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Where we are
Want: data structure to support INSERT, DELETE, SEARCH in O(log n) time.
Binary search trees: insert, delete, search.
But complexity bound not met unless trees balanced.
Can rebalance.

Today: three self-adjusting trees, finally meet the O(log n) bound: AVL trees, splaytrees, red-black-trees.
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Summary on Binary Search Trees
Binary search trees
▶ embody the divide-and-conquer search strategy
▶ SEARCH, INSERT,MIN, andMAX are O(h), where h is the height of the tree
▶ in general, h(n) = Ω(log n) and h(n) = O(n)
▶ randomization can be used to make the worst-case scenario h(n) = n highlyunlikely

Problem
▶ worst-case scenario is unlikely but still possible
▶ simply bad cases are even more probable
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Step back
Why study all this stuff ?
Linked list: search linear.
Balanced binary trees: search logarithmic.
For frequent searches it pays.
Advantage: as long as trees “approximately balanced”.
But: operations (inserts/deletes) can destroy balance.

Self-balancing trees
If insertion/deletion unbalances the tree, rebalance it.
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Why three of them ?
AVL trees: more strictly balanced than R-B trees. Better for lookup intensiveprograms.
For an insert intensive tasks, use a Red-Black tree.
Simplicity of implementation: splay trees > red-black trees > AVL trees.
Splay trees: only O(log n) amortized.
Splay trees: suitable for cases where there are large number of nodes but onlyfew of them are accessed frequently.
Splay trees: morememory-efficient than AVL trees, because they do not need tostore balance information in the nodes.
AVL trees: more useful in multithreaded environments with lots of lookups,because lookups in an AVL tree can be done in parallel.
Benchmarking: AVL trees more than 20% faster than R-B trees in "real-life"benchmarkis
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Why three of them ?
treaps
T-trees
tango trees

... many other ! (But this is an introduction)
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You can invent your own trees ...
Tango trees: A type of binary search tree proposed by Erik D. Demaine, DionHarmon, John Iacono, and Mihai Pãtraşcu in 2004.
They work by partitioning a BST into a set of preferred paths, which are themselvesstored in auxiliary trees (so the tango tree is represented as a tree of trees)
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In practice
red-black trees:

1 Java: java.util.TreeMap , java.util.TreeSet .
2 C++ STL: map, multimap, multiset.
3 Linux kernel: completely fair scheduler, linux/rbtree.h

Splay trees: typically used in the implementation of caches, memory allocators,routers, garbage collectors, data compression, etc.
Implementations of AVL trees, RB-trees, splay trees: not standardized. STLprovides only minimal set of containers.
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AVL trees
Balancedness condition #1: left and right subtrees of the root have the sameheight. too weak.
Balancedness condition #2: left and right subtrees of every node have thesame height. too strong.

AVL (Adelson-Velskii and Landis) trees: binary search trees that verify the followingbalancedness condition: for every node v the left and right subtrees of v have heightdiffering by at most one.
When a tree violates rule #3 a repair is done.
The repair is done during insertions, as soon as rule #3 is violated.
The repair is accomplished via "single" and "double" rotations.
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Single rotations
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Single rotations
Balance factor of a node: difference of heights between left and right subtrees.
AVL trees: each node balance factor 0 or ±1.
After single rotations, the new height of the entire subtree is exactly the sameas the height of the original subtree prior to the insertion of the new data itemthat caused X to grow.
Thus no further updating of heights on the path to the root is needed, andconsequently no further rotations are needed.
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Single rotations: another example
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Single rotations: C++
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Double rotations

Gabriel Istrate Algorithms and Data Structures (II)



Double rotations (II)
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Double rotations: C++
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Using double rotations in practice
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Which rotations to use ?
Recognizing which rotation you have to use is the hardest part.

1 Find the imbalanced node.
2 Go down two nodes towards the newly inserted node.
3 If the path is straight, use single rotation.
4 If the path zig-zags, use double rotation.
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Deleting a node
Use deleteByCopying() to delete a node. This allows reducing the problem ofdeleting a node with two descendants to deleting a node with at most onedescendant.
After a node has been deleted, balance factors updated from the parent of thedeleted node to the root.
For each node whose balance becomes ±2, a single or double rotation has tobe performed to restore balance of the tree.
Deletion: at most O(log n) rotations.
Deletion might improve balance factor of its parent.
It may also worsen the balance factor of its grandparent.
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Wrapup
As with the single rotations, double rotations restore the height of the subtreeto what it was before the insertion.
This guarantees that all rebalancing and height updating is complete.
AVL trees maintain balance of binary search trees while they are being createdvia insertions of data.
An alternative approach is to have trees that readjust themselves when data isaccessed, making often accessed data items move to the top of the tree (splaytrees).
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Splay trees
Invented by Sleator and Tarjan (1985).
to splay ∼ to spread out.
Self-balancing binary trees, simpler to implement than AVL, red-black trees.
Additional property: recently accessed elements quick to access.
Insertion, lookup, removal: O(log n) amortized time.
That roughly means that the average price per operation in a long sequence ofoperations is O(log n).
Fundamental operation: splaying. Rearranging the tree such that certainelemen brought at the top of the tree.
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Splaying
When a node x is accessed, a splaying operation performed to bring it to thetop.
Composed of a sequence of splaying steps.
Each splaying step brings x closer to the root.
Steps depend on:
Whether z is left or right child of its parent p.
Whether p is root or not, and
Whether p is left or right child of its parent g.
Three types of splaying steps.
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First case: p is the root

“zig”: basically rotation.
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Second case: p not the root, x, p both left or both right children

“Zigzig”
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Third case:p, x alternate sides

“Zigzag”
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Splaying operations
First case: rotation.
All cases: actually two mirror-image cases (only one shown in picture).
Advantages: more accessed nodes closer to root. Useful for implementingcaches, garbage collection.
Disadvantages: random access worse than for other balanced BST.
Particularly bad: access elements in sorted order.
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Red-Black Trees

12
5 18

2 9 15 19
4 13 17

Red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)
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Red-Black Trees (2)
Implementation 12

5 18
2 9 15 19

4 13 17

▶ we use a common “sentinel” node to represent leaf nodes
▶ the sentinel is also the parent of the root node
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Red-Black Trees (3)
Implementation
▶ T represents the tree, which consists of a set of nodes

▶ T . root is the root node of tree T
▶ T .nil is the “sentinel” node of tree T

Nodes
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

▶ x.color ∈ {RED, BLACK} is the color of node x

k k = x.keynode x
x.parent

x. left x.right
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Height of a Red-Black Tree

Lemma: the height h(x) of a red-black tree with n = size(x) internal nodes is at most2 log(n + 1).Proof:
1 prove that [x : size(x) ≥ 2bh(x) − 1 by induction:

1 base case: x is a leaf, so size(x) = 0 and bh(x) = 0
2 induction step: consider y1, y2, and x such that y1.parent = y2.parent = x, and

assume (induction) that size(y1) ≥ 2bh(y1) − 1 and size(y2) ≥ 2bh(y2) − 1;
prove that size(x) ≥ 2bh(x) − 1proof:size(x) = size(y1) + size(y2) + 1 ≥ (2bh(y1) − 1) + (2bh(y2) − 1) + 1since

bh(x) =
{bh(y) if color(y) = RED
bh(y) + 1 if color(y) = BLACK

size(x) ≥ (2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1 = 2bh(x) − 1
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Height of a Red-Black Tree (2)
1 size(x) ≥ 2bh(x) − 1

2 Since every red node has black children, in every path from x to a leaf node, atleast half the nodes are black, thus bh(x) ≥ h(x)/2
3 From steps 1 and 2, n = size(x) ≥ 2h(x)/2 − 1, therefore

h ≤ 2 log(n + 1)

A red-black tree works as a binary search tree for search, etc.
So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(log n)
▶ which is also the worst-case complexity
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3 From steps 1 and 2, n = size(x) ≥ 2h(x)/2 − 1, therefore

h ≤ 2 log(n + 1)

A red-black tree works as a binary search tree for search, etc.
So, the complexity of those operations is T(n) = O(h), that is

T(n) = O(log n)
▶ which is also the worst-case complexity
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x
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Red-Black Insertion
RB-INSERT(T, z) works as in a binary search tree

Except that it must preserve the red-black-tree property
1 every node is either red or black
2 the root is black
3 every (NIL) leaf is black
4 if a node is red, then both its children are black
5 for every node x, each path from x to its descendant leaves has the same numberof black nodes bh(x) (the black-height of x)

General strategy
1 insert z as in a binary search tree
2 color z red so as to preserve property 5
3 fix the tree to correct possible violations of property 4
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RB-INSERT
RB-INSERT(T, z) 1 y = T .nil2 x = T . root3 while x , T .nil4 y = x5 if z.key < x.key6 x = x. left7 else x = x. right8 z.parent = y9 if y == T .nil10 T . root = z11 else if z.key < y.key12 y. left = z13 else y. right = z14 z. left = z. right = T .nil15 z.color = RED16 RB-INSERT-FIXUP(T, z)
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Red-Black Insertion (2)
31

15 48
2 20 41 50

7 35 45

25

z’s father is black, so no fixup needed
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Red-Black Insertion (3)

31
15 48

2 20 41 50
7 35 45

A black node can become red and transfer its black color to its two children
This may cause other red–red conflicts, so we iterate. . .
The root can change to black without causing conflicts
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Red-Black Insertion (4)

36
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15 48

2 20 41 50
7 35 45

An in-line red–red conflicts can be resolved with a rotation plus a color switch
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An in-line red–red conflicts can be resolved with a rotation plus a color switch
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An in-line red–red conflicts can be resolved with a rotation plus a color switch
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Red-Black Insertion (5)
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A zig-zag red–red conflicts can be resolved with a rotation to turn it into anin-line conflict, and then a rotation plus a color switch
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Recap on Deletion in Binary Trees

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right
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Red-Black Deletion

36

31
15 48

20 41 50
35 45

5
72

A deleting a red leaf does not require any adjustment

▶ the deletion does not affect the black height (property 5)
▶ no two red nodes become adjacent (property 4)
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Red-Black Deletion (2)

36
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5

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

5

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

5X

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

x

Deleting a black node changes the balance of black-height in a subtree x

▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

x

Deleting a black node changes the balance of black-height in a subtree x
▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion

▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Red-Black Deletion (2)

36

31
15 48

20 41 50
35 452

x

Deleting a black node changes the balance of black-height in a subtree x
▶ RB-DELETE-FIXUP(T, x) fixes the tree after a deletion
▶ in this simple case: x.color = BLACK

Gabriel Istrate Algorithms and Data Structures (II)



Fixup Conditions

y is the spliced node (y = z if z has zero or one child)
▶ if y is red, then no fixup is necessary
▶ so, here we assume that y is black

x is either y’s only child or T .nil
▶ y was spliced out, so y can not have two children
▶ x = T .nil iff y has no (key-bearing) children

Problem 1: y = T .root and x is red
▶ violates red-black property ?? (rootmust be black)

Problem 2: both x and y.parent are red
▶ violates red-black property 4 (no adjacent red nodes)

Problem 3: we are removing y, which is black
▶ violates red-black property 5 (same black height for all paths)
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Red-Black Deletion (3)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55

x carries an additional black weight
▶ the fixup algorithm pushes it up towards to root

The additional black weight can be discarded if it reaches the root, otherwise. . .
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Red-Black Deletion (4)
31

15 48
5 20 41 50

2 10 18 25 36 43 49 55

The additional black weight can also stop as soon as it reaches a red node,which will absorb the extra black color
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Red-Black Deletion (5)
31
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16 19 22 28

In other cases where we can not push the additional black color up, we canapply appropriate rotations and color transfers that preserve all other red-blackproperties
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Basic Fixup Iteration (1)

Case 1
B

A D
C Eα β

γ δ ϵ ζ

D
B

A C
E

α β γ δ

ϵ ζ

Case 2
B

A D
C Eα β

γ δ ϵ ζ

B
A D

C Eα β

γ δ ϵ ζ
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Basic Fixup Iteration (2)
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Red-Black Delete Fixup
RB-DELETE-FIXUP(T, x) 1 while x , T . root ∧ x.color = BLACK2 if x == x.parent. left3 w = x.parent. right4 if w.color == RED5 case 1. . .6 if w. left.color == BLACK ∧ w. right.color = BLACK7 w.color = RED // case 28 x = x.parent9 else if w. right.color == BLACK10 case 3. . .11 case 4. . .12 else same as above, exchanging right and left13 x.color = BLACK
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