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Where we are
Want: data structure to support INSERT, DELETE, SEARCH in O(log n) time.
Binary search trees: insert, delete, search.
But complexity bound not met unless trees balanced.

Today: wrap-up red-black-trees.
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Red-Black Trees
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Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)
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Red-Black Trees (2)
Implementation 12

5 18
2 9 15 19
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▶ we use a common “sentinel” node to represent leaf nodes
▶ the sentinel is also the parent of the root node
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Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes

▶ T . root is the root node of tree T
▶ T .nil is the “sentinel” node of tree T

Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right
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Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most2 log(n + 1).
A red-black tree works as a binary search tree for search, etc.
So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(log n)
▶ which is also the worst-case complexity
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Rotation
x

d

b

a c e

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)
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Reminder: rotate
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Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree

Except that it must preserve the red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy
1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4
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What can go wrong ?
Inserting zmight violate red-black properties.

Properties 1,3,5 hold (because z replaces black sentinel).
Property 2 violated if z is the root.→ recolor root black
Property 4 violated if z’s parent is red.
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To fix the tree
Will have to take into account the color of the uncle node
Sibling of the parent node.
Invariant: At the start of each iteration of the loop

1 Node z is red.
2 If p[z] is the root then p[z] is black.
3 If there is a violation of R-B then there is at most one violation, of Property 2 or 4.
4 If violation of property 2: because z is the root and is red.
5 If violation of property 4: because both z and p[z] red.
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Repair
Initialization: was red-black tree with no violations, inserted node z. Easy to seethat invariant fixed.
Termination: when loop terminates, p[z] is black. Thus there is no violation ofproperty 4 at loop termination.
Line 16 restores property 2 too.
Maintenance: six cases, symmetric. Three cases.
Case 1: z’s uncle is red.
Case 2: z’s uncle y is black and z is in-line.
Case 3: z’s uncle y is black and z is in zig-zag.
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Violation: example and repair
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Case 1
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Cases 2 and 3
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RB-INSERT
RB-INSERT(T, z)
1 y = T .nil2 x = T . root3 while x , T .nil4 y = x5 if z.key < x.key6 x = x. left7 else x = x. right8 z.parent = y9 if y == T .nil10 T . root = z11 else if z.key < y.key12 y. left = z13 else y. right = z14 z. left = z. right = T .nil15 z.color = RED16 RB-INSERT-FIXUP(T, z)
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Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 45

25

z’s father is black, so no fixup needed
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Red-Black Insertion (3)

31
15 48

2 20 41 50
7 35 45

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts
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Red-Black Insertion (4)
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An in-line red–red conflicts can be resolved with a rotation plus a color switch
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Red-Black Insertion (4)
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An in-line red–red conflicts can be resolved with a rotation plus a color switch
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An in-line red–red conflicts can be resolved with a rotation plus a color switch
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Red-Black Insertion (4)
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9
z’s uncle is black. In-line ! (C.3)

An in-line red–red conflicts can be resolved with a rotation plus a color switch
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Red-Black Insertion (5)
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2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch
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Red-Black Insertion (5)
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A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch
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A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch
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A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch
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Red-Black Insertion (5)
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z’s uncle is black. Zig-Zag (C.2)

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch
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Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)5

2

7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)5

2

7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)

5
2 7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)

5
2 7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)

5
2 7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees
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1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right
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Problems/restoring goals
Simple case
Removed node y red - no violations.
Removed node y was black - three problems:

y was the root: a red child of y becomes the root. Property 2 violated.
both x and p[y] were red: Property 4 violated.
y’s removal causes some path that contained y to contain one fewer black node:Property 5 violated by any ancestor of y in the tree.

Solution
Move the extra black up the tree until:

x points to a red-and-black node, in which case we color x black.
x points to the root, in which case the extra black can be removed
suitable rotations and recolorings can be performed.
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The four cases
Case 1: x’s sibling is red.
Case 2: x’s sibling w is black, and both w’s children are black.
Case 3: x’s sibling w is black, w’s left child is red, w’s right child is black.
Case 4: x’s sibling w is black, and w’s right child is red.
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Red-Black Deletion

36
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15 48

20 41 50
35 45

5
72

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)
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Red-Black Deletion (2)
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5

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK
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Fixup Conditions

y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)
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Red-Black Deletion (3)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .
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Red-Black Deletion (4)
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The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color
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Red-Black Deletion (5)
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In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties
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In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties
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Basic Fixup Iteration (1)

Case 1
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ
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Basic Fixup Iteration (2)
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Red-Black Delete Fixup
RB-DELETE-FIXUP(T, x)
1 while x , T . root ∧ x.color = BLACK2 if x == x.parent. left3 w = x.parent. right4 if w.color == RED5 case 1. . .6 if w. left.color == BLACK ∧ w. right.color = BLACK7 w.color = RED // case 28 x = x.parent9 else if w. right.color == BLACK10 case 3. . .11 case 4. . .12 else same as above, exchanging right and left13 x.color = BLACK
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Conclusions
Search, insert, delete in dictionary: O(log n).
Red-black trees important in functional programming: persistent datastructures.
Approximate balance maintained via colors, and invariants on coloring.
Restoring these invariants after insertions/deletions performed using rotations.
...
Finally done with binary search trees !
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Big picture
We studied data structures to design/improve algorithms
Let’s see some examples of algorithms that these complicated BST’s improve !Next time !
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