Algorithms and Data Structures (ll)

Gabriel Istrate

March 18, 2020

Outline

m Wrap up hash tables.
m Skip lists.
m Binary search trees

m Randomized binary search trees

Where are we ?
m A dictionary is an abstract data structure that represents a set of elements (or
keys)

» a dynamic set

Where are we ?

m A dictionary is an abstract data structure that represents a set of elements (or
keys)

» a dynamic set

m Interface (generic interface)

» INSERT(D, k) adds a key k to the dictionary D
» DELETE(D, k) removes key k from D

» SEARCH(D, k) tells whether D contains a key k

Where are we ?

m A dictionary is an abstract data structure that represents a set of elements (or
keys)

» a dynamic set

m Interface (generic interface)

» INSERT(D, k) adds a key k to the dictionary D
» DELETE(D, k) removes key k from D

» SEARCH(D, k) tells whether D contains a key k

m /mplementation (so far)

» direct access tables. Linked lists. Hash tables. Skip Lists. Binary Search Trees.

Binary Search Trees

m A binary search tree implements of a dynamic set

» over a totally ordered domain

Binary Search Trees

m A binary search tree implements of a dynamic set

» over a totally ordered domain

m Interface

» TREE-INSERT(T, k) adds a key k to the dictionary D
» TREE-DELETE(T, k) removes key k from D

» TREE-SEARCH(T, x) tells whether D contains a key k

Binary Search Trees

m A binary search tree implements of a dynamic set

» over a totally ordered domain

m Interface

» TREE-INSERT(T, k) adds a key k to the dictionary D
» TREE-DELETE(T, k) removes key k from D
» TREE-SEARCH(T, x) tells whether D contains a key k

» tree-walk: INORDER-TREE-WALK(T), etc.

Binary Search Trees

m A binary search tree implements of a dynamic set

>

over a totally ordered domain

m /nterface

>

TREE-INSERT(T, k) adds a key k to the dictionary D
TREE-DELETE(T, k) removes key k from D

TREE-SEARCH(T, x) tells whether D contains a key k
tree-walk: INORDER-TREE-WALK(T), etc.
TREE-MINIMUM(T) finds the smallest element in the tree

TREE-MAXIMUM(T) finds the largest element in the tree

Binary Search Trees

m A binary search tree implements of a dynamic set

>

over a totally ordered domain

m /nterface

>

TREE-INSERT(T, k) adds a key k to the dictionary D
TREE-DELETE(T, k) removes key k from D

TREE-SEARCH(T, x) tells whether D contains a key k
tree-walk: INORDER-TREE-WALK(T), etc.
TREE-MINIMUM(T) finds the smallest element in the tree
TREE-MAXIMUM(T) finds the largest element in the tree

iteration: TREE-SUCCESSOR(X) and TREE-PREDECESSOR(x) find the successor and
predecessor, respectively, of an element x

Binary Search Trees (2)

m /mplementation

» T represents the tree, which consists of a set of nodes

Binary Search Trees (2)

m /mplementation

» T represents the tree, which consists of a set of nodes

» T.rootis the root node of tree T

Binary Search Trees (2)

m /mplementation

» T represents the tree, which consists of a set of nodes

» T.rootis the root node of tree T

Node x
X.parent
» x.parent is the parent of node x
» X.key is the key stored in node x node x
» x.left is the left child of node x k = x.key

» x.right is the right child of node x

x.left x.right

Binary Search Trees (3)

Binary Search Trees (3)

Binary Search Trees (3)

Binary Search Trees (3)

Binary Search Trees (3)

@) 3 @

m Binary-search-tree property

» for all nodes x, y, and z
> y € left-subtree(x) = y.key < x.key

» 7 € right-subtree(x) = z.key > x.key

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

Successor and Predecessor

m Given a node x, find the node containing the next key value

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

m The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

m Given a node x, find the node containing the next key value

m The successor of x is the minimum of the right subtree of x, if that exists

m Otherwise it is the first ancestor a of x such that x falls in the /eft subtree of a

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Successor and Predecessor(2)

TREE-SUCCESSOR(x)1 if x.right # NIL

2 return TREE-MINIMUM(X. right)
3 y = x.parent

4 whiley # NiLand x = y.right

5 X=y

6 y = y.parent

7 returny

Search

Search

m Binary search (thus the name of the tree)

Search

m Binary search (thus the name of the tree)

TREE-SEARCH(X, k)1 if x = NIL or k = x.key

2 return x
3 ifk < x.key
4

return TREE-SEARCH(X. left, k)
5 else return TREE-SEARCH(X.right, k)

Search

m Binary search (thus the name of the tree)

TREE-SEARCH(X, k)1 if x = NIL or k = x.key

2 return x
3 ifk < x.key
4

return TREE-SEARCH(X. left, k)
5 else return TREE-SEARCH(X.right, k)

m s this correct?

Search

m Binary search (thus the name of the tree)

TREE-SEARCH(X, k)1 if x = NIL or k = x.key

2 return x
3 ifk < x.key
4

return TREE-SEARCH(X. left, k)
5 else return TREE-SEARCH(X.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

Search

m Binary search (thus the name of the tree)

TREE-SEARCH(X, k)1 if x = NIL or k = x.key

2 return x
3 ifk < x.key
4

return TREE-SEARCH(X. left, k)
5 else return TREE-SEARCH(X.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Complexity?

Search

m Binary search (thus the name of the tree)

TREE-SEARCH(X, k)1 if x = NIL or k = x.key

2 return x
3 ifk < x.key
4

return TREE-SEARCH(X. left, k)
5 else return TREE-SEARCH(X.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Complexity?

T(n) = ©(depth of the tree)

Search

m Binary search (thus the name of the tree)

TREE-SEARCH(X, k)1 if x = NIL or k = x.key
2 return x
3 ifk < x.key
4 return TREE-SEARCH(X. left, k)
5 else return TREE-SEARCH(X.right, k)

m Is this correct? Yes, thanks to the binary-search-tree property

m Complexity?

T(n) = ©(depth of the tree)
T(n) = O(n)

Search (2)

Search (2)

m Iterative binary search

Search (2)

m Iterative binary search

ITERATIVE-TREE-SEARCH(T, k)1 x = T.root

2 while x # NIL A k # x.key
3 if kK < x.key

4 X = X.left

5 else x = x.right

6 returnx

Insertion

Insertion

Insertion

m /dea

» in order to insert x, we search for x (more precisely x. key)

» if we don't find it, we add it where the search stopped

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

@ @

Insertion (2)

B @

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

TREE-INSERT(T, 2)

—_—
woo~NOoOUPk~, WN =

11
12
13

¥y = NIL
x = T.root
while x # NIL
y=x
if z.key < x.key
x = x.left
else x = x.right
Z.parent =y
if y = NIL
T.root = z
elseif z.key < y.key
y.left = z

else y.right = z

Insertion (2)

(12
(18)
OREN®

@6 OO

T(n) = ©(h)

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(log n) in the average case

» i.e., with a random insertion order

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(log n) in the average case

» i.e., with a random insertion order

m h = O(n) in some particular cases

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(log n) in the average case

v

i.e., with a random insertion order

m h = O(n) in some particular cases

v

i.e., with ordered sequences

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(log n) in the average case

» i.e., with a random insertion order

m h = O(n) in some particular cases

» i.e., with ordered sequences

» the problem is that the “worst” case is not that uncommon

Observation

m Both insertion and search operations have complexity h, where h is the height
of the tree

m h = O(log n) in the average case

» i.e., with a random insertion order

m h = O(n) in some particular cases

» i.e., with ordered sequences

» the problem is that the “worst” case is not that uncommon

m /dea: use randomization to turn all cases in the average case

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

> i.e, givenA =(1,2,3,...,n), insert a random permutation of A

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

> i.e, givenA =(1,2,3,...,n), insert a random permutation of A

» problem: A is not necessarily known in advance

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

> i.e, given A =(1,2,3,...,n),insert a random permutation of A

» problem: A is not necessarily known in advance

m /dea 2: we can obtain a random permutation of the input sequence by
randomly alternating two insertion procedures

» tail insertion: this is what TREE-INSERT does

Randomized Insertion

m /dea 1: insert every sequence as a random sequence

> i.e, given A =(1,2,3,...,n),insert a random permutation of A

» problem: A is not necessarily known in advance
m /dea 2: we can obtain a random permutation of the input sequence by
randomly alternating two insertion procedures

» tail insertion: this is what TREE-INSERT does

» head insertion: for this we need a new procedure TREE-ROOT-INSERT

@ inserts nin T as if n was inserted as the first element

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T,2)1 r = uniformly rand. val. from {1,...,t.size + 1}
2 ifr=1

3 TREE-ROOT-INSERT(7, 2)
4 else TREE-INSERT(T, 2)

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T,2)1 r = uniformly rand. val. from {1,...,t.size + 1}
2 ifr=1

3 TREE-ROOT-INSERT(7, 2)
4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?

» i.e., with all permutations being equally likely?

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T,2)1 r = uniformly rand. val. from {1,...,t.size + 1}
2 ifr=1

3 TREE-ROOT-INSERT(7, 2)
4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?

» no, clearly the last element can only go to the top or to the bottom

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T,2)1 r = uniformly rand. val. from {1,...,t.size + 1}
2 ifr=1

3 TREE-ROOT-INSERT(7, 2)
4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?

» no, clearly the last element can only go to the top or to the bottom

m Itis true that any node has the same probability of being inserted at the top

Randomized Insertion (2)

TREE-RANDOMIZED-INSERT1(T,2)1 r = uniformly rand. val. from {1,...,t.size + 1}
2 ifr=1

3 TREE-ROOT-INSERT(7, 2)
4 else TREE-INSERT(T, 2)

m Does this really simulate a random permutation?
» i.e., with all permutations being equally likely?

» no, clearly the last element can only go to the top or to the bottom

m Itis true that any node has the same probability of being inserted at the top

» this suggests a recursive application of this same procedure

Randomized Insertion (3)

Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t,2) 1 ift = NIL
2 return z
3 r = uniformly random value from {1, ..., t.size + 1
4 ifr=1 # Prlr=1]=1/(t.size+ 1)
5 z.size = t.size + 1
6 return TREE-ROOT-INSERT(t, 2)
7 ifz.key < t.key
8 t.left = TREE-RANDOMIZED-INSERT(t. left, 2)
9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)
10 t.size = t.size + 1
11 returnt

Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t,2) 1 ift = NIL
2 return z
3 r = uniformly random value from {1, ..., t.size + 1
4 ifr=1 # Prlr=1]=1/(t.size+ 1)
5 z.size = t.size + 1
6 return TREE-ROOT-INSERT(t, 2)
7 ifz.key < t.key
8 t.left = TREE-RANDOMIZED-INSERT(t. left, 2)
9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)
10 t.size = t.size + 1
11 returnt

m Looks like this one really simulates a random permutation. ..

Rotation

Rotation

Rotation

® X = RIGHT-ROTATE(x)

Rotation

RIGHT-ROTATE(X)

||
>
Il

LEFT-ROTATE(X)

||
>
Il

k<a a<k<b

RIGHT-ROTATE(x) 1
2
3
4

RIGHT-ROTATE

Rotation

— —
k<a
~— — (b)
LEFT-ROTATE
a<k<b k=>=b
| = x.left LEFT-ROTATE(X)1 r = x.right
x.left = I.right 2 Xx.right = r.left
l.right = x 3 r.left =x
return/ 4 returnr

Algorithms and Data Structures (l1)

Root Insertion

Root Insertion

Root Insertion

root-insert

1. Recursively insert z at the root of the appropriate subtree (right)

Root Insertion

®
18)

1. Recursively insert z at the root of the appropriate subtree (right)

Root Insertion

left-rotate

N
1)

18)

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Root Insertion (2)

TREE-ROOT-INSERT(x,2)1 if x = NIL
return z

if z.key < x.key
x.left = TREE-ROOT-INSERT(x.left, z)
return RIGHT-ROTATE(X)

else x.right = TREE-ROOT-INSERT(x.right, z)
return LEFT-ROTATE(X)

Nouh WwN

Observation

m General strategies to deal with complexity in the worst case

Observation

m General strategies to deal with complexity in the worst case

» randomization: turns any case into the average case

@ the worst case is still possible, but it is extremely improbable

Observation

m General strategies to deal with complexity in the worst case

» randomization: turns any case into the average case

@ the worst case is still possible, but it is extremely improbable

» amortized maintenance: e.g., balancing a BST or resizing a hash table

@ relatively expensive but “amortized” operations

Observation

m General strategies to deal with complexity in the worst case

» randomization: turns any case into the average case

@ the worst case is still possible, but it is extremely improbable

» amortized maintenance: e.g., balancing a BST or resizing a hash table

@ relatively expensive but “amortized” operations

» optimized data structures: a self-balanced data structure

@ guaranteed O(log n) complexity bounds

Deletion

Deletion

Algorithms and Data Structures (I1)

Deletion

1. zhas no children

Algorithms and Data Structures (I1)

Deletion

1. zhas no children

» simply remove z

Algorithms and Data Structures (I1)

Deletion

1. zhas no children

» simply remove z

Algorithms and Data Structures (I1)

Deletion

1. zhas no children

» simply remove z

2. z has one child

Algorithms and Data Structures (I1)

Deletion

1. zhas no children

» simply remove z

2. z has one child

> remove z

Algorithms and Data Structures (I1)

Deletion

1. zhas no children

» simply remove z

2. z has one child

» remove z
» connect z.parent to z.right

Deletion

1. zhas no children

» simply remove z

2. z has one child

» remove z
» connect z.parent to z.right

Deletion

1. zhas no children

» simply remove z

2. z has one child

» remove z
» connect z.parent to z.right

3. z has two children

Deletion

1. zhas no children

» simply remove z

E 2. z has one child

E > remove z

. @ » connect z. parent to z.right
o @ 3. z has two children

» replace z with
¥ = TREE-SUCCESSOR(2)

» remove y (1 child!)

Deletion

@ 1. zhas no children

» simply remove z

2. z has one child

e @ m > remove z
e @ @ @ » connect z.parent to z.right

@ 3. z has two children

» replace z with
a ¥y = TREE-SUCCESSOR(Z2)
» remove y (1 child!)
» connecty.parent to y.right

Deletion (2)

TREe-DELETE(T,z) 1 if z./eft = NIL or z.right = NIL
2 y=z
3 elsey = TREE-SUCCESSOR(2)
4 ify.left # NIL
5 x = y.left
6 elsex = y.right
7 ifx #NIL
8 X.parent = y.parent
9 ify.parent == NIL
10 T.root = x
11 elseify = y.parent.left
12 y.parent.left = x
13 else y.parent.right = x
14 ify #2z
15 Z.key = y.key
16 copy any other data from y into z

