Algorithms and Data Structures (ll)

Gabriel Istrate

April 21, 2020

Where are we ?

m Wanted: data structure to support dynamic sets

m Simplest form: (vectors), linked lists, stacks, queues.

m Hash tables: O(1) performance under certain conditions.

m Tree-like data structures: wanted INSERT, DELETE, SEARCH in O(log n) time.
m AVL trees, red-black trees: met this bound.

Where we are (I1)

Why did we want dynamic sets to start with ?

m To improve algorithms.

m Second part of today: brief respite from data structures.
m Computational geometry
m We'll see some algorithms that use stacks, red-black trees.

v

First part: Augmenting Data Structures (e.g. Red-Black Trees)

m What happens if a data structure doesn't support all the operations you want ?
m Augment it: modify it to support the new operations.
m Might need to add additional fields. These need to be maintained.

Augmenting Data Structures

m What if no existing data structure fits your needs ?
m Invent a new one, or ...

m More realistic (in practice): slightly modify a "standard" data structure to
support more operations.

m Done by storing extra information in it

m Not always straightforward: new information must be updated and
maintained by D.S. operations.

Augmenting Data Structures

Example: two data structures obtained by modifying red-black trees

m First data structure: supports order statistics queries on a dynamic set.

Find /'th number in a set or the rank of an element |.
m Second data structure: maintain a set of intervals (e.g. time intervals).
m Plus: a general result about augmenting Data Structures.

Dynamic order statistics

m Order statistic tree: red-black tree with one extra field per node: size of the
subtree rooted at that node.

m Thus fields: key, color, p, left, right, size.

m size[nil[T]] = 0.

m size|x] = size[left|x]] + size[right[x]] + 1.

m Supports OS — SELECT(x, i): return i'th smallest element in the tree rooted at x.
O(log n) time.

m Supports OS — RANK(T, x): return the rank of x in the tree T. O(log n) time.

Order statistics tree

Figure 14.1 An order-statistic tree, which is an augmented red-black tree. Shaded nodes are red,
and darkened nodes are black. In addition to its usual fields, each node x has a field size[x]. which is
the number of nodes in the subtree rooted at x.

Selecting /'th element

m If i = size[left(x)] + 1 then (by BST property) node x is the i'th element. Return x.
m Ifi < size[left(x)] then node is in left|x]. i'th element. Call procedure recursively.

m If i > size[left(x)] + 1 then node is in right[x]. i — size[left(x)]'th element. Call
procedure recursively.

m Running time: proportional to the height of the tree: O(log n).

Selecting i'th element

OS—SELECT(}C, i)

I r <« size[left[x]]+1
2 ifi=r

3 then return x

4 elseifi < r

5 then return OS-SELECT (left[x], i)

6 else return OS-SELECT (right[x],i — r)

OS-RANK(T, x)

1
2
3
4
5
6
7

r < size[left[x]] + 1
y < X
while y = root[T']
do if y = right[p[y]]
then r <« r + size[left[p[y]l] + 1

y < plyl
return r

Rank of an element

Rank of an element

m Perform inorder traversal.

B Return rank of node x in this traversal.

m Move pointer y from x up towards root(T).
m

Maintains the following invariant: at the start of each iteration of the while loop,
ris the rank of key[x] in the subtree rooted at y.

m If y is a right child, add the size of its left child to the count.
m Each iteration: O(1) time. y goes up the tree, time complexity O(log n).

Maintaining subtree sizes: Insertion.

m During LEFT/RIGHT rotations.

m INSERTION. First phase: go from the root to the frontier, inserting the new node
as the child of an existing node. new node gets size of 1. Each node from x to
the path: size increases by 1. O(log n).

m Second phase: go up the tree, changing colors, and maintaining the red-black
property by rotations.

m Second phase: changes via LEFT/RIGHT rotations.
m LEFT-ROTATE: add lines

- sizely] « size|x].

- size|x] « size|[left|x]]| + size[right[x]] + 1.

m to rotation pseudocode.

m RIGHT-ROTATE: symmetric.

Maintaining size during rotations.

LEFT-ROTATE(T, x)

SRR R

e iaas
RIGHT-ROTATE(T, y)

Figure 14.2 Updating subtree sizes during rotations. The link around which the rotation is per-
formed is incident on the two nodes whose size fields need to be updated. The updates are local,
requiring only the size information stored in x, y, and the roots of the subtrees shown as triangles,

Maintaining subtree sizes: Deletion.

m DELETION: two phases.

m First phase: delete node. Update tree size on the path from the node to the top.
Decrement by 1 for each node.

m Rotations: as for insertion.

How to augment a data structure

m Four steps:

m 1. Choose underlying data structure.

m 2. Determine additional information to be maintained.

m 3. Verify that additional information can be maintained in the D.S. operations.
m 4. develop new operations required by new fields.

How to augment a data structure (Il)

@ Choose red-black trees. Clue: supports other dynamic set operations on total
order: MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR.

© We didn't need field size to implement OS-SELECT, OS-RANK, but then
operations wouldn't run in O(log n) time. Additional information to be
maintained: sometimes pointer rather than data.

© Ideally only a few elements need to be updated to maintain D.S. E.g. if we simply
stored in each node it rank in the tree then OS-SELECT and OS-UPDATE would
be efficient but inserting a smallest node causes changes in the whole tree.

© Developed OS-SELECT, OS-RANK. Occasionally, instead of new operations,
speed-up old ones.

Augmenting red-black trees

Let f be a field that augments a RB tree of n nodes, and suppose the contents of f for
node x can be computed in O(1) using only information in node x, left|x]| and right|x],
including f|left[x]] and f[right[x]]. Then we can maintain the values of f in all nodes in T
during insertion and deletion without asymptotically affecting O(log n) performance.

Proof idea: change in field f at a node x propagates only to ancestors of x in the tree.

Interval trees

closed interval: [t1, t2]. Also open, half-open intervals.

i = [ty, t]. low[i] = t;, highli] = t,.

iand " overlapifi(i’ # @. Thatis low[i] < high[i’] and low[i"] < highl[i].
Want: Data structure representing a dynamic set of intervals.

Must support the following operations:
INTERVAL — INSERT(T, x): adds element x, whose int field contains an interval.
INTERVAL — DELETE(T, x): removes element x from T.

INTERVAL — SEARCH(T, i): return pointer to an element x such that int[x] overlaps
i, or nil if no such element found.

m Any two intervals satisfy interval trichotomy: three alternatives:

@ /and/ overlap.
@ iis to the left of i’ (high[i] < low[i’]).
© i is to the right of /’.(low[i] > high[i']).

P —— P —L
(a) o
O S i N
®) - ©

Figure 1?.3 .The interval trichotomy for two closed intervals i and i’. (a) If i and i’ overlap, there
are four situations; in each, low[i] < high[i’] and low[i'] < high[i]. (b) The intervals do not overlap,

and high[i] < low[i']. (c) The intervals do not overlap, and high[i'] < lowli].

Intervals

Interval trees: Implementation

@ Possible clue: intervals (partial) ordering. Might try to modify a total order. Then
red-black tree. Each node x stores an interval int[x].

- key|x] = low[int[x]].
@ Additional info: max[x], the maximum value of any endpoint of an interval
stored in the subtree rooted at x.

© Maintain info: max[x] = max(high[int[x]], max|left[x]], max|right[x]]).
© By applying previous theorem: insertion/deletion O(log n) while maintaining
max|x].

Interval tree

. . >
0 5 10 15 20 25 30
(a)

(o201
gl

(b)

Figure 144 An interval tree. (a) A set of 10 intervals, shown sorted bottom to top by left endpoint.
(b} The interval tree that represents them. An inorder tree walk of the tree lists the nodes in sorted
order by left endpoint.

INTERVAL-SEARCH

m finds a node in tree T whose interval overlaps interval /, returns sentinel node
nil[T] if no overlapping interval found.

m Search starts at the root and proceeds downwards.

m Chooses left or right subtree based on the maximum element in the left subtree
of x.

m If max|left[x]] is > low[i] (of course, left[x] # nil[T]) go left.
m otherwise go right.

m takes O(log n) time since each basic loop takes O(1) time and the height of the
RB tree is O(log n).

INTERVAL-SEARCH

INTERVAL-SEARCH(T, i)
1 x <« root[T]
2 while x # nil[T] and i does not overlap int[x]

3 do if left[x] # nil|T] and max[left[x]] = low[i]
4 then x <« left[x]

5 else x <« right[x]

6 return x

Correctness of INTERVAL-SEARCH

Why is it enough to examine a single path ?
m Idea: search proceeds in a "safe direction”.

m INVARIANT: If tree T contains an interval that overlaps i then there is such an
interval in the subtree rooted at x.

m Initialization: clearly satisfied, x = root[T].
m Either line 4 or line 5 executed.

m Line 5 executed: because left[x] = nil[T] or max[left|x]] < low][i]. The subtree
rooted at left[x] does not contain any interval that overlaps /.

m If such aninterval is found in T, it must be in right[x].

Correctness of INTERVAL-SEARCH

m Line 4 executed: contrapositive of loop invariant holds.

m If there is no such an interval in the subtree rooted at /eft[x] then there is no
such interval in tree T.

m Since line 4 executed max|left|x]] > low[i]. There exists /" with
high[i’] = max|left[x]] = low[i].
m j and /" do not overlap, by assumption. By trichotomy highl[i] < low[/’].
m /" interval in right[x]. Intervals keyed on the low endpoints.
m high[i] < low[i"] < low[i"].
m Conclusion: no interval in right[x] (and thus in T) overlaps i.

Computational geometry

m Studies algorithms for geometric problems.

m Applications: computer graphics, robotics, VLSI, CAD.

m More applications: protein folding, molecular modeling, GIS.
m Huge area! Only a sampler.

m Scientific conference: SOCG

m Software: CGAL.

m The biggest "enemy" to algorithms in computational geometry: degeneracy.
m Three points are collinear, three lines intersect at the same point, etc.

m Algorithms need patching to deal with degenerate situations.

m In the interest of teaching: Ignore it.

Want to know more ?

Mark de Berg
Otfried Cheong

Marc van Kreveld
Mark Overmars

Computational
Geometry

Algorithms and Applications
Third Edition

Z] Springer

Computational geometry

m Input: set of points {p;}, pi = (X, ¥;). Example: polygon P = (pg, p1, ..., Pn)-

m Given p; = (xq,y1) and p2 = (x2, y2), convex combination: any point p3 = (X3, y3)
such that xs3 = Ax; + (1 = A)xp, A € [0, 1], similarly y3 = Ayy + (1 = A)y,.

1. Given two directed segments gop; and pops, is popi clockwise from pops
with respect to their common endpoint pg?

2. Given two line segments F;72 and foj, if we traverse 7 p; and then
P23, do we make a left turn at point pa7?

3. Do line segments 717> and Pipq intersect?

Cross products

e m o Figure 33.1 (a) The cross product of vectors p; and pj is the signed area of the parallelogram.
pixp: = det (vz) (b) The lightly shaded region contains vectors that are clockwise from p. The darkly shaded region

= X112 —Xa2h1 contains vectors that are counterclockwise from p.

= “Pxxp.

Using Cross products

23 P2
counterclockwise P P clockwise
Po Po
(a) (b)

Figure 33.2 Using the cross product to determine how consecutive line segments pgpy and pjpa
turn at point pj. We check whether the directed segment pgp5 is clockwise or counterclockwise
relative to the directed segment pgpj. (a) If counterclockwise, the points make a left turn. (b) If
clockwise, they make a right turn.

Algorithms and Data Structures (l1)

Procedures DIRECTION and ON-SEGMENT

ON-SEGMENT(p;, pi, Pi)

L if min(y, xj) < xp = max(x;, x;) and min(y;, ¥;) <y < max(y;, y;)
DIRECTION(p;, pj, px) 2 then return TRUE
1 return (p; — pi) < (p; — p;) 3 else return FALSE

Testing whether two segments intersect

m QUICK REJECT: two segments cannot intersect if their BOUNDING BOXES don't.
m Smallest rectangle containing the segment with sides parallel to the xy axes.
m Bounding box of p1p2, pi = (X, y;) is rectangle with corners
(min(x1, x2), min(y1, y2), (min(x1, x2), max(y, y2) (max(x1, x2), max(y1, y>) and
(max(x1, x2), min(y1, y2).

Straddling

m Second stage: check whether each segment "straddles" the other.

m A segment pp, straddles a line if point p; lies on one side of the line and point
p> lies on the other side. If p; or p; lies on the line, then we say that the
segment straddles the line. Two line segments intersect if and only if they pass

the quick rejection test and each segment straddles the line containing the
other.

Straddling

(P1=p3) % (pypy) <0 Pa Pr=p3) X (psp3) <0
P PPy % (p2p) <0 B

Ps
Pyp)) % (prp) <0

Prp3) % paps) <0

2]
Py X (Prp) >0 (p5p)) % (pyp)) >0
2] Pyp3) X (pap3) >0 py o o
(a) (b)
Pa Pa
14 1
P3
P2
m P
©)

Figure 33.3 Cases in the procl:dure SEGMENTS-INTERSECT. (a) The segments pypy and p3py
straddle each other’s lines. B P3Pa straddles the line ing p1p2. the signs of the cross
products (p3 — p1) % (p2 — p1) and (pg — p1) x (p2 — py) differ. Because py 5 straddles the line
containing p3pa, the signs of the cross products (py — p3) x (ps — pa) and (p2 — p3) x (ps — p3)
differ. (b) Segment 3Py straddles the line containing 77 pa. but s does not straddle the line
containing p3 3. The signs of the cross products (p1 — p3) % (pg — pyyand (py — p3) x (ps— p3)
are the same. (c) Point p3 is collinear with 7y p3 and is between p; and ps. (d) Point 3 is collinear
with pyp2, but it is not between py and py. The segments do not intersect.

Algorithms and Data Structures (l1)

Testing whether two segments intersect

SEGMENTS-INTERSECT(p1, P2, p3, Pa)

[T R S

S ¢e®ao

11
12
13
14

dy < DIRECTION(p3, ps, p1)
dy < DIRECTION(p3, p4., p2)
ds < DIRECTION(py, p2, p3)
dy < DIRECTION(py, pa, p4)
if ((d; > 0and d> < 0) or (d; < 0and d» > 0)) and
((d3 > 0and dy < 0) or (d5 < 0 and dg > 0))
then return TRUE
elseif d, = 0 and ON-SEGMENT(p3, p4, p1)
then return TRUE
elseif d; = 0 and ON-SEGMENT(p3, p4, p2)
then return TRUE
elseif d; = 0 and ON-SEGMENT(p;. p2. p3)
then return TRUE
elseif dy = 0 and ON-SEGMENT(py, p2. pa)
then return TRUE
else return FALSE

Testing whether any two segments intersect

m Given: nsegments vy, ... V.

m To test: do any two segments intersect ?

m Uses technique called sweeping.

m Running time: O(n log n). Naive algorithm O(n?).

m SWEEPING: an imaginary vertical sweep line passes through the given set of
geometric objects, usually from left to right. The spatial dimension that the

sweep line moves across, in this case the x-dimension, is treated as a dimension
of time.

m Provides method for ordering geometric objects, usually by placing them into a
dynamic data structure, and for taking advantage of relationships among them.

m line-segment-intersection algorithm: considers all line-segment endpoints in
left-to-right order and checks for an intersection each time it encounters an
endpoint.

Sweeping

Figure 33.4 The ordering among line segments at various vertical sweep lines, (a) We have a >, ¢,
a > b,b > ¢c,a > c,and b >, ¢. Segment d is comparable with no other segment shown.
(b) When segments ¢ and f intersect, their orders are reversed: we have ¢ >, f but f >y e. Any
sweep line (such as z) that passes through the shaded region has e and f consecutive in its total order.

Maintaining sweep line

m Sweeping algorithms: maintain two sets of data.

m sweep-line status: gives the relationships among objects intersected by the
sweep line.

m event-point schedule: sequence of x-coordinates, ordered from left to right,
that defines the halting positions of the sweep line.

m Call each such halting position an event point. Changes to the sweep-line status
occur only at event points.

Sweep-line status: total order T.
INSERT(T,s), DELETE(T, s).

ABOVE(T, s): return segment above s in T.
BELOW(T, s): return segment below s in T.

We can perform each of the above operations in O(log n) time using red-black
trees.

Algorithm

ANY-SEGMENTS-INTERSECT(S)

1 T«9

2 sort the endpoints of the segments in § from left to right,
breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y-coordinates first

3 for each point p in the sorted list of endpoints

4 do if p is the left endpoint of a segment s

5 then INSERT(T, 5)

6 if (ABOVE(T.) exists and intersects s)

or (BELOW(T, 5) exists and intersects 5)

7 then return TRUE
8 if p is the right endpoint of a segment s
then if both ABOVE(T, s) and BELOW(T, 5) exist
and ABOVE(T, s) intersects BELOW(T', 5)
10 then return TRUE
11 DELETE(T, 5)

12 return FALSE

Algorithm: example

a d e ¢
b ¢ a c d d
b c b ¢ b

b b
time

Figure 33.5 The execution of ANY-SEGMENTS-INTERSECT. Each dashed line is the sweep line
at an event point, and the ordering of segment names below each sweep line is the total order T
at the end of the for loop in which the corresponding event point is processed. The intersection of
segments d and b is found when segment ¢ is deleted.

Algorithm: correctness/performance

Can only fail by not reporting intersecting segments.

p = leftmost intersection point, breaking ties by choosing the one with the
lowest y-coordinate. g and b = the segments that intersect at p.

m No intersections occur to the left of p = the order given by T is correct at all
points to the left of p.

no three segments intersect at the same point = there exists a sweep line z at
which a and b become consecutive in the total order.

Zis to the left of p or goes through p.

There exists segment endpoint g on z that is the event point at which a and b
become consecutive.

If pisonz then g = p. If pis not on z, then q is to the left of p. In either case, the
order given by T is correct just before q is processed.

Algorithm: correctness/performance

m Either o or b is inserted into T, and the other segment is above or below it in the
total order. Lines 4-7 detect this case.

m Segments g and b are already in T, and a segment between them in the total
order is deleted, making a and b become consecutive. Lines 8-11.

m In either case, the intersection p is found.
m 2n insert/delete/tests. Taking O(log n) time.

Convex hull

m Convex hull of a set of points: smallest convex polygon that contains the set of
points.

m place elastic rubber band around set of points and let it shrink.

m Two algorithms: Graham'’s Scan O(n log n).

m Jarvis's March O(n - h), h the number of points on the convex hull.
m Other algorithms:

m Incremental: points sorted from left to right forming sequence p1, . .., p,. At
stage i add p; to convex hull CH(p1, . . ., pi—1), forming CH(p1, . . ., p)).

m Divide-and-conquer: divide into leftmost n/2 points and rightmost n/2 points.
Compute convex hulls and combine them.

m Prune-and-search method.

Convex hull

P12

Figure 33.6 A setof points Q = {pp, p1, ..., p12} with its convex hull CH(Q) in gray.

Graham'’s scan

m Maintains a stack S of candidate points.

m Each point of Q is pushed onto the stack.

m Points not in CH(Q) eventually popped from the stack.

m TOP(S), NEXT — TO — TOP(S): stack functions, do not change its contents.

m Stack returned by the algorithm: points of CH(Q) in counterclockwise order.

Convex hull algorithm

GRAHAM-SCAN(Q)
1 let py be the point in Q with the minimum y-coordinate,
or the leftmost such point in case of a tie
2 let{p1. p2..... pu) be the remaining points in Q,
sorted by polar angle in counterclockwise order around py
(if more than one point has the same angle, remove all but
the one that is farthest from py)
PUSH(po, §)
PUSH(p;. 5)
PUSH(p1, 5)
fori < 3tom
do while the angle formed by points NEXT-TO-TOP(S), TOP(S),
and p; makes a nonleft turn
do Pop(S)
9 PUSH(p;, S)
10 return §

~N LA B w

oo

Graham’s Scan:Example

Pt s

P
Ps o
s
e fe RS .
-l Ps
Py
LES P4 Pr
e
]
P €y
Mas i
Pize P

1 i)

Figure 337 The cxccution of GRAHAM-SCAN on the set () of Figure 33.6. The current conves
hall g 5 hstep. (a) {p1-pa. 12) of points
numbered in order of increasing polar angle relative to po, and the initial stack § containing py, 1.
and . (BIK) Stack § after cach itcration of the for oo of lines 6-9. Dashed lines show nonleft
tums, which cause points (o be popped from the stack. In part (h), for exampl, the right tum ot
angle £p3 py py causes py 10 be papped, and then the sight tum ot angle £ o 1 pg causes py o be
popped. (1) The convex hull retumed by the procedure. which matches that of Figure 33,6,

Graham’s Scan:Example

Poe Pios

Pias s

Graham'’s Scan: Correctness and Performance

m Invariant: at the beginning of each iteration of the for loop stack S contains
(from bottom to top) exactly the vertices of CH(Q;_1) in counterclockwise order.

m Line 1: 6(n) time.

m Sorting 6(nlog n) time.

m Testing for left/right turn: vector product 8(1) time.
m The rest of the algorithm O(n) time.

Graham'’s Scan: Correctness

Figure 33.8 The proof of correctness of GRAHAM-SCAN. (a) Because p;’s polar angle relative
10 pg is greater than p;’s polar angle, and because the angle Lpep j pi makes a left um, adding p;
to CH(Q) gives exactly the vertices of CH(Q ; U {p;}). (b) If the angle £ py p; p; makes a nonleft
turn, then pr is either in the interior of the triangle formed by pq, pr, and p; or on a side of the
triangle, and it cannot be a vertex of CH((Q;).

Jarvis's March

m uses a technique known as gift wrapping.
m Simulates wrapping a piece of paper around set Q.
m Start at the same point pg as in Graham's scan.

m Pull the paper to the right, then higher until it touches a point. This point is a
vertex in the convex hull. Continue this way until we come back to po.

m Formally: start at pg. Choose pq as the point with the smallest polar angle from
po. Choose p; as the point with the smallest polar angle from p; . ..

m ... until we reached the highest point py.
m We have constructed the right chain.

m Construct the left chain by starting from px and measuring polar angles with
respect to the negative x-axis.

Jarvis's March

left chain right chain
-— | —
ips
i .
. ;. L] L]
/ .
i .
Pa i 2]
:. L]
P
|
{70
- —
left chain * right chain

Figure 33.9 The operation of Jarvis’s march. The first vertex chosen is the lowest point py. The
next vertex, pj, has the smallest polar angle of any point with respect to pg. Then, p has the
smallest polar angle with respect to p|. The right chain goes as high as the highest point p3. Then,

the left chain is constructed by finding smallest polar angles with respect to the negative x-axis.

Finding closest points

m W.r.t. euclidean distance.

m Brute force: 8(n?).

m Divide and conquer: O(n log n).

m Each iteration: subset P C Q, arrays X and Y.

m Points in X are sorted in increasing order of their x coordinates.
m Points in Y are sorted in increasing order of their y coordinates.
To maintain upper bound cannot afford to sort in each iteration.
m |P| < 3: brute force. Otherwise recursive divide-and-conquer.

m Divide: Find a vertical line / that bisects set P into two sets P, and Pg such that
|P.| = TIP|/2], |Prl = L|P|/2], all points of P, to the left, all points of P to the
right.

m X;: subarray that contains point of P, Xg: subarray that contains point of Pg.
m Similarly for Y.

Finding closest points (I1)

m Conquer. Recursive calls: P, X;, Y, and Pg, Xz, Yg. Returns smallest distances §;
and 5R-

Combine. § = min{§,, 6g}.
Have to test whether some pointin P, is at distance < 6 from some point in Pg.
Both such points, if they exist, are within the 26-wide strip around /.

Create an array Y’ which is ¥ with all points not in the 26-wide strip around /
removed, sorted by y-coordinate.

For each point p in Y’ try to find points in Y’ at distance less than §.
m Only the 7 points that follow p need to be considered.

m Compute smallest such distance §’. If §" < § we found a better pair. Otherwise
6 is the smallest distance.

m Correctness, implementation nontrivial.

Finding closest points

coincident points,
one in Py,
onein Py

- O
L]

coincident points,
onein Py,
. t ! ! onein Py

(a) (b)

Figure 33.11 Key concepts in the proof that the closest-pair algorithm needs to check only 7 points
following each point in the array Y'. (a) If p;, € Pp and pg € Pg are less than & units apart, they
must reside within a § » 23 rectangle centered at line /. (b) How 4 points that are pairwise at least §
units apart can all reside within a 8 x § square. On the left are 4 points in Py, and on the right are 4
points in Pg. There can be 8 points in the § » 25 rectangle if the points shown on line / are actually
pairs of coincident points with one point in Pz, and one in Pg.

Correctness & complexity

m For each point: Consider the § X 26 rectangle centered at line /.
m At most 8 points within this rectangle.

m Assuming &, lower than &, it follows that 6z among the next 7 points following
5.

m O(nlogn) bound from recurrence T(n) = 2T(n/2) + O(n).
m Main difficulty: making sure that X;, Xz, Y, Yz, Y sorted by appropriate
coordinate.

Key observation: in each call we wish to form a sorted subset of a sorted array.
Splitting the array into two halves.

Can be viewed as the inverse of the operation MERGE in MERGESORT.

How to get sorted arrays in the first place ? presort. 8(n logn).

Splitting: Pseudocode

length[Y,] = length[Yg] = O;
for i = 1 to length[Y]
if (Y[i] € P
{
length[Y,]++;
Yi[length[Y/]] = Y[i];
3
else
{
length[Yr] + +;
Yrllength[Yr]] = Y[il;
3
3

