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Outline
Wrap up hash tables.
Skip lists.
Binary search trees
Randomized binary search trees
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Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables. Skip Lists. Binary Search Trees.
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Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x
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Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes

▶ T . root is the root node of tree T
Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right
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Binary Search Trees (3)

12
5 18

2 9 15 19
4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key
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Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a
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Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y
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Search

Binary search (thus the name of the tree)
TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)
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Search (2)

Iterative binary search
ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x
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Insertion

12
5 18

2 9 15 19
4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped
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Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z
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Insertion (2)
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T(n) = Θ(h)
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Observation
Both insertion and search operations have complexity h, where h is the heightof the tree

h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case
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Randomized Insertion
Idea 1: insert every sequence as a random sequence

▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element
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Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly rand. val. from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure
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Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .
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Rotation

x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)
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Rotation
x b

a
k ≤ a a ≤ k ≤ b

k ≥ b

x a

b
k ≤ a

a ≤ k ≤ b k ≥ b
LEFT-ROTATE

RIGHT-ROTATE

RIGHT-ROTATE(x)1 l = x. left2 x. left = l.right3 l.right = x4 return l

LEFT-ROTATE(x)1 r = x.right2 x.right = r. left3 r. left = x4 return r
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Root Insertion

12
5 18

. . . . . . . . . . . .

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)
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Root Insertion
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1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)
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Root Insertion
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1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)
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Root Insertion (2)
TREE-ROOT-INSERT(x, z)1 if x = NIL2 return z3 if z.key < x.key4 x. left = TREE-ROOT-INSERT(x. left, z)5 return RIGHT-ROTATE(x)6 else x.right = TREE-ROOT-INSERT(x.right, z)7 return LEFT-ROTATE(x)
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Observation
General strategies to deal with complexity in the worst case

▶ randomization: turns any case into the average case
the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds
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Deletion

23

6
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5 20

2 12 17
31
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7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right
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Deletion (2)
TREE-DELETE(T, z) 1 if z. left = NIL or z. right = NIL2 y = z3 else y = TREE-SUCCESSOR(z)4 if y. left , NIL5 x = y. left6 else x = y. right7 if x , NIL8 x.parent = y.parent9 if y.parent == NIL10 T . root = x11 else if y = y.parent. left12 y.parent. left = x13 else y.parent. right = x14 if y , z15 z.key = y.key16 copy any other data from y into z
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