
Algorithms and Data Structures (II)
Gabriel Istrate

April 21, 2020

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
Wanted: data structure to support dynamic sets
Simplest form: (vectors), linked lists, stacks, queues.
Hash tables: O(1) performance under certain conditions.
Tree-like data structures: wanted INSERT, DELETE, SEARCH in O(log n) time.
AVL trees, red-black trees: met this bound.

Gabriel Istrate Algorithms and Data Structures (II)

Where we are (II)
Why did we want dynamic sets to start with ?

To improve algorithms.
Second part of today: brief respite from data structures.
Computational geometry
We’ll see some algorithms that use stacks, red-black trees.

First part: Augmenting Data Structures (e.g. Red-Black Trees)
What happens if a data structure doesn’t support all the operations you want ?
Augment it: modify it to support the new operations.
Might need to add additional fields. These need to be maintained.

Gabriel Istrate Algorithms and Data Structures (II)

Augmenting Data Structures
What if no existing data structure fits your needs ?
Invent a new one, or ...
More realistic (in practice): slightly modify a "standard" data structure tosupport more operations.
Done by storing extra information in it
Not always straightforward: new informationmust be updated andmaintained by D.S. operations.

Gabriel Istrate Algorithms and Data Structures (II)

Augmenting Data Structures
Example: two data structures obtained by modifying red-black trees

First data structure: supports order statistics queries on a dynamic set.
- Find i’th number in a set or the rank of an element .
Second data structure: maintain a set of intervals (e.g. time intervals).
Plus: a general result about augmenting Data Structures.

Gabriel Istrate Algorithms and Data Structures (II)

Dynamic order statistics
Order statistic tree: red-black tree with one extra field per node: size of thesubtree rooted at that node.
Thus fields: key, color, p, left, right, size.
size[nil[T]] = 0.
size[x] = size[left[x]] + size[right[x]] + 1.
Supports OS − SELECT(x, i): return i’th smallest element in the tree rooted at x.O(log n) time.
Supports OS − RANK(T, x): return the rank of x in the tree T . O(log n) time.

Gabriel Istrate Algorithms and Data Structures (II)

Order statistics tree

Gabriel Istrate Algorithms and Data Structures (II)

Selecting i’th element
If i = size[left(x)] + 1 then (by BST property) node x is the i’th element. Return x.
If i ≤ size[left(x)] then node is in left[x]. i’th element. Call procedure recursively.
If i > size[left(x)] + 1 then node is in right[x]. i − size[left(x)]’th element. Callprocedure recursively.
Running time: proportional to the height of the tree: O(log n).

Gabriel Istrate Algorithms and Data Structures (II)

Selecting i’th element

Gabriel Istrate Algorithms and Data Structures (II)

Rank of an element

Gabriel Istrate Algorithms and Data Structures (II)

Rank of an element
Perform inorder traversal.
Return rank of node x in this traversal.
Move pointer y from x up towards root(T).
Maintains the following invariant: at the start of each iteration of the while loop,r is the rank of key[x] in the subtree rooted at y.
If y is a right child, add the size of its left child to the count.
Each iteration: O(1) time. y goes up the tree, time complexity O(log n).

Gabriel Istrate Algorithms and Data Structures (II)

Maintaining subtree sizes: Insertion.
During LEFT/RIGHT rotations.
INSERTION. First phase: go from the root to the frontier, inserting the new nodeas the child of an existing node. new node gets size of 1. Each node from x tothe path: size increases by 1. O(log n).
Second phase: go up the tree, changing colors, and maintaining the red-blackproperty by rotations.
Second phase: changes via LEFT/RIGHT rotations.
LEFT-ROTATE: add lines

- size[y] ← size[x].
- size[x] ← size[left[x]] + size[right[x]] + 1.
to rotation pseudocode.
RIGHT-ROTATE: symmetric.

Gabriel Istrate Algorithms and Data Structures (II)

Maintaining size during rotations.

Gabriel Istrate Algorithms and Data Structures (II)

Maintaining subtree sizes: Deletion.
DELETION: two phases.
First phase: delete node. Update tree size on the path from the node to the top.Decrement by 1 for each node.
Rotations: as for insertion.

Gabriel Istrate Algorithms and Data Structures (II)

How to augment a data structure
Four steps:
1. Choose underlying data structure.
2. Determine additional information to be maintained.
3. Verify that additional information can be maintained in the D.S. operations.
4. develop new operations required by new fields.

Gabriel Istrate Algorithms and Data Structures (II)

How to augment a data structure (II)
1 Choose red-black trees. Clue: supports other dynamic set operations on totalorder: MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR.
2 We didn’t need field size to implement OS-SELECT, OS-RANK, but thenoperations wouldn’t run in O(log n) time. Additional information to bemaintained: sometimes pointer rather than data.
3 Ideally only a few elements need to be updated to maintain D.S. E.g. if we simplystored in each node it rank in the tree then OS-SELECT and OS-UPDATE wouldbe efficient but inserting a smallest node causes changes in the whole tree.
4 Developed OS-SELECT, OS-RANK. Occasionally, instead of new operations,speed-up old ones.

Gabriel Istrate Algorithms and Data Structures (II)

Augmenting red-black trees
Theorem
Let f be a field that augments a RB tree of n nodes, and suppose the contents of f fornode x can be computed in O(1) using only information in node x, left[x] and right[x],including f [left[x]] and f [right[x]]. Then we can maintain the values of f in all nodes in Tduring insertion and deletion without asymptotically affecting O(log n) performance.
Proof idea: change in field f at a node x propagates only to ancestors of x in the tree.

Gabriel Istrate Algorithms and Data Structures (II)

Interval trees
closed interval: [t1, t2]. Also open, half-open intervals.i = [t1, t2]. low[i] = t1, high[i] = t2.i and i′ overlap if i∩ i′ , ∅. That is low[i] ≤ high[i′] and low[i′] ≤ high[i].
Want: Data structure representing a dynamic set of intervals.
Must support the following operations:
INTERVAL − INSERT(T, x): adds element x, whose int field contains an interval.
INTERVAL − DELETE(T, x): removes element x from T .
INTERVAL − SEARCH(T, i): return pointer to an element x such that int[x] overlapsi, or nil if no such element found.

Gabriel Istrate Algorithms and Data Structures (II)

Intervals
Any two intervals satisfy interval trichotomy: three alternatives:

1 i and i′ overlap.
2 i is to the left of i′ (high[i] < low[i′]).
3 i is to the right of i′.(low[i] > high[i′]).

Gabriel Istrate Algorithms and Data Structures (II)

Interval trees: Implementation
1 Possible clue: intervals (partial) ordering. Might try to modify a total order. Thenred-black tree. Each node x stores an interval int[x].
- key[x] = low[int[x]].

2 Additional info: max[x], the maximum value of any endpoint of an intervalstored in the subtree rooted at x.
3 Maintain info: max[x] = max(high[int[x]],max[left[x]],max[right[x]]).
4 By applying previous theorem: insertion/deletion O(log n) while maintainingmax[x].

Gabriel Istrate Algorithms and Data Structures (II)

Interval tree

Gabriel Istrate Algorithms and Data Structures (II)

INTERVAL-SEARCH
finds a node in tree T whose interval overlaps interval i, returns sentinel nodenil[T] if no overlapping interval found.
Search starts at the root and proceeds downwards.
Chooses left or right subtree based on the maximum element in the left subtreeof x.
Ifmax[left[x]] is ≥ low[i] (of course, left[x] , nil[T]) go left.
otherwise go right.
takes O(log n) time since each basic loop takes O(1) time and the height of theRB tree is O(log n).

Gabriel Istrate Algorithms and Data Structures (II)

INTERVAL-SEARCH

Gabriel Istrate Algorithms and Data Structures (II)

Correctness of INTERVAL-SEARCH
Why is it enough to examine a single path ?
Idea: search proceeds in a "safe direction".
INVARIANT: If tree T contains an interval that overlaps i then there is such aninterval in the subtree rooted at x.
Initialization: clearly satisfied, x = root[T].
Either line 4 or line 5 executed.
Line 5 executed: because left[x] = nil[T] ormax[left[x]] < low[i]. The subtreerooted at left[x] does not contain any interval that overlaps i.
If such an interval is found in T , it must be in right[x].

Gabriel Istrate Algorithms and Data Structures (II)

Correctness of INTERVAL-SEARCH
Line 4 executed: contrapositive of loop invariant holds.
If there is no such an interval in the subtree rooted at left[x] then there is nosuch interval in tree T .
Since line 4 executedmax[left[x]] ≥ low[i]. There exists i′ withhigh[i′] = max[left[x]] ≥ low[i].
i and i′ do not overlap, by assumption. By trichotomy high[i] < low[i′].
i′′ interval in right[x]. Intervals keyed on the low endpoints.
high[i] < low[i′] ≤ low[i′′].
Conclusion: no interval in right[x] (and thus in T) overlaps i.

Gabriel Istrate Algorithms and Data Structures (II)

Computational geometry
Studies algorithms for geometric problems.
Applications: computer graphics, robotics, VLSI, CAD.
More applications: protein folding, molecular modeling, GIS.
Huge area ! Only a sampler.
Scientific conference: SOCG
Software: CGAL.

Caution
The biggest "enemy" to algorithms in computational geometry: degeneracy.
Three points are collinear, three lines intersect at the same point, etc.
Algorithms need patching to deal with degenerate situations.
In the interest of teaching: Ignore it.

Gabriel Istrate Algorithms and Data Structures (II)

Want to know more ?

Gabriel Istrate Algorithms and Data Structures (II)

Computational geometry
Input: set of points {pi}, pi = (xi, yi). Example: polygon P = (p0, p1, . . . , pn).Given p1 = (x1, y1) and p2 = (x2, y2), convex combination: any point p3 = (x3, y3)such that x3 = λx1 + (1 − λ)x2, λ ∈ [0, 1], similarly y3 = λy1 + (1 − λ)y2.

Gabriel Istrate Algorithms and Data Structures (II)

Cross products

Gabriel Istrate Algorithms and Data Structures (II)

Using Cross products

Gabriel Istrate Algorithms and Data Structures (II)

Procedures DIRECTION and ON-SEGMENT

Gabriel Istrate Algorithms and Data Structures (II)

Testing whether two segments intersect
QUICK REJECT: two segments cannot intersect if their BOUNDING BOXES don’t.
Smallest rectangle containing the segment with sides parallel to the xy axes.
Bounding box of p1p2, pi = (xi, yi) is rectangle with corners
(min(x1, x2),min(y1, y2), (min(x1, x2),max(y1, y2) (max(x1, x2),max(y1, y2) and
(max(x1, x2),min(y1, y2).

Gabriel Istrate Algorithms and Data Structures (II)

Straddling
Second stage: check whether each segment "straddles" the other.A segment p1p2 straddles a line if point p1 lies on one side of the line and pointp2 lies on the other side. If p1 or p2 lies on the line, then we say that thesegment straddles the line. Two line segments intersect if and only if they passthe quick rejection test and each segment straddles the line containing theother.

Gabriel Istrate Algorithms and Data Structures (II)

Straddling

Gabriel Istrate Algorithms and Data Structures (II)

Testing whether two segments intersect

Gabriel Istrate Algorithms and Data Structures (II)

Testing whether any two segments intersect
Given: n segments v1, . . . vn.To test: do any two segments intersect ?
Uses technique called sweeping.
Running time: O(n log n). Naive algorithm O(n2).
SWEEPING: an imaginary vertical sweep line passes through the given set ofgeometric objects, usually from left to right. The spatial dimension that thesweep line moves across, in this case the x-dimension, is treated as a dimensionof time.
Provides method for ordering geometric objects, usually by placing them into adynamic data structure, and for taking advantage of relationships among them.
line-segment-intersection algorithm: considers all line-segment endpoints inleft-to-right order and checks for an intersection each time it encounters anendpoint.

Gabriel Istrate Algorithms and Data Structures (II)

Sweeping

Gabriel Istrate Algorithms and Data Structures (II)

Maintaining sweep line
Sweeping algorithms: maintain two sets of data.
sweep-line status: gives the relationships among objects intersected by thesweep line.
event-point schedule: sequence of x-coordinates, ordered from left to right,that defines the halting positions of the sweep line.
Call each such halting position an event point. Changes to the sweep-line statusoccur only at event points.
Sweep-line status: total order T .
INSERT(T, s), DELETE(T, s).
ABOVE(T, s): return segment above s in T .
BELOW(T, s): return segment below s in T .
We can perform each of the above operations in O(log n) time using red-blacktrees.

Gabriel Istrate Algorithms and Data Structures (II)

Algorithm

Gabriel Istrate Algorithms and Data Structures (II)

Algorithm: example

Gabriel Istrate Algorithms and Data Structures (II)

Algorithm: correctness/performance
Can only fail by not reporting intersecting segments.
p = leftmost intersection point, breaking ties by choosing the one with thelowest y-coordinate. a and b = the segments that intersect at p.
No intersections occur to the left of p⇒ the order given by T is correct at allpoints to the left of p.
no three segments intersect at the same point⇒ there exists a sweep line z atwhich a and b become consecutive in the total order.
z is to the left of p or goes through p.
There exists segment endpoint q on z that is the event point at which a and bbecome consecutive.
If p is on z, then q = p. If p is not on z, then q is to the left of p. In either case, theorder given by T is correct just before q is processed.

Gabriel Istrate Algorithms and Data Structures (II)

Algorithm: correctness/performance
Either a or b is inserted into T , and the other segment is above or below it in thetotal order. Lines 4-7 detect this case.
Segments a and b are already in T , and a segment between them in the totalorder is deleted, making a and b become consecutive. Lines 8-11.
In either case, the intersection p is found.
2n insert/delete/tests. Taking O(log n) time.

Gabriel Istrate Algorithms and Data Structures (II)

Convex hull
Convex hull of a set of points: smallest convex polygon that contains the set ofpoints.
place elastic rubber band around set of points and let it shrink.
Two algorithms: Graham’s Scan O(n log n).
Jarvis’s March O(n · h), h the number of points on the convex hull.
Other algorithms:
Incremental: points sorted from left to right forming sequence p1, . . . , pn. Atstage i add pi to convex hull CH(p1, . . . , pi−1), forming CH(p1, . . . , pi).Divide-and-conquer: divide into leftmost n/2 points and rightmost n/2 points.Compute convex hulls and combine them.
Prune-and-search method.

Gabriel Istrate Algorithms and Data Structures (II)

Convex hull

Gabriel Istrate Algorithms and Data Structures (II)

Graham’s scan
Maintains a stack S of candidate points.
Each point of Q is pushed onto the stack.
Points not in CH(Q) eventually popped from the stack.
TOP(S), NEXT − TO − TOP(S): stack functions, do not change its contents.
Stack returned by the algorithm: points of CH(Q) in counterclockwise order.

Gabriel Istrate Algorithms and Data Structures (II)

Convex hull algorithm

Gabriel Istrate Algorithms and Data Structures (II)

Graham’s Scan:Example

Gabriel Istrate Algorithms and Data Structures (II)

Graham’s Scan:Example

Gabriel Istrate Algorithms and Data Structures (II)

Graham’s Scan: Correctness and Performance
Invariant: at the beginning of each iteration of the for loop stack S contains(from bottom to top) exactly the vertices of CH(Qi−1) in counterclockwise order.Line 1: θ(n) time.
Sorting θ(n log n) time.
Testing for left/right turn: vector product θ(1) time.
The rest of the algorithm O(n) time.

Gabriel Istrate Algorithms and Data Structures (II)

Graham’s Scan: Correctness

Gabriel Istrate Algorithms and Data Structures (II)

Jarvis’s March
uses a technique known as gift wrapping.
Simulates wrapping a piece of paper around set Q.
Start at the same point p0 as in Graham’s scan.
Pull the paper to the right, then higher until it touches a point. This point is avertex in the convex hull. Continue this way until we come back to p0.Formally: start at p0. Choose p1 as the point with the smallest polar angle fromp0. Choose p2 as the point with the smallest polar angle from p1 . . .
. . . until we reached the highest point pk.We have constructed the right chain.
Construct the left chain by starting from pk and measuring polar angles withrespect to the negative x-axis.

Gabriel Istrate Algorithms and Data Structures (II)

Jarvis’s March

Gabriel Istrate Algorithms and Data Structures (II)

Finding closest points
W.r.t. euclidean distance.
Brute force: θ(n2).
Divide and conquer: O(n log n).
Each iteration: subset P ⊆ Q, arrays X and Y .
Points in X are sorted in increasing order of their x coordinates.
Points in Y are sorted in increasing order of their y coordinates.
To maintain upper bound cannot afford to sort in each iteration.
|P| ≤ 3: brute force. Otherwise recursive divide-and-conquer.
Divide: Find a vertical line l that bisects set P into two sets PL and PR such that
|PL | = ⌈|P|/2⌉, |PR | = ⌊|P|/2⌋, all points of PL to the left, all points of PR to theright.
XL: subarray that contains point of PL, XR: subarray that contains point of PR.Similarly for Y .

Gabriel Istrate Algorithms and Data Structures (II)

Finding closest points (II)
Conquer. Recursive calls: PL, XL, YL and PR, XR, YR. Returns smallest distances δLand δR.Combine. δ = min{δL, δR}.Have to test whether some point in PL is at distance < δ from some point in PR.Both such points, if they exist, are within the 2δ -wide strip around l.
Create an array Y ′ which is Y with all points not in the 2δ -wide strip around lremoved, sorted by y-coordinate.
For each point p in Y ′ try to find points in Y ′ at distance less than δ .
Only the 7 points that follow p need to be considered.
Compute smallest such distance δ ′. If δ ′ < δ we found a better pair. Otherwise
δ is the smallest distance.
Correctness, implementation nontrivial.

Gabriel Istrate Algorithms and Data Structures (II)

Finding closest points

Gabriel Istrate Algorithms and Data Structures (II)

Correctness & complexity
For each point: Consider the δ × 2δ rectangle centered at line l.
At most 8 points within this rectangle.
Assuming δL lower than δR, it follows that δR among the next 7 points following
δL.O(n log n) bound from recurrence T(n) = 2T(n/2) + O(n).
Main difficulty: making sure that XL, XR, YL, YR, Y ′ sorted by appropriatecoordinate.
Key observation: in each call we wish to form a sorted subset of a sorted array.
Splitting the array into two halves.
Can be viewed as the inverse of the operation MERGE in MERGESORT .
How to get sorted arrays in the first place ? presort. θ(n log n).

Gabriel Istrate Algorithms and Data Structures (II)

Splitting: Pseudocode

length[YL] = length[YR] = 0;
for i = 1 to length[Y]
if (Y[i] ∈ PL)
{length[YL]++;YL[length[YL]] = Y[i];
}
else
{length[YR] + +;YR[length[YR]] = Y[i];
}

}

Gabriel Istrate Algorithms and Data Structures (II)

