
Algorithms and Data Structures (II)
Gabriel Istrate

April 1, 2020

Gabriel Istrate Algorithms and Data Structures (II)



Where we are
Want: data structure to support INSERT, DELETE, SEARCH in O(log n) time.
Binary search trees: insert, delete, search.
But complexity bound not met unless trees balanced.

Today: wrap-up red-black-trees.

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees

12
5 18

2 9 15 19
4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property

1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black

2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black

3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black

4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black

5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees
12

5 18
2 9 15 19

4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (2)
Implementation 12

5 18
2 9 15 19

4 13 17

▶ we use a common “sentinel” node to represent leaf nodes
▶ the sentinel is also the parent of the root node

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (2)
Implementation 12

5 18
2 9 15 19

4 13 17

▶ we use a common “sentinel” node to represent leaf nodes

▶ the sentinel is also the parent of the root node

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (2)
Implementation 12

5 18
2 9 15 19

4 13 17

▶ we use a common “sentinel” node to represent leaf nodes
▶ the sentinel is also the parent of the root node

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes

▶ T . root is the root node of tree T
▶ T .nil is the “sentinel” node of tree T

Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T

▶ T .nil is the “sentinel” node of tree T
Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T
▶ T .nil is the “sentinel” node of tree T

Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T
▶ T .nil is the “sentinel” node of tree T

Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T
▶ T .nil is the “sentinel” node of tree T

Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x
▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)



Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most2 log(n + 1).
A red-black tree works as a binary search tree for search, etc.
So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(log n)
▶ which is also the worst-case complexity

Gabriel Istrate Algorithms and Data Structures (II)



Height of a Red-Black Tree
Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most2 log(n + 1).

A red-black tree works as a binary search tree for search, etc.
So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(log n)
▶ which is also the worst-case complexity

Gabriel Istrate Algorithms and Data Structures (II)



Height of a Red-Black Tree
Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most2 log(n + 1).

A red-black tree works as a binary search tree for search, etc.
So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(log n)
▶ which is also the worst-case complexity

Gabriel Istrate Algorithms and Data Structures (II)



Rotation
x

d

b

a c e

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)



Rotation
x

d

b

a c e

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)



Rotation
x

d

b

a c e

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)



Rotation
x

d

b

a c e

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)



Reminder: rotate

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree

Except that it must preserve the red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy
1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree
Except that it must preserve the red-black-tree property

1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy
1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree
Except that it must preserve the red-black-tree property

1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy
1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree
Except that it must preserve the red-black-tree property

1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy

1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree
Except that it must preserve the red-black-tree property

1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy
1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4

Gabriel Istrate Algorithms and Data Structures (II)



What can go wrong ?
Inserting zmight violate red-black properties.

Properties 1,3,5 hold (because z replaces black sentinel).
Property 2 violated if z is the root.→ recolor root black
Property 4 violated if z’s parent is red.

Gabriel Istrate Algorithms and Data Structures (II)



To fix the tree
Will have to take into account the color of the uncle node
Sibling of the parent node.
Invariant: At the start of each iteration of the loop

1 Node z is red.
2 If p[z] is the root then p[z] is black.
3 If there is a violation of R-B then there is at most one violation, of Property 2 or 4.
4 If violation of property 2: because z is the root and is red.
5 If violation of property 4: because both z and p[z] red.

Gabriel Istrate Algorithms and Data Structures (II)



Repair
Initialization: was red-black tree with no violations, inserted node z. Easy to seethat invariant fixed.
Termination: when loop terminates, p[z] is black. Thus there is no violation ofproperty 4 at loop termination.
Line 16 restores property 2 too.
Maintenance: six cases, symmetric. Three cases.
Case 1: z’s uncle is red.
Case 2: z’s uncle y is black and z is in-line.
Case 3: z’s uncle y is black and z is in zig-zag.

Gabriel Istrate Algorithms and Data Structures (II)



Violation: example and repair

Gabriel Istrate Algorithms and Data Structures (II)



Case 1

Gabriel Istrate Algorithms and Data Structures (II)



Cases 2 and 3

Gabriel Istrate Algorithms and Data Structures (II)



RB-INSERT
RB-INSERT(T, z)
1 y = T .nil2 x = T . root3 while x , T .nil4 y = x5 if z.key < x.key6 x = x. left7 else x = x. right8 z.parent = y9 if y == T .nil10 T . root = z11 else if z.key < y.key12 y. left = z13 else y. right = z14 z. left = z. right = T .nil15 z.color = RED16 RB-INSERT-FIXUP(T, z)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 45

25

z’s father is black, so no fixup needed

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 45

25

z’s father is black, so no fixup needed

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 45

25

z’s father is black, so no fixup needed

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 4525

z’s father is black, so no fixup needed

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 4525

z’s father is black, so no fixup needed

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)

31
15 48

2 20 41 50
7 35 45

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45

36

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45

36

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45

36

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children

This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .

The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (3)
31

15 48
2 20 41 50

7 35 45
36

z’s uncle is red: Case 1!

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

9

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

9

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

9

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45
9

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

9

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

9

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2 20 41 50
7 35 45

9
z’s uncle is black. In-line ! (C.3)

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2
20 41 507

35 459 z’s uncle is black. In-line ! (C.3)

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2
20 41 507

35 459 z’s uncle is black. In-line ! (C.3)

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (4)

36

31
15 48

2
20 41 507

35 459 z’s uncle is black. In-line ! (C.3)

An in-line red–red conflicts can be resolved with a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

5

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

5

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

5
2

7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

52
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

5

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

5

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45

5
z’s uncle is black. Zig-Zag (C.2)

2
7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)5

2

7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)5

2

7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)

5
2 7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)

5
2 7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Insertion (5)

36

31
15 48

20 41 50
35 45 z’s uncle is black. Zig-Zag (C.2)

5
2 7

A zig-zag red–red conflict can be resolved with a rotation to turn it into an in-lineconflict, and then a rotation plus a color switch

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z
2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

X

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

23

6

15
5 20

2 12 17
31

27
4 10 16

7

X
1. z has no children

▶ simply remove z
2. z has one child

▶ remove z

▶ connect z.parent to z. right
3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees

6

15
5 20

2 12 17
31

27
4 10 16

7
X

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children
▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)

▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Recap on Deletion in Binary Trees
15

6 20
2 12 17

31
27

4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children
▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)



Problems/restoring goals
Simple case
Removed node y red - no violations.
Removed node y was black - three problems:

y was the root: a red child of y becomes the root. Property 2 violated.
both x and p[y] were red: Property 4 violated.
y’s removal causes some path that contained y to contain one fewer black node:Property 5 violated by any ancestor of y in the tree.

Solution
Move the extra black up the tree until:

x points to a red-and-black node, in which case we color x black.
x points to the root, in which case the extra black can be removed
suitable rotations and recolorings can be performed.

Gabriel Istrate Algorithms and Data Structures (II)



The four cases
Case 1: x’s sibling is red.
Case 2: x’s sibling w is black, and both w’s children are black.
Case 3: x’s sibling w is black, w’s left child is red, w’s right child is black.
Case 4: x’s sibling w is black, and w’s right child is red.

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
72

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
72

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
72

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
72 X

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
2

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
2

Deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
2

Deleting a red leaf does not require any adjustment
▶ the deletion does not affect the black height (property 5)

▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
2

Deleting a red leaf does not require any adjustment
▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

5

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

5

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

5X

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

x

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

x

Deleting a black node changes the balance of black-height in a subtree x
▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion

▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

x

Deleting a black node changes the balance of black-height in a subtree x
▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions

y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions
y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions
y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions
y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions
y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions
y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55X

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (3)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (4)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55

The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (4)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55X

The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (4)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (4)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (4)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55
16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55
16 19 22 28

X

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15 48
5 20 41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15
48

5

20

41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15
48

5

20

41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15
48

5

20

41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15
48

5

20

41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (5)
31

15
48

5

20

41 50
10 18 25 36 43 49 55

16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)

Case 1
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)
Case 1

B
A D

C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)
Case 1

B
A D

C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)
Case 1

B
A D

C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)
Case 1

B
A D

C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2

B
A D

C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)
Case 1

B
A D

C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (1)
Case 1

B
A D

C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (2)
Case 3

B
A D

C Eα β

γ δ ϵ ζ

B
A C

D
E

α β γ

δ

ϵ ζ

Case 4
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (2)
Case 3

B
A D

C Eα β

γ δ ϵ ζ

B
A C

D
E

α β γ

δ

ϵ ζ

Case 4
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (2)
Case 3

B
A D

C Eα β

γ δ ϵ ζ

B
A C

D
E

α β γ

δ

ϵ ζ

Case 4
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (2)
Case 3

B
A D

C Eα β

γ δ ϵ ζ

B
A C

D
E

α β γ

δ

ϵ ζ

Case 4
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Basic Fixup Iteration (2)
Case 3

B
A D

C Eα β

γ δ ϵ ζ

B
A C

D
E

α β γ

δ

ϵ ζ

Case 4
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Delete Fixup
RB-DELETE-FIXUP(T, x)
1 while x , T . root ∧ x.color = BLACK2 if x == x.parent. left3 w = x.parent. right4 if w.color == RED5 case 1. . .6 if w. left.color == BLACK ∧ w. right.color = BLACK7 w.color = RED // case 28 x = x.parent9 else if w. right.color == BLACK10 case 3. . .11 case 4. . .12 else same as above, exchanging right and left13 x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Conclusions
Search, insert, delete in dictionary: O(log n).
Red-black trees important in functional programming: persistent datastructures.
Approximate balance maintained via colors, and invariants on coloring.
Restoring these invariants after insertions/deletions performed using rotations.
...
Finally done with binary search trees !

Gabriel Istrate Algorithms and Data Structures (II)



Big picture
We studied data structures to design/improve algorithms
Let’s see some examples of algorithms that these complicated BST’s improve !Next time !

Gabriel Istrate Algorithms and Data Structures (II)


