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Where we are (II)

Why did we want dynamic sets to start with ?

m To improve algorithms.

m Today: brief respite from data structures.

m Computational geometry

m Time permitting: graph algorithms.

m We'll see some algorithms that use stacks, queues, red-black trees.



Computational geometry

m Studies algorithms for geometric problems.

m Applications: computer graphics, robotics, VLSI, CAD.

m More applications: protein folding, molecular modeling, GIS.
m Huge area! Only a sampler.

m Scientific conference: SOCG

m Software: CGAL.

Caution

m The biggest "enemy" to algorithms in computational geometry: degeneracy.
m Three points are collinear, three lines intersect at the same point, etc.

m Algorithms need patching to deal with degenerate situations.

m In the interest of teaching: Ignore it.



Want to know more ?

Mark de Berg
Otfried Cheong

Marc van Kreveld
Mark Overmars

Computational
Geometry

Algorithms and Applications
Third Edition

) Springer

Second book: can LEGALLY download pdf from Springer. See message on the
elearning forum for address (or search for it on Google).



Computational geometry

m Input: set of points {p;}, pi = (x;, y;). Example: polygon P = (po, p1, - - - » Pn)-

m Given p1 = (xq,y1) and p2 = (x2, y2), convex combination: any point p3 = (X3, 3)
such that x3 = Ax; + (1 = A)xp, A € [0, 1], similarly y3 = Ayq + (1 — A)y,.

1. Given two directed segments pop: and pops, is o clockwise from pops
with respect to their common endpoint pg?

2. Given two line segments P and fap;, if we traverse 7ip; and then
P2, do we make a left turn at point p,7?

3. Do line segments 7 7; and fapq intersect?
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Cross products

Figure 33.1 (a) The cross product of vectors p; and p; is the signed area of the parallelogram.
(b) The lightly shaded region contains vectors that are clockwise from p. The darkly shaded region
contains vectors that are counterclockwise from p.



Using Cross products

P2 P2
counterclockwise P I clockwise
Po Po
(a) (b)

Figure 33.2  Using the cross product to determine how consecutive line segments pgpy and pypa
turn at point py. We check whether the directed segment pgp5 is clockwise or counterclockwise
relative to the directed segment Fop]. (a) If counterclockwise, the points make a left turn. (b) If
clockwise, they make a right turn.



Procedures DIRECTION and ON-SEGMENT

ON-SEGMENT(p;. pj, pi)

1 if min(y;, x;) < x; < max(x;, x;) and min(y;, ¥;) < ye < max(y;, ¥;)
DIRECTION(p;. p;. Px) 2 then return TRUE
1 return (p; — pi) X (p; — p;) 3 else return FALSE



Testing whether two segments intersect

m QUICK REJECT: two segments cannot intersect if their BOUNDING BOXES don't.
m Smallest rectangle containing the segment with sides parallel to the xy axes.
m Bounding box of p1p2, pi = (X, ¥;) is rectangle with corners

(min(x1, x2), min(y1, y2), (min(x1, x2), max(y1, y2) (max(x1, x2), max(y1,y2) and
(max(x1,x2), min(y1,y2).



Straddling

m Second stage: check whether each segment "straddles" the other.

m A segment p;p, straddles a line if point p; lies on one side of the line and point
p> lies on the other side. If p1 or p; lies on the line, then we say that the
segment straddles the line. Two line segments intersect if and only if they pass

the quick rejection test and each segment straddles the line containing the
other.
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Figure 33.3 Cases in the pmcedure SEGMENTS-INTERSECT. (a) The segments 7] p3 and p3pg
straddle each other’s lines, By 73 Pa straddles the line ining pyp3. the signs of the cross
products (p3 — p1) % (pz — p1) and (pg — p1)} % (p2 — py) differ. Because Py straddles the line
containing p3 s, the signs of the cross products (p) — p3) x (pg — p3)and (p2 = pa) x (pg — p3)
differ. (b) Segment 373 straddles the line containing 57 pa. but Fps does not straddle the line
containing p3pg. The signs of the cross products (py — p3) % (pg — p3)and (pa — p3) % (pg— p3)
are the same. (c) Point pj is collinear with 7j p3 and is between py and ps. (d) Point 3 is collinear
with pyp2, but it is not between p| and py. The segments do not intersect.

Straddling



Testing whether two segments intersect

SEGMENTS-INTERSECT(p,, pa2, p3, Pa)
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dy < DIRECTION(p3, ps. p1)
dy < DIRECTION(p3, py, p2)
ds < DIRECTION(py, p2, p3)
dy < DIRECTION(py, pa. p4)
if ((d; > 0and d, < 0) or (d; < 0and d> > 0)) and
((ds > Oand dy < 0) or (d3 < O and ds > 0))
then return TRUE
elseif d, = 0 and ON-SEGMENT(ps, p4, p1)
then return TRUE
elseif @ = 0 and ON-SEGMENT(p3, p4, p2)
then return TRUE
elseif d; = 0 and ON-SEGMENT(py, p2, p3)
then return TRUE
elseif dy = 0 and ON-SEGMENT(py, p2, pa)
then return TRUE
else return FALSE



Testing whether any two segments intersect

Given: n segments vq, ... V.

To test: do any two segments intersect ?

Uses technique called sweeping.

Running time: O(n log n). Naive algorithm O(n?).

SWEEPING: an imaginary vertical sweep line passes through the given set of
geometric objects, usually from left to right. The spatial dimension that the

sweep line moves across, in this case the x-dimension, is treated as a dimension
of time.

Provides method for ordering geometric objects, usually by placing them into a
dynamic data structure, and for taking advantage of relationships among them.
line-segment-intersection algorithm: considers all line-segment endpoints in
left-to-right order and checks for an intersection each time it encounters an
endpoint.



Sweeping

Figure 33.4  The ordering among line segments at various vertical sweep lines. (a) We have a >, ¢,
a > b,b >y ¢,a > ¢,and b >, ¢. Segment d is comparable with no other segment shown.
(b) When segments ¢ and f intersect, their orders are reversed: we have ¢ >, f but f > e. Any
sweep line (such as z) that passes through the shaded region has e and f consecutive in its total order.



Maintaining sweep line

Sweeping algorithms: maintain two sets of data.

sweep-line status: gives the relationships among objects intersected by the
sweep line.

event-point schedule: sequence of x-coordinates, ordered from left to right,
that defines the halting positions of the sweep line.

Call each such halting position an event point. Changes to the sweep-line status
occur only at event points.

Sweep-line status: total order T.
INSERT(T, s), DELETE(T, s).

ABOVE(T, s): return segment above s in T.
BELOW(T, s): return segment below s in T.

We can perform each of the above operations in O(log n) time using red-black
trees.



Algorithm

ANY-SEGMENTS-INTERSECT(S)
1 T«0
2 sort the endpoints of the segments in § from left to right,
breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y-coordinates first
3 for each point p in the sorted list of endpoints
4 do if p is the left endpoint of a segment s
5 then INSERT(T, 5)
6 if (ABOVE(T, 5) exists and intersects s)
or (BELOW(T, 5) exists and intersects 5)
7 then return TRUE
8 if p is the right endpoint of a segment s
9 then if both ABOVE(T, s) and BELOW(T, 5) exist
and ABOVE(T, s) intersects BELOW(T, s)
10 then return TRUE
11 DELETE(T, 5)
12 return FALSE



Algorithm: example

a d e e
b ¢ a c d d
b b ¢ b

b b
time

Figure 33.5 The execution of ANY-SEGMENTS-INTERSECT. Each dashed line is the sweep line
at an event point, and the ordering of segment names below each sweep line is the total order T
at the end of the for loop in which the corresponding event point is processed. The intersection of
segments d and b is found when segment c is deleted.



Algorithm: correctness/performance

Can only fail by not reporting intersecting segments.

p = leftmost intersection point, breaking ties by choosing the one with the
lowest y-coordinate. a and b = the segments that intersect at p.

No intersections occur to the left of p = the order given by T is correct at all
points to the left of p.

no three segments intersect at the same point = there exists a sweep line z at
which a and b become consecutive in the total order.

Zis to the left of p or goes through p.

There exists segment endpoint g on z that is the event point at which a and b
become consecutive.

If pisonz then g = p. If pisnot on z, then g is to the left of p. In either case, the
order given by T is correct just before q is processed.



Algorithm: correctness/performance

m Either o or b is inserted into T, and the other segment is above or below it in the
total order. Lines 4-7 detect this case.

m Segments g and b are already in T, and a segment between them in the total
order is deleted, making a and b become consecutive. Lines 8-11.

m In either case, the intersection p is found.
m 2n insert/delete/tests. Taking O(log n) time.



Convex hull

m Convex hull of a set of points: smallest convex polygon that contains the set of
points.

m place elastic rubber band around set of points and let it shrink.

m Two algorithms: Graham'’s Scan O(n log n).

m Jarvis's March O(n - h), h the number of points on the convex hull.
m Other algorithms:

m Incremental: points sorted from left to right forming sequence py, ..., p,. At
stage i add p; to convex hull CH(p4, . . ., pi—1), forming CH(p, . . ., pi).

m Divide-and-conquer: divide into leftmost n/2 points and rightmost n/2 points.
Compute convex hulls and combine them.

m Prune-and-search method.



Convex hull

P12

Figure 33.6 A set of points Q = {py. py...., p1a} with its convex hull CH(Q) in gray.



Graham’s scan

m Maintains a stack S of candidate points.

m Each point of Q is pushed onto the stack.

m Points not in CH(Q) eventually popped from the stack.

m TOP(S), NEXT — TO — TOP(S): stack functions, do not change its contents.

m Stack returned by the algorithm: points of CH(Q) in counterclockwise order.



Convex hull algorithm

GRAHAM-SCAN(Q)

|
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let py be the point in Q with the minimum y-coordinate,
or the leftmost such point in case of a tie
let {py, pa. ..., Pm) be the remaining points in Q,
sorted by polar angle in counterclockwise order around pg
(if more than one point has the same angle, remove all but
the one that is farthest from py)
PUSH(py, S)
PUSH(py, S)
PUSH(ps, S)
fori < 3tom
do while the angle formed by points NEXT-TO-TOP(S), TOP(S),
and p; makes a nonleft turn
do Pop(S)
PUSH(p;, S)
return S
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Graham’s Scan:Example
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Figure 317 The exccution of GRARAM-SCAN on the set Q of Figure 33.6. The cumment eonves
hall i S is shown § hstep. (s

{P1. P2 - 2] of points

numbered in onder of increasing polar anghe relativ 10 py, and the mitial suck § comaining Py, py.
and py. (bl-(k) Stack § after each iteration of the for 10op of lincs 6-9. Dashed lines show noaleft
tums, which cause points (o be popped from the stack. In part (h), for exampl, the right tum ot

angle £p7 g py causes py 1o be

popped, and then the sight tum al angle £ py g causes pr 1o be

‘popped. (1) The convex hull retumed by the procedure. which matches that of Figure 13.6



Graham’s Scan:Example
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Graham’s Scan: Correctness and Performance

m Invariant: at the beginning of each iteration of the for loop stack S contains
(from bottom to top) exactly the vertices of CH(Q;_1) in counterclockwise order.

m Line 1: 8(n) time.

m Sorting 8(nlog n) time.

m Testing for left/right turn: vector product 8(1) time.
m The rest of the algorithm O(n) time.



Graham’s Scan: Correctness

(a)

Figure 33.8 The proof of correctness of GRAHAM-SCAN. (a) Because p;’s polar angle relative
to p is greater than p;’s polar angle, and because the angle £ py p ' pi makes a left turn, adding p;
1o CH(Q ) gives exactly the vertices of CH(Qj U {p; D). (b) If the angle £ p, p; p; makes a nonleft
turn, then pr is either in the interior of the triangle formed by pg, pr, and p; or on a side of the
triangle, and it cannot be a vertex of CH((Q;).



Jarvis’s March

m uses a technique known as gift wrapping.
m Simulates wrapping a piece of paper around set Q.
m Start at the same point pg as in Graham's scan.

m Pull the paper to the right, then higher until it touches a point. This pointis a
vertex in the convex hull. Continue this way until we come back to po.

m Formally: start at pg. Choose pq as the point with the smallest polar angle from
po. Choose p, as the point with the smallest polar angle from p; . ..

m ... until we reached the highest point py.
m We have constructed the right chain.

m Construct the left chain by starting from px and measuring polar angles with
respect to the negative x-axis.



Jarvis’s March

left chain ::righ! chain
-—

-— | —
left chain *  right chain

Figure 33.9 The operation of Jarvis’s march. The first vertex chosen is the lowest point pg. The
next vertex, pi, has the smallest polar angle of any point with respect to pg. Then, p has the
smallest polar angle with respect to p|. The right chain goes as high as the highest point p3. Then,
the left chain is constructed by finding smallest polar angles with respect to the negative x-axis.



Finding closest points

m W.r.t. euclidean distance.
m Brute force: 8(n?).
m Divide and conquer algorithm with O(n log n) complexity.



Finding closest points: Idea

m Each iteration: subset P C Q, arrays X and Y.

m Points in X are sorted in increasing order of their x coordinates.
m Points in Y are sorted in increasing order of their y coordinates.
m To maintain upper bound cannot afford to sort in each iteration.
m |P| < 3: brute force. Otherwise recursive divide-and-conquer.

m Divide: Find a vertical line / that bisects set P into two sets P, and Pp such that
|P.| = T|P|/2], |Prl = L|P|/2], all points of P, to the left, all points of P to the
right.

B X;: subarray that contains point of P;, Xz: subarray that contains point of Px.
m Similarly for Y.



Finding closest points (III)

Conquer. Recursive calls: P, X;, Y, and Pg, Xz, Y. Returns smallest distances §;
and 8.

Combine. § = min{§,, 6r}.
Have to test whether some pointin P, is at distance < & from some pointin Pg.
Both such points, if they exist, are within the 2§-wide strip around /.

Create an array Y’ which is Y with all points not in the 26-wide strip around /
removed, sorted by y-coordinate.

For each point p in Y’ try to find points in Y’ at distance less than §.
Only the 7 points that follow p need to be considered.

Compute smallest such distance §’. If §’ < & we found a better pair. Otherwise
6 is the smallest distance.

Correctness, implementation nontrivial.
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Finding closest points (IV)

coincident points,
one in Py,
onein Py

coincident points,
onein Py,
' ! i onein Py

(a) (b)

Figure 33.11  Key concepts in the proof that the closest-pair algorithm needs to check only 7 points
following each point in the array Y'. (a) If p;, & Py, and pg € Py are less than & units apart, they
must reside within a & x 23 rectangle centered at line /. (b) How 4 points that are pairwise at least &
units apart can all reside within a § x & square. On the lefit are 4 points in P, and on the right are 4
points in Pg. There can be 8 points in the § x 24 rectangle if the points shown on line / are actually
pairs of coincident points with one point in £, and one in Pg.



Correctness & complexity

m For each point: Consider the § x 26 rectangle centered at line /.

m At most 8 points within this rectangle.

m Assuming &, lower than &, it follows that 6z among the next 7 points following
6.

O(n log n) bound from recurrence T(n) = 2T(n/2) + O(n).

Main difficulty: making sure that X;, X, Y, Y&, Y’ sorted by appropriate
coordinate.

Key observation: in each call we wish to form a sorted subset of a sorted array.
Splitting the array into two halves.

Can be viewed as the inverse of the operation MERGE in MERGESORT.

How to get sorted arrays in the first place ? presort. 8(n log n).



Splitting: Pseudocode

length[Y,] = length[Yg] = O;
for i = 1 to length[Y]
if (Y[i] € P
{
length[Y,]++;
Yi[lengthlY,]] = Y[i];
3
else
{
length[Yg] + +;
Yrllength[Yr]] = Y[il;
3
3



And now for something totally different ...

Graph algorithms.



We live in a highly connected world ...




... and that’s important.

A certain disease from Wuhan, China has dramatic effects all over the planet ...

A software bug in the alarm system at the control room of FirstEnergy, in Akron,
Ohio knocks out the power grid in the whole Northeast United States (2003).

a

X



To understand, for my (and your) generation

How do real networks look like ?

How do network properties impact
the processes that take place on
them ?



Some real networks

FIgU €. (a). Air traffic map of the U.S. (b). Physical Internet



Marriage Networks of important families in Medieval Florence.

The Art of the Network

Paul D.McLean  STRATEGIC INTERACTION AND PATRONAGI
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Interactome ...

wnm(\\ __icopsz
o
WORE2 (ot EG/B0335) iy o

12500200 bty Sl . M s st

Part of the DISC1 interactome, with genes represented by text in boxes and
interactions noted by lines between the genes. From Hennah and Porteous (2009).



Xserver-xorg-core
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.. OT €ven ...



What's so interesting about networks ?

Small worlds: everyone is "not very far from everyone".

10000

= ] = ] ] 1e-08

m ™
Hsight finches)

0.01 0.1
o A"-1)

(a). Distribution of heights in the U.S. population.

(b). Degree distribution (aproximately) power law. Few "tall" people, "many" well
connected people



LINKED

NOUA STIINTA A RETELELOR

Despre cum orice lucru este conectat cu oricare altul sice
reprezintd asta pentru afaceri, stiintd si viata cotidiand

Albert-Laszlé Barabasi

"LinkeD ne-ar putea schimba modul i care gédndim orice retea
care ne afecteazd viata”— The New York Times

BRUMAR

Want to read something interesting ?

Matthew O Jacksan

THE HUMAN

NETWORK

Baw 'Wa're Connectad
and Why It Matters




By the way, not only in America ...




Want to read something even more interesting ?

NETWORKS SOCIAL AND
CROWDS ECONOMIC
w0 MARKETS NETWORKS

DAVID EASLEY

b, Matthew O Jackson
JON KLEINBERG




What'’s in it for us, Computer Scientists ?

Can you study large networks
without good algorithms ?



To conclude: Many Models and Applications

m Social networks: who knows who

m The Web graph: which page links to which

m The Internet graph: which router links to which

m Citation graphs: who references whose papers

m Planar graphs: which country is next to which

m Well-shaped meshes: pretty pictures with triangles

m Geometric graphs: who is near who



Definitions

m Agraph
G=(V,E)

m V is the set of vertices (also called nodes)

m £ is the set of edges



Definitions

m Agraph
G=(V,E)

m V is the set of vertices (also called nodes)

m £ is the set of edges

» ECVXV,i.e., Eis arelation between vertices

» anedge e = (u,v) € Vis a pair of verticesu € Vandv € V



Definitions

m Agraph
G=(V,E)

m V is the set of vertices (also called nodes)

m £ is the set of edges

» ECVXV,i.e., Eis arelation between vertices

» anedge e = (u,v) € Vis a pair of verticesu € Vandv € V

m An undirected graph is characterized by a symmetric relation between vertices

» anedgeis a set e = {u, v} of two vertices



Graph Representation

m How do we represent a graph G = (£, V) in a computer?



Graph Representation

m How do we represent a graph G = (£, V) in a computer?
m Adjacency-list representation

mV={1,2,...|V|}

m G consists of an array Adj

m Avertex u € Vis represented by an element in the array Adj



Graph Representation

m How do we represent a graph G = (£, V) in a computer?
m Adjacency-list representation

mV={1,2,...|V|}

m G consists of an array Adj

m Avertex u € Vis represented by an element in the array Adj

m Adj[u] is the adjacency list of vertex u

» the list of the vertices that are adjacent to u

» i.e, the list of all v such that (u,v) € E



Example
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Using the Adjacency List

Adj
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Using the Adjacency List

m Accessing a vertex u? v Adj
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Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
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Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
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» optimal v/

m Iteration through Vv?
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Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
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m Iteration through V? o(V|)
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Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
» optimal v/ [ g ke e ke
2| @ 3> 7 o1
m Iteration through V? o(Iv)) 47 e
» optimal v/ 5[ Qe
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Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
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Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
» optimal v/ [ g ke e ke
) 3| & 4 o> 7 o1+
m Iteration through V? o(Iv)) 47 e
» optimal v/ 5 z 9 e
m Iteration through E? o(|V| + |E]) [ S g ik g Lt g ML
8 [ ef—{11e{12e4+
» okay (not optimal) 9| e—{1 001+
10[ o
m Checking (u,v) € E? 1]
12| o1




Using the Adjacency List

m Accessing a vertex u? o(1) v. Adj
» optimal v/ [ g ke e ke
) 3| & 4 o> 7 o1+
m Iteration through V? o(Iv)) 47 e
» optimal v/ 5 z 9 e
m Iteration through E? o(|V| + |E]) [ S g ik g Lt g ML
8| e—{ 1141204+
» okay (not optimal) 9| et—{100H
10[ o
m Checking (u,v) € E? o(v|) T
12| o1



m Accessing a vertex u?

» optimal v/

m Iteration through Vv?

» optimal v/

m Iteration through E?

» okay (not optimal)

m Checking (u,v) € E?
» bad x

Using the Adjacency List

o(1) v. Adj
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Graph Representation (2)



Graph Representation (2)

m Adjacency-matrix representation
mV={1,2...|V]}
m G consists of a |V| X |V| matrix A

m A = (0j) such that

v et
Y7 lo  otherwise
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Using the Adjacency Matrix
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Using the Adjacency Matrix

m Accessing a vertex u?
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Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
123456789101112
» optimal v/ 1 111
2 1 1
3 1 1
4 1
5 1
6| |1 111
7 1 11
8 101
9 1
10
11 1
12




Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
123456789101112
» optimal v/ 1 K
2 1 1
, 3 1 1
m Iteration through Vv? 4 1
5 1
6| |1 111
7 1 11
8 101
9 1
10
11 1
12




Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
. 123456789101112
» optimal v/ 1 177
2 1 1
. 3 1 1
m Iteration through V? o(V|) 4 1
» optimal v/ 2 1 . 1
7 1 11
8 101
9 1
10
11 1
12




Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
. 1234567 89101112
» optimal v/ 1 11
2 1 1
. 3 1 1
m Iteration through V? o(V|) 4 1
» optimal v/ 2 ] ] 1
7 1 11
m Iteration through E? 2 ] 1
10
11 1
12




Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
, 123456789101112
» optimal v/ 1 11
2 1 1
. 3 1 1
m Iteration through V? o(V|) 4 1
» optimal v/ 2 ] ] 1
7 1 11
m Iteration through E? o(IV|?) 2 : 1
» possibly very bad x. 10
11 1
12




Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
, 123456789101112
» optimal v/ 1 11
2 1 1
. 3 1 1
m Iteration through V? o(V|) 4 1
» optimal v/ 2 ] ] 1
7 1 11
m Iteration through E? o(IV|?) 2 : 1
» possibly very bad x. 10
11 1
12

m Checking (u,v) € E?



Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
, 123456789101112
» optimal v/ 1 11
2 1 1
. 3 1 1
m Iteration through V? o(V|) 4 1
» optimal v/ 2 ] ] 1
7 1 11
m Iteration through E? o(IV|?) 2 : 1
» possibly very bad x. 10
11 1
12

m Checking (u,v) € E? o(1)



Using the Adjacency Matrix

m Accessing a vertex u? 0o(1)
, 123456789101112
» optimal v/ 1 11
2 1 1
. 3 1 1
m Iteration through V? o(V|) 4 1
» optimal v/ 2 ] ] 1
7 1 11
m Iteration through E? o(IV|?) 2 : 1
» possibly very bad x. 10
11 1
12

m Checking (u,v) € E? o(1)

» optimal v/
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optimal .
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Space Complexity

m Adjacency-list representation

(VI + |E])

optimal .

m Adjacency-matrix representation

(V)

possibly very bad X.

m When is the adjacency-matrix “very bad"?



Choosing a Graph Representation

m Adjacency-list representation

» generally good, especially for its optimal space complexity
» bad for dense graphs and algorithms that require random access to edges

» preferable for sparse graphs or graphs with low degree



Choosing a Graph Representation

m Adjacency-list representation

» generally good, especially for its optimal space complexity
» bad for dense graphs and algorithms that require random access to edges

» preferable for sparse graphs or graphs with low degree

m Adjacency-matrix representation

» suffers from a bad space complexity
» good for algorithms that require random access to edges

» preferable for dense graphs



Breadth-First Search

m One of the simplest but fundamental algorithms



Breadth-First Search

m One of the simplest but fundamental algorithms

m /nput: G = (V,E) and a vertex s € V

» explores the graph, touching all vertices that are reachable from s

v

iterates through the vertices at increasing distance (edge distance)

» computes the distance of each vertex from s

v

produces a breadth-first tree rooted at s

v

works on both directed and undirected graphs



BFS Algorithm

BFS(G, s) for each vertex u € V(G) \ {s}

color[u] = WHITE

dlu] = oo @OQ—0q ) —®

w[u] = NIL
color[s] = GRAY

o ® O——E
Sm_:u?au E(Q,S)

while Q # @
11 u = DEQUEUE(Q) @ 9

12 for each v € Adj[u]

13 if color[v] == WHITE
14 color[v] = GRAY
15 dlv] = d[u] +1
16 zlv] = u

17 ENQUEUE(Q, V)
18 color[u] = BLACK

—
SQuwoo~NOUTLD WN —




BFS(G, s)

_ e s
NoubMNwWN-_OCOUONOULN WN =

18

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

O—@Q  —0
& (O——©
© O



BFS(G, s)
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11
12
13
14
15
16
17
18

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm
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u=1

Q={5}



BFS(G, s)
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16
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=1

Q= {5’ 6}



BFS(G, s)
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=>5

Q= {6}



BFS(G, s)
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=>5

Q= {6’9}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u==6
Q= {9}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

o —(10) (1)—(2)
NANAN

o

u==~6
Q=1{9,2,7}



BFS(G, s)
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=29
Q=1{2,7}



BFS(G, s)
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11
12
13
14
15
16
17
18

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

o =0, ()—(@2
f)c\
VN

u=29
Q=1{2,7,10}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)
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11
12
13
14
15
16
17
18

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=2
Q=1{7,10,3}



BFS(G, s)

—
SQuwoo~NOUTLD WN —

11
12
13
14
15
16
17
18

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

=0, ()—0)

NN

G (=7 —(
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u=7

Q ={10,3}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

(9) 10
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u=17
Q= {10,3,8)}



BFS(G, s)
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm
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Q=1{10,3,8,11}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=10
Q=1{3,8,11}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=3
Q={8,11,4}



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm

u=2=8
Q:{11,4,12}
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm




BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

BFS Algorithm
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

Complexity of BFS
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for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

Complexity of BFS

m We enqueue a vertex only if
it is white, and we
immediately color it gray;
thus, we enqueue every
vertex at most once
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vertex at most once

m So, the (dequeue) while loop
executes O(|V|) times



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

Complexity of BFS

m We enqueue a vertex only if
it is white, and we
immediately color it gray;
thus, we enqueue every
vertex at most once

m So, the (dequeue) while loop
executes O(|V|) times

m For each vertex u, the inner
loop executes O(|E,|), for a
total of O(|E|) steps



BFS(G, s)

for each vertex u € V(G) \ {s}
color[u] = WHITE
dlu] = =
w[u] = NIL
color[s] = GRAY
dls] =0
7[s] = NIL
Q=0
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € Adj[u]
if color[v] == WHITE
color[v] = GRAY
dlv] = dlu] +1
zlv] = u
ENQUEUE(Q, V)
color[u] = BLACK

Complexity of BFS

m We enqueue a vertex only if
it is white, and we
immediately color it gray;
thus, we enqueue every
vertex at most once

m So, the (dequeue) while loop
executes O(|V|) times

m For each vertex u, the inner
loop executes O(|E,|), for a
total of O(|E|) steps

m So, O(|V| + |E|)



Depth-First Search



Depth-First Search

m Immediately follow the links of the most recently-visited vertex, then backtrack
when you reach a dead-end

» i.e., backtrack when the current vertex has no more adjacent vertices that have not
yet been visited
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when you reach a dead-end

» i.e., backtrack when the current vertex has no more adjacent vertices that have not
yet been visited

m Input: G = (V,E)

» explores the graph, touching all vertices



Depth-First Search

m Immediately follow the links of the most recently-visited vertex, then backtrack
when you reach a dead-end

» i.e., backtrack when the current vertex has no more adjacent vertices that have not
yet been visited

m Input: G = (V,E)
» explores the graph, touching all vertices

» produces a depth-first forest, consisting of all the depth-first trees defined by the
DFS exploration



Depth-First Search

m Immediately follow the links of the most recently-visited vertex, then backtrack
when you reach a dead-end

» i.e., backtrack when the current vertex has no more adjacent vertices that have not
yet been visited

m Input: G = (V,E)
» explores the graph, touching all vertices

» produces a depth-first forest, consisting of all the depth-first trees defined by the
DFS exploration

» associates two time-stamps to each vertex

> d[u] records when u is first discovered

> f[u] records when DFS finishes examining u's edges, and therefore backtracks from u



DEFS Algorithm

DFS(G)1 foreachvertexu € V(G) DFS-VisiT(u) 1 color[u] = GREY
2 color[u] = WHITE 2 time = time + 1
3 wlu] = NIL 3 d[u] = time
4 time = 0 # “"global” variable 4 for each v € Adj[u]
5 for each vertex u € V(G) 5 if color[v] == WHITE
6 if color[u] == WHITE 6 wlv] = u
7 DFS-VisiT(u) 7 DFS-VisIT(v)
8 color[u] = BLACK
9 time = time + 1
10 flu] = time
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m We call DFS-VisiT(u) once for each vertex u
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» because we call it only if color[u] = WHITE, but then we immediately set
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Complexity of DFS

m The loop in DFS-VisIT(u) (lines 4-7) accounts for ©(|E,|)

m We call DFS-VisiT(u) once for each vertex u

» either in DFS, or recursively in DFS-VisIT

» because we call it only if color[u] = WHITE, but then we immediately set
color[u] = GREY

m So, the overall complexity is ©(|V| + |E])
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m Problem: (topological sort)

Given a directed acyclic graph (DAG)

» find an ordering of vertices such that you only end up with forward links

m Example: dependencies in software packages

» find an installation order for a set of software packages

» such that every package is installed only after all the packages it depends on
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Topological Sort Algorithm

shirt briefs/boxers socks watch
tie pants shoes
\
jacket belt

TOPOLOGICAL-SORT(G)1 DFS(G)
2 output V sorted in reverse order of f[-]




