈ V is a pair of vertices u ∈ V and v ∈ V

An undirected graph is characterized by a symmetric relation between vertices
▶ an edge is a set e = {u, v} of two vertices

Definitions

A graph G = (V, E)
V is the set of vertices (also called nodes)
E is the set of edges
▶ E ⊆ V × V , i.e., E is a relation between vertices
▶ an edge e = (u, v) ∈ V is a pair of vertices u ∈ V and v ∈ V

An undirected graph is characterized by a symmetric relation between vertices
▶ an edge is a set e = {u, v} of two vertices

Graph Representation

How do we represent a graph G = (E, V) in a computer?

Adjacency-list representation
V = {1, 2, . . . |V |}
G consists of an array Adj
A vertex u ∈ V is represented by an element in the array Adj
Adj[u] is the adjacency list of vertex u
▶ the list of the vertices that are adjacent to u
▶ i.e., the list of all v such that (u, v) ∈ E

Graph Representation

How do we represent a graph G = (E, V) in a computer?
Adjacency-list representation
V = {1, 2, . . . |V |}
G consists of an array Adj
A vertex u ∈ V is represented by an element in the array Adj

Adj[u] is the adjacency list of vertex u
▶ the list of the vertices that are adjacent to u
▶ i.e., the list of all v such that (u, v) ∈ E

Graph Representation

How do we represent a graph G = (E, V) in a computer?
Adjacency-list representation
V = {1, 2, . . . |V |}
G consists of an array Adj
A vertex u ∈ V is represented by an element in the array Adj
Adj[u] is the adjacency list of vertex u
▶ the list of the vertices that are adjacent to u
▶ i.e., the list of all v such that (u, v) ∈ E

Example

1 2 3 4

5 6 7 8

9 10 11 12

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Example

1 2 3 4

5 6 7 8

9 10 11 12 Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u?

O(1)

✓.

▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u?

O(1)

✓.

▶ optimal ✓
Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E?

O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E? O(|V |)

▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Using the Adjacency List

Accessing a vertex u? O(1) ✓.
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V | + |E |)
▶ okay (not optimal)

Checking (u, v) ∈ E? O(|V |)
▶ bad ×

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10
11 12
12

Graph Representation (2)

Adjacency-matrix representation
V = {1, 2, . . . |V |}
G consists of a |V | × |V | matrix A
A = (aij) such that

aij =
{1 if (i, j) ∈ E
0 otherwise

Graph Representation (2)

Adjacency-matrix representation
V = {1, 2, . . . |V |}
G consists of a |V | × |V | matrix A
A = (aij) such that

aij =
{1 if (i, j) ∈ E
0 otherwise

Example

1 2 3 4

5 6 7 8

9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

1 2 3 4 5 6 7 8 9 10 11 12
1 1

1 1
1 1

1
1

1 1 1
1 11

1 1
1

1

Example

1 2 3 4

5 6 7 8

9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

1 1
1 1

1 1
1

1
1 1 1

1 11
1 1

1
1

Example

1 2 3 4

5 6 7 8

9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

1 2 3 4 5 6 7 8 9 10 11 12
1 1

1 1
1 1

1
1

1 1 1
1 11

1 1
1

1

Using the Adjacency Matrix

Accessing a vertex u?

O(1)
▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u?

O(1)
▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V?

Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E?

Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E?

O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E? O(1)

▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Using the Adjacency Matrix

Accessing a vertex u? O(1)
▶ optimal ✓

Iteration through V? Θ(|V |)
▶ optimal ✓

Iteration through E? Θ(|V |2)
▶ possibly very bad ×.

Checking (u, v) ∈ E? O(1)
▶ optimal ✓

123456789101112

1 2 3 4 5 6 7 8 9 1011121 11 11 11 11 1 11 11 1 11
1

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .
Adjacency-matrix representation

Θ(|V |2)
possibly very bad ×.
When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation

Θ(|V | + |E |)
optimal .
Adjacency-matrix representation

Θ(|V |2)
possibly very bad ×.
When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .
Adjacency-matrix representation

Θ(|V |2)
possibly very bad ×.
When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .

Adjacency-matrix representation
Θ(|V |2)

possibly very bad ×.
When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .
Adjacency-matrix representation

Θ(|V |2)
possibly very bad ×.
When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .
Adjacency-matrix representation

Θ(|V |2)

possibly very bad ×.
When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .
Adjacency-matrix representation

Θ(|V |2)
possibly very bad ×.

When is the adjacency-matrix “very bad”?

Space Complexity

Adjacency-list representation
Θ(|V | + |E |)

optimal .
Adjacency-matrix representation

Θ(|V |2)
possibly very bad ×.
When is the adjacency-matrix “very bad”?

Choosing a Graph Representation

Adjacency-list representation
▶ generally good, especially for its optimal space complexity
▶ bad for dense graphs and algorithms that require random access to edges
▶ preferable for sparse graphs or graphs with low degree

Adjacency-matrix representation
▶ suffers from a bad space complexity
▶ good for algorithms that require random access to edges
▶ preferable for dense graphs

Choosing a Graph Representation

Adjacency-list representation
▶ generally good, especially for its optimal space complexity
▶ bad for dense graphs and algorithms that require random access to edges
▶ preferable for sparse graphs or graphs with low degree

Adjacency-matrix representation
▶ suffers from a bad space complexity
▶ good for algorithms that require random access to edges
▶ preferable for dense graphs

Breadth-First Search

One of the simplest but fundamental algorithms

Input: G = (V, E) and a vertex s ∈ V
▶ explores the graph, touching all vertices that are reachable from s
▶ iterates through the vertices at increasing distance (edge distance)
▶ computes the distance of each vertex from s
▶ produces a breadth-first tree rooted at s
▶ works on both directed and undirected graphs

Breadth-First Search

One of the simplest but fundamental algorithms
Input: G = (V, E) and a vertex s ∈ V
▶ explores the graph, touching all vertices that are reachable from s
▶ iterates through the vertices at increasing distance (edge distance)
▶ computes the distance of each vertex from s
▶ produces a breadth-first tree rooted at s
▶ works on both directed and undirected graphs

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 1
Q = ∅

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 1
Q = {5}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 1
Q = {5, 6}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 5
Q = {6}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 5
Q = {6, 9}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 6
Q = {9}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 6
Q = {9, 2, 7}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 6
Q = {9, 2, 7}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 9
Q = {2, 7}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 9
Q = {2, 7, 10}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 2
Q = {7, 10}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 2
Q = {7, 10, 3}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 7
Q = {10, 3}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 7
Q = {10, 3, 8}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 7
Q = {10, 3, 8, 11}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 10
Q = {3, 8, 11}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 3
Q = {8, 11}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 3
Q = {8, 11, 4}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 8
Q = {11, 4}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 8
Q = {11, 4, 12}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 11
Q = {4, 12}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 4
Q = {12}

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

u = 12
Q = ∅

BFS Algorithm

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12

Complexity of BFS

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

We enqueue a vertex only ifit is white, and weimmediately color it gray;thus, we enqueue everyvertex at most once
So, the (dequeue) while loopexecutes O(|V |) times
For each vertex u, the innerloop executes Θ(|Eu |), for atotal of O(|E |) steps
So, O(|V | + |E |)

Complexity of BFS

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

We enqueue a vertex only ifit is white, and weimmediately color it gray;thus, we enqueue everyvertex at most once

So, the (dequeue) while loopexecutes O(|V |) times
For each vertex u, the innerloop executes Θ(|Eu |), for atotal of O(|E |) steps
So, O(|V | + |E |)

Complexity of BFS

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

We enqueue a vertex only ifit is white, and weimmediately color it gray;thus, we enqueue everyvertex at most once
So, the (dequeue) while loopexecutes O(|V |) times

For each vertex u, the innerloop executes Θ(|Eu |), for atotal of O(|E |) steps
So, O(|V | + |E |)

Complexity of BFS

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

We enqueue a vertex only ifit is white, and weimmediately color it gray;thus, we enqueue everyvertex at most once
So, the (dequeue) while loopexecutes O(|V |) times
For each vertex u, the innerloop executes Θ(|Eu |), for atotal of O(|E |) steps

So, O(|V | + |E |)

Complexity of BFS

BFS(G, s) 1 for each vertex u ∈ V(G) \ {s}2 color[u] = WHITE3 d[u] = ∞4 π[u] = NIL5 color[s] = GRAY6 d[s] = 07 π[s] = NIL8 Q = ∅9 ENQUEUE(Q, s)10 while Q , ∅11 u = DEQUEUE(Q)12 for each v ∈ Adj[u]13 if color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 π[v] = u17 ENQUEUE(Q, v)18 color[u] = BLACK

We enqueue a vertex only ifit is white, and weimmediately color it gray;thus, we enqueue everyvertex at most once
So, the (dequeue) while loopexecutes O(|V |) times
For each vertex u, the innerloop executes Θ(|Eu |), for atotal of O(|E |) steps
So, O(|V | + |E |)

Depth-First Search

Immediately follow the links of the most recently-visited vertex, then backtrackwhen you reach a dead-end
▶ i.e., backtrack when the current vertex has no more adjacent vertices that have notyet been visited

Input: G = (V, E)
▶ explores the graph, touching all vertices
▶ produces a depth-first forest, consisting of all the depth-first trees defined by theDFS exploration
▶ associates two time-stamps to each vertex

▶ d[u] records when u is first discovered
▶ f [u] records when DFS finishes examining u’s edges, and therefore backtracks from u

Depth-First Search

Immediately follow the links of the most recently-visited vertex, then backtrackwhen you reach a dead-end
▶ i.e., backtrack when the current vertex has no more adjacent vertices that have notyet been visited

Input: G = (V, E)
▶ explores the graph, touching all vertices
▶ produces a depth-first forest, consisting of all the depth-first trees defined by theDFS exploration
▶ associates two time-stamps to each vertex

▶ d[u] records when u is first discovered
▶ f [u] records when DFS finishes examining u’s edges, and therefore backtracks from u

Depth-First Search

Immediately follow the links of the most recently-visited vertex, then backtrackwhen you reach a dead-end
▶ i.e., backtrack when the current vertex has no more adjacent vertices that have notyet been visited

Input: G = (V, E)
▶ explores the graph, touching all vertices

▶ produces a depth-first forest, consisting of all the depth-first trees defined by theDFS exploration
▶ associates two time-stamps to each vertex

▶ d[u] records when u is first discovered
▶ f [u] records when DFS finishes examining u’s edges, and therefore backtracks from u

Depth-First Search

Immediately follow the links of the most recently-visited vertex, then backtrackwhen you reach a dead-end
▶ i.e., backtrack when the current vertex has no more adjacent vertices that have notyet been visited

Input: G = (V, E)
▶ explores the graph, touching all vertices
▶ produces a depth-first forest, consisting of all the depth-first trees defined by theDFS exploration

▶ associates two time-stamps to each vertex
▶ d[u] records when u is first discovered
▶ f [u] records when DFS finishes examining u’s edges, and therefore backtracks from u

Depth-First Search

Immediately follow the links of the most recently-visited vertex, then backtrackwhen you reach a dead-end
▶ i.e., backtrack when the current vertex has no more adjacent vertices that have notyet been visited

Input: G = (V, E)
▶ explores the graph, touching all vertices
▶ produces a depth-first forest, consisting of all the depth-first trees defined by theDFS exploration
▶ associates two time-stamps to each vertex

▶ d[u] records when u is first discovered
▶ f [u] records when DFS finishes examining u’s edges, and therefore backtracks from u

DFS Algorithm

DFS(G)1 for each vertex u ∈ V(G)2 color[u] = WHITE3 π[u] = NIL4 time = 0 // “global” variable5 for each vertex u ∈ V(G)6 if color[u] == WHITE7 DFS-VISIT(u)

DFS-VISIT(u) 1 color[u] = GREY2 time = time + 13 d[u] = time4 for each v ∈ Adj[u]5 if color[v] == WHITE6 π[v] = u7 DFS-VISIT(v)8 color[u] = BLACK9 time = time + 110 f [u] = time

Complexity of DFS

The loop in DFS-VISIT(u) (lines 4–7) accounts for Θ(|Eu |)
We call DFS-VISIT(u) once for each vertex u
▶ either in DFS, or recursively in DFS-VISIT
▶ because we call it only if color[u] = WHITE, but then we immediately setcolor[u] = GREY

So, the overall complexity is Θ(|V | + |E |)

Complexity of DFS

The loop in DFS-VISIT(u) (lines 4–7) accounts for Θ(|Eu |)

We call DFS-VISIT(u) once for each vertex u
▶ either in DFS, or recursively in DFS-VISIT
▶ because we call it only if color[u] = WHITE, but then we immediately setcolor[u] = GREY

So, the overall complexity is Θ(|V | + |E |)

Complexity of DFS

The loop in DFS-VISIT(u) (lines 4–7) accounts for Θ(|Eu |)
We call DFS-VISIT(u) once for each vertex u
▶ either in DFS, or recursively in DFS-VISIT
▶ because we call it only if color[u] = WHITE, but then we immediately setcolor[u] = GREY

So, the overall complexity is Θ(|V | + |E |)

Complexity of DFS

The loop in DFS-VISIT(u) (lines 4–7) accounts for Θ(|Eu |)
We call DFS-VISIT(u) once for each vertex u
▶ either in DFS, or recursively in DFS-VISIT
▶ because we call it only if color[u] = WHITE, but then we immediately setcolor[u] = GREY

So, the overall complexity is Θ(|V | + |E |)

Applications of DFS: Topological Sort

Problem: (topological sort)
Given a directed acyclic graph (DAG)
▶ find an ordering of vertices such that you only end up with forward links

Example: dependencies in software packages
▶ find an installation order for a set of software packages
▶ such that every package is installed only after all the packages it depends on

Applications of DFS: Topological Sort

Problem: (topological sort)
Given a directed acyclic graph (DAG)
▶ find an ordering of vertices such that you only end up with forward links

Example: dependencies in software packages
▶ find an installation order for a set of software packages
▶ such that every package is installed only after all the packages it depends on

Applications of DFS: Topological Sort

Problem: (topological sort)
Given a directed acyclic graph (DAG)
▶ find an ordering of vertices such that you only end up with forward links

Example: dependencies in software packages
▶ find an installation order for a set of software packages
▶ such that every package is installed only after all the packages it depends on

Topological Sort Algorithm

shirt

tie

jacket

briefs/boxers

pants

belt

socks

shoes

watch

TOPOLOGICAL-SORT(G)1 DFS(G)2 output V sorted in reverse order of f [·]

Topological Sort Algorithm

shirt

tie

jacket

briefs/boxers

pants

belt

socks

shoes

watch

TOPOLOGICAL-SORT(G)1 DFS(G)2 output V sorted in reverse order of f [·]

Topological Sort Algorithm

shirt

tie

jacket

briefs/boxers

pants

belt

socks

shoes

watch

TOPOLOGICAL-SORT(G)1 DFS(G)2 output V sorted in reverse order of f [·]

