
Algorithms and Data Structures (II)
Gabriel Istrate

March 18, 2020

Gabriel Istrate Algorithms and Data Structures (II)

Outline
Wrap up hash tables.
Skip lists.
Binary search trees
Randomized binary search trees

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables. Skip Lists. Binary Search Trees.

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables. Skip Lists. Binary Search Trees.

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables. Skip Lists. Binary Search Trees.

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k

▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.

▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree

▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes

▶ T . root is the root node of tree T
Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T

Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T

Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)

12
5 18

2 9 15 19
4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12

≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Search

Binary search (thus the name of the tree)
TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct?

Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property

Complexity?
T(n) = Θ(depth of the tree)

T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)

T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search (2)

Iterative binary search
ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x

Gabriel Istrate Algorithms and Data Structures (II)

Search (2)
Iterative binary search

ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x

Gabriel Istrate Algorithms and Data Structures (II)

Search (2)
Iterative binary search

ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x

Gabriel Istrate Algorithms and Data Structures (II)

Insertion

12
5 18

2 9 15 19
4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped

Gabriel Istrate Algorithms and Data Structures (II)

Insertion
12

5 18
2 9 15 19

4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped

Gabriel Istrate Algorithms and Data Structures (II)

Insertion
12

5 18
2 9 15 19

4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

6

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

6

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

6

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 176

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 176

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 176

T(n) = Θ(h)

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree

h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases

▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences

▶ the problem is that the “worst” case is not that uncommon
Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence

▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A

▶ problem: A is not necessarily known in advance
Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does

▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT
inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly rand. val. from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly rand. val. from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?

▶ no, clearly the last element can only go to the top or to the bottom
It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly rand. val. from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly rand. val. from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top

▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly rand. val. from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (3)
TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (3)
TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .

Gabriel Istrate Algorithms and Data Structures (II)

Rotation

x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x b

a
k ≤ a a ≤ k ≤ b

k ≥ b

x a

b
k ≤ a

a ≤ k ≤ b k ≥ b
LEFT-ROTATE

RIGHT-ROTATE

RIGHT-ROTATE(x)1 l = x. left2 x. left = l.right3 l.right = x4 return l

LEFT-ROTATE(x)1 r = x.right2 x.right = r. left3 r. left = x4 return r

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 18

.

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 18

.

15

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 18

.

15
root-insert

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 15

. 18
.

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 15

. 18
.

left-rotate

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5

15

.
. . .

18
.

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion (2)
TREE-ROOT-INSERT(x, z)1 if x = NIL2 return z3 if z.key < x.key4 x. left = TREE-ROOT-INSERT(x. left, z)5 return RIGHT-ROTATE(x)6 else x.right = TREE-ROOT-INSERT(x.right, z)7 return LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case

▶ randomization: turns any case into the average case
the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case
▶ randomization: turns any case into the average case

the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case
▶ randomization: turns any case into the average case

the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case
▶ randomization: turns any case into the average case

the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z
2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

X

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6

15
5 20

2 12 17
31

27
4 10 16

7

X
1. z has no children

▶ simply remove z
2. z has one child

▶ remove z

▶ connect z.parent to z. right
3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7
X

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children
▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)

▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion
15

6 20
2 12 17

31
27

4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children
▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion (2)
TREE-DELETE(T, z) 1 if z. left = NIL or z. right = NIL2 y = z3 else y = TREE-SUCCESSOR(z)4 if y. left , NIL5 x = y. left6 else x = y. right7 if x , NIL8 x.parent = y.parent9 if y.parent == NIL10 T . root = x11 else if y = y.parent. left12 y.parent. left = x13 else y.parent. right = x14 if y , z15 z.key = y.key16 copy any other data from y into z

Gabriel Istrate Algorithms and Data Structures (II)

