Algorithms and Data Structures (II)

Gabriel Istrate

April 1, 2020

Where we are

■ Want: data structure to support INSERT, DELETE, SEARCH in $O(\log n)$ time.
■ Binary search trees: insert, delete, search.
■ But complexity bound not met unless trees balanced.
Today: wrap-up red-black-trees.

Red-Black Trees

Red-Black Trees

Red-Black Trees

Red-Black Trees

- Red-black-tree property

Red-Black Trees

- Red-black-tree property
(1) every node is either red or black

Red-Black Trees

- Red-black-tree property
(1) every node is either red or black
(2) the root is black

Red-Black Trees

- Red-black-tree property
(1) every node is either red or black
(2) the root is black
(3) every (NIL) leaf is black

- Red-black-tree property
(1) every node is either red or black
(2) the root is black
(3) every (NIL) leaf is black

4 4 if a node is red, then both its children are black

- Red-black-tree property
(1) every node is either red or black
(2) the root is black
(3) every (NIL) leaf is black
(4) if a node is red, then both its children are black
(5) for every node x, each path from x to its descendant leaves has the same number of black nodes bh(x) (the black-height of x)
- Implementation

- Implementation

- we use a common "sentinel" node to represent leaf nodes
- Implementation

- we use a common "sentinel" node to represent leaf nodes
- the sentinel is also the parent of the root node
- Implementation
- T represents the tree, which consists of a set of nodes
- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T

Red-Black Trees (3)

- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T
- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x.left is the left child of node x
- x.right is the right child of node x

- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T
- T.nil is the "sentinel" node of tree T

Nodes

- x.parent is the parent of node x
- x. key is the key stored in node x
- x.left is the left child of node x
- x.right is the right child of node x
- x.color $\in\{$ RED, BLACK $\}$ is the color of node x

Height of a Red-Black Tree

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

Height of a Red-Black Tree

Lemma: the height $h(x)$ of a red-black tree with $n=\operatorname{size}(x)$ internal nodes is at most $2 \log (n+1)$.

■ A red-black tree works as a binary search tree for search, etc.

■ So, the complexity of those operations is $T(n)=O(h)$, that is

$$
T(n)=O(\log n)
$$

- which is also the worst-case complexity

■ $x=$ RIGHt-Rotate (x)

■ $x=$ RIGHt-Rotate (x)
■ $x=$ Left-Rotate (x)

Reminder: rotate

```
Left-Rotate \((T, x)\)
    \(y \leftarrow \operatorname{right}[x] \quad \triangleright\) Set \(y\).
    \(\operatorname{right}[x] \leftarrow\) left \([y] \quad \triangleright\) Turn \(y\) 's left subtree into \(x\) 's right subtree.
    \(p[\) left \([y]] \leftarrow x\)
    \(p[y] \leftarrow p[x] \quad \triangleright \operatorname{Link} x\) 's parent to \(y\).
if \(p[x]=\operatorname{nil}[T]\)
    then \(\operatorname{root}[T] \leftarrow y\)
    else if \(x=\operatorname{left}[p[x]]\)
            then left \([p[x]] \leftarrow y\)
            else \(\operatorname{right}[p[x]] \leftarrow y\)
left \([y] \leftarrow x \quad \triangleright\) Put \(x\) on \(y\) 's left.
\(p[x] \leftarrow y\)
```


Red-Black Insertion

■ RB-Insert (T, z) works as in a binary search tree

Red-Black Insertion

■ RB-INSERT (T, z) works as in a binary search tree

- Except that it must preserve the red-black-tree property

Red-Black Insertion

■ RB-INSERT (T, z) works as in a binary search tree

- Except that it must preserve the red-black-tree property
(1) every node is either red or black
(2) the root is black
(3) every (NIL) leaf is black
(4) if a node is red, then both its children are black
(5) for every node x, each path from x to its descendant leaves has the same number of black nodes $b h(x)$ (the black-height of x)

Red-Black Insertion

- RB-INSERT (T, z) works as in a binary search tree
- Except that it must preserve the red-black-tree property
(1) every node is either red or black
(2) the root is black
(3) every (NIL) leaf is black
(4) if a node is red, then both its children are black
(5) for every node x, each path from x to its descendant leaves has the same number of black nodes bh(x) (the black-height of x)

■ General strategy

Red-Black Insertion

■ RB-INSERT (T, z) works as in a binary search tree
■ Except that it must preserve the red-black-tree property
(1) every node is either red or black
(2) the root is black
(3) every (NIL) leaf is black
(4) if a node is red, then both its children are black
(5) for every node x, each path from x to its descendant leaves has the same number of black nodes bh(x) (the black-height of x)

- General strategy
(1) insert z as in a binary search tree
(2) color z red so as to preserve property 5
(3) fix the tree to correct possible violations of property 4

What can go wrong?

■ Inserting z might violate red-black properties.
■ Properties 1,3,5 hold (because z replaces black sentinel).
■ Property 2 violated if z is the root. \rightarrow recolor root black
■ Property 4 violated if z's parent is red.

To fix the tree

■ Will have to take into account the color of the uncle node

- Sibling of the parent node.
- Invariant: At the start of each iteration of the loop
(1) Node z is red.
(2) If $p[z]$ is the root then $p[z]$ is black.
(3) If there is a violation of R-B then there is at most one violation, of Property 2 or 4.
(4) If violation of property 2 : because z is the root and is red.
(5) If violation of property 4 : because both z and $p[z]$ red.

Repair

■ Initialization: was red-black tree with no violations, inserted node z. Easy to see that invariant fixed.
■ Termination: when loop terminates, $p[z]$ is black. Thus there is no violation of property 4 at loop termination.

- Line 16 restores property 2 too.

■ Maintenance: six cases, symmetric. Three cases.
■ Case 1: z's uncle is red.
■ Case 2: z 's uncle y is black and z is in-line.
■ Case 3: z's uncle y is black and z is in zig-zag.

Violation: example and repair

Figure 13.4 The operation of RB-INSERT-FIXUP. (a) A node z after insertion. Since z and is parent $p[z]$ are boh red, a viotation of property 4 occurs. Since z 's uncle y is red, case 1 in the code can be applice. Nodes are recolored and the pointer is mowed up tee uree, resulting in the tree shown in (b). Once again, zand is parent are bolh red, but z 's uncle y is black. Since z is the right
child of $p \mid z$, case 2 can be anplisd A left in (c). Now z is the left child of its parent. and case 3 can be applied. A right roxation yields the tree in (d), which is a legal red-black tree.

Case 1

Figure 13.5 Case 1 of the procedure RB-INSERT. Property 4 is violated, since z and its parent $p[z]$ are both red. The same action is taken whether (a) z is a right child or $(\mathbf{b}) z$ is a left child. Each of the subtrees $\alpha, \beta, \gamma, \delta$, and ε has a black root, and each has the same black-height. The code for case 1 changes the colors of some nodes, preserving property 5 : all downward paths from a node to a leaf have the same number of blacks. The while loop continues with node z 's grandparent $p[p[z]]$ as the new z. Any violation of property 4 can now occur only between the new z, which is red, and its parent, if it is red as well.

Cases 2 and 3

Figure 13.6 Cases 2 and 3 of the procedure RB-InSERT. As in case 1 , property 4 is violated in either case 2 or case 3 because z and its parent $p[z]$ are both red. Each of the subtrees α, β, γ, and δ has a black root (α, β, and γ from property 4 , and δ because otherwise we would be in case 1), and each has the same black-height. Case 2 is transformed into case 3 by a left rotation, which preserves property 5: all downward paths from a node to a leaf have the same number of blacks. Case 3 causes some color changes and a right rotation, which also preserve property 5 . The while loop then terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

```
RB-INSERT( \(T, z\) )
    \(y=\) T.nil
    \(x=T\).root
    while \(x \neq T\). nil
        \(y=x\)
        if z. key < x. key
                \(x=x\).left
        else \(x=x\). right
    z. parent \(=y\)
    if \(y==\) T.nil
        T. root \(=z\)
        else if \(z\). key \(<y\).key
        \(y\). left \(=z\)
            else \(y\). right \(=z\)
    z. left \(=\) z.right \(=T\). nil
    z. color = RED
    RB-InSERT-FixuP \((T, z)\)
```

Red-Black Insertion (2)

- z's father is black, so no fixup needed

Red-Black Insertion (3)

■ A black node can become red and transfer its black color to its two children

■ A black node can become red and transfer its black color to its two children
■ This may cause other red-red conflicts, so we iterate...

■ A black node can become red and transfer its black color to its two children

- This may cause other red-red conflicts, so we iterate...

■ The root can change to black without causing conflicts

Red-Black Insertion (4)

Red-Black Insertion (4)

Red-Black Insertion (4)

■ An in-line red-red conflicts can be resolved with a rotation plus a color switch

Red-Black Insertion (5)

Red-Black Insertion (5)

Red-Black Insertion (5)

■ A zig-zag red-red conflict can be resolved with a rotation to turn it into an in-line conflict, and then a rotation plus a color switch

Recap on Deletion in Binary Trees

Recap on Deletion in Binary Trees

1. z has no children

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

- removez

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

3. z has two children

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

3. z has two children

- replace z with $y=\operatorname{Tree-Successor}(z)$
- remove y (1 child!)

Recap on Deletion in Binary Trees

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z. parent to z.right

3. z has two children

- replace z with $y=\operatorname{Tree-Successor}(z)$
- remove y (1 child!)
- connect y.parent to y.right

Problems/restoring goals

Simple case

Removed node y red - no violations.

Removed node y was black - three problems:
■ y was the root: a red child of y becomes the root. Property 2 violated.
■ both x and $p[y]$ were red: Property 4 violated.
■ y's removal causes some path that contained y to contain one fewer black node: Property 5 violated by any ancestor of y in the tree.

Solution

Move the extra black up the tree until:
■ x points to a red-and-black node, in which case we color x black.
■ x points to the root, in which case the extra black can be removed
\square suitable rotations and recolorings can be performed.

■ Case 1: x 's sibling is red.
■ Case 2: x 's sibling w is black, and both w's children are black.
■ Case 3: x 's sibling w is black, w's left child is red, w's right child is black.
■ Case 4: x 's sibling w is black, and w 's right child is red.

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

Red-Black Deletion

- Deleting a red leaf does not require any adjustment

- Deleting a red leaf does not require any adjustment
- the deletion does not affect the black height (property 5)

Red-Black Deletion

- Deleting a red leaf does not require any adjustment
- the deletion does not affect the black height (property 5)
- no two red nodes become adjacent (property 4)

$$
0_{0}^{0} 0_{0}^{0}
$$

$$
\theta_{0}^{0} \theta_{0}^{0}
$$

- Deleting a black node changes the balance of black-height in a subtree x

- Deleting a black node changes the balance of black-height in a subtree x
- RB-DeLete-Fixup (T, x) fixes the tree after a deletion

- Deleting a black node changes the balance of black-height in a subtree x
- RB-Delete-Fixup (T, x) fixes the tree after a deletion
- in this simple case: x.color $=$ BLACK
$■ y$ is the spliced node ($y=z$ if z has zero or one child)
- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ y is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y 's only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T.nil iff y has no (key-bearing) children

■ y is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y 's only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T.nil iff y has no (key-bearing) children

■ Problem 1: $y=T$.root and x is red

- violates red-black property ?? (root must be black)

■ y is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y^{\prime} s only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T.nil iff y has no (key-bearing) children

■ Problem 1: $y=T$. root and x is red

- violates red-black property ?? (root must be black)

■ Problem 2: both x and y.parent are red

- violates red-black property 4 (no adjacent red nodes)

■ y is the spliced node ($y=z$ if z has zero or one child)

- if y is red, then no fixup is necessary
- so, here we assume that y is black

■ x is either y^{\prime} s only child or T.nil

- y was spliced out, so y can not have two children
- $x=$ T.nil iff y has no (key-bearing) children

■ Problem 1: $y=T$.root and x is red

- violates red-black property ?? (root must be black)

■ Problem 2: both x and y.parent are red

- violates red-black property 4 (no adjacent red nodes)

■ Problem 3: we are removing y, which is black

- violates red-black property 5 (same black height for all paths)

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

■ x carries an additional black weight

- the fixup algorithm pushes it up towards to root

■ The additional black weight can be discarded if it reaches the root, otherwise...

$$
\mathrm{O}_{0}^{\circ} 0_{0}^{\circ}
$$

■ The additional black weight can also stop as soon as it reaches a red node, which will absorb the extra black color

Red-Black Deletion (5)

■ In other cases where we can not push the additional black color up, we can apply appropriate rotations and color transfers that preserve all other red-black properties

Basic Fixup Iteration (1)

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Case 1

Basic Fixup Iteration (1)

Basic Fixup Iteration (1)

Case 2

Case 2

Basic Fixup Iteration (2)

Case 3

Basic Fixup Iteration (2)

Case 3

Case 3

Case 4

Case 3

Case 4

Red-Black Delete Fixup

```
RB-Delete-Fixup \((T, x)\)
    while \(x \neq T\).root \(\wedge x\).color \(=\) BLACK
    if \(x==x\).parent. left
        w = x.parent.right
        if \(w\).color == RED
            case 1...
        if \(w\).left.color \(==\) BLACK \(\wedge\) w.right.color \(=\) BLACK
            w.color = RED // case 2
            \(x=x\).parent
        else if \(w\).right.color \(==\) BLACK
            case 3...
            case 4...
    else same as above, exchanging right and left
    \(x . c o l o r=\) BLACK
```


Conclusions

■ Search, insert, delete in dictionary: $O(\log n)$.
■ Red-black trees important in functional programming: persistent data structures.
■ Approximate balance maintained via colors, and invariants on coloring.
■ Restoring these invariants after insertions/deletions performed using rotations.

■ Finally done with binary search trees !

Big picture

■ We studied data structures to design/improve algorithms
■ Let's see some examples of algorithms that these complicated BST's improve ! Next time!

