
Algorithms and Data Structures (II)
Gabriel Istrate

March 18, 2020

Gabriel Istrate Algorithms and Data Structures (II)

Outline
Wrap up hash tables.
Skip lists.
Binary search trees
Randomized binary search trees

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables.

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables.

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?
A dictionary is an abstract data structure that represents a set of elements (orkeys)
▶ a dynamic set

Interface (generic interface)
▶ INSERT(D, k) adds a key k to the dictionary D
▶ DELETE(D, k) removes key k from D
▶ SEARCH(D, k) tells whether D contains a key k

Implementation (so far)
▶ direct access tables. Linked lists. Hash tables.

Gabriel Istrate Algorithms and Data Structures (II)

Hashing with Chaining

Gabriel Istrate Algorithms and Data Structures (II)

Hashing with Open Addressing

Three versions: linear/quadratic/double probing.

Gabriel Istrate Algorithms and Data Structures (II)

Hash Tables: Scorecard
Algorithm Average Complexity (Search successful/not)
INSERT/SEARCH/DELETE, CHAINING: O(1 + α) ✓SEARCH, LINEAR PROBING: 12 (1 + 11−α), 12 (1 + 11−α2) ✓
SEARCH, QUADRATIC PROBING: 1 − ln(1 − α) − α2 , 11−α − α − ln(1 − α) ✓
SEARCH, DOUBLE HASHING: 1

α ln(1 − α), 11−α ✓

Reference, probing complexities: Drozdek/Knuth.
practical ! ✓
Hard to analyze mathematically: those results under uniform hashing (not at all clear) ×
Somewhat hard to engineer. ×.

Gabriel Istrate Algorithms and Data Structures (II)

What can we do ?
Perhaps O(1(+α)) too ambitious ? Something, say O(logn)?

In practice log(n) is a small number !

Gabriel Istrate Algorithms and Data Structures (II)

What can we do ?
Perhaps O(1(+α)) too ambitious ? Something, say O(logn)?

In practice log(n) is a small number !

Gabriel Istrate Algorithms and Data Structures (II)

Advanced topic - Skip lists
Caution
Topic not in Cormen. See Drozdek for details/C++ implementation.

Problem with linked list: search is slow !... even when elements sorted.
Solution: lists of ordered elements that allow skipping some elements to speed
up search.
Skip lists: variant of ordered linked lists that makes such search possible.

More advanced data structure (W. Pugh "Skip lists: a Probabilistic Alternative toBalanced Trees", Communication of the ACM 33(1990), pp. 668-676.) If anyonecurious/interested in data structures/algorithms, can give paper to read; taste how aresearch article looks like.

Gabriel Istrate Algorithms and Data Structures (II)

Skip lists

Gabriel Istrate Algorithms and Data Structures (II)

Too theoretical ?

Where does this ever get applied ? ...

Gabriel Istrate Algorithms and Data Structures (II)

Skip lists in real life
According to Wikipedia:

MemSQL - skip lists as prime indexing structure for its database technology.
Cyrus IMAP server - "skiplist" backend DB implementation
Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
QMap (up to Qt 4) template class of Qt that provides a dictionary.
Redis, ANSI-C open-source persistent key/value store for Posix systems, skiplists in implementation of ordered sets.
nessDB, a very fast key-value embedded Database Storage Engine.
skipdb: open-source DB format using ordered key/value pairs.
ConcurrentSkipListSet and ConcurrentSkipListMap in the Java 1.6 API.

Gabriel Istrate Algorithms and Data Structures (II)

Skip lists in real life (II)
According to Wikipedia:

Speed Tables: fast key-value datastore for Tcl that use skiplists for indexes andlockless shared memory.
leveldb, a fast key-value storage library written at Google that provides anordered mapping from string keys to string values
MuQSS Scheduler for the Linux kernel uses skip lists
SkipMap uses skip lists as base data structure to build a more complex 3DSparse Grid for Robot Mapping systems.

Gabriel Istrate Algorithms and Data Structures (II)

Skip lists: implementation
What we want
k = 1, . . . , ⌊log2(n)⌋, 1 ≤ i ≤ ⌊n/2k−1⌋ − 1.

Item 2k−1 · i points to item 2k−1 · (i + 1).
every second node points to positions two node ahead,
every fourth node points to positions four nodes ahead,
every eigth node points to positions eigth nodes ahead,
., and so on.
Different number of pointers in different nodes in the list !
half the nodes only one pointer.
a quarter of the nodes two pointers,
an eigth of the nodes four pointers,
., and so on.
n log2(n)/2 pointers.

Gabriel Istrate Algorithms and Data Structures (II)

Search Algorithm
1 First follow pointers on the highest level until a larger element is found or thelist is exhausted.
2 If a larger element is found, restart search from its predecessor, this time on alower level.
3 Continue doing this until element found, or you reach the first level and a largerelement or the end of the list.

Gabriel Istrate Algorithms and Data Structures (II)

Inserting and deleting nodes
Major problem

When inserting/deleting a node, pointers of prev/next nodes have to berestructured.
Solution: rather than equal spacing, random spacing on a level.
Invariant: Number of nodes on each level: equal, in expectation to what itwould be under equal spacing

Principle
If you’re traveling 10 meters in 10 steps, a step is on average one meter.

Gabriel Istrate Algorithms and Data Structures (II)

Inserting and deleting nodes (II)
Level numbering: start with zero.
New node inserted: probability 1/2 on first level, 1/4 second level, 1/8 thirdlevel, . . ., etc.
Function chooseLevel: chooses randomly the level of the new node.
Generate random number. If in [0,1/2] level 1, [1/2,3/4] level 2, etc.
To delete node: have to update all links.

Gabriel Istrate Algorithms and Data Structures (II)

Indexing
Computing the i’th element faster than in O(i)

If we record “step sizes” in our lists we can even mimic indexing !
Start on highest level.
If step too big, restart search from predecessor, this time on a lower level.
Continue doing this until element found.

Update “step sizes” by insertion/deletion
Easy if you have doubly linked lists.

On deletion: pred[i].size+ = deleted.size on all levels i.
On insertion: Simply keep track of predecessors and index of the inserteedsequence.

Gabriel Istrate Algorithms and Data Structures (II)

Skip Lists: Scorecard
Method Average Worst-Case
SPACE: O(n) O(nlog(n))

✓SEARCH:O(log(n)) O(n)
✓INSERT:O(log(n)) O(n)
✓DELETE:O(log(n)) O(n)
✓

quite practical ! ✓Probabilistic, worst-case still bad. ×Not completely easy to implement. ×.
Compared to what ?
Binary search trees. Will learn about them next.

Skip Lists: worse cache behavior.But: Better in concurrent access.
Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k

▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.

▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree

▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees
A binary search tree implements of a dynamic set
▶ over a totally ordered domain

Interface
▶ TREE-INSERT(T, k) adds a key k to the dictionary D
▶ TREE-DELETE(T, k) removes key k from D
▶ TREE-SEARCH(T, x) tells whether D contains a key k
▶ tree-walk: INORDER-TREE-WALK(T), etc.
▶ TREE-MINIMUM(T) finds the smallest element in the tree
▶ TREE-MAXIMUM(T) finds the largest element in the tree
▶ iteration: TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x) find the successor andpredecessor, respectively, of an element x

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes

▶ T . root is the root node of tree T
Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T

Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (2)
Implementation
▶ T represents the tree, which consists of a set of nodes
▶ T . root is the root node of tree T

Node x
▶ x.parent is the parent of node x
▶ x.key is the key stored in node x
▶ x. left is the left child of node x
▶ x. right is the right child of node x

k k = x.keynode x
x.parent

x. left x.right

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)

12
5 18

2 9 15 19
4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12

≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Binary Search Trees (3)
12

5 18
2 9 15 19

4 13 17

≤ 12 ≥ 12

Binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

Gabriel Istrate Algorithms and Data Structures (II)

Inorder Tree Walk
We want to go through the set of keys in order

12
5 18

2 9 15 19
4 13 17

2 4 5 9 12 13 15 17 18 19

Gabriel Istrate Algorithms and Data Structures (II)

Inorder Tree Walk
We want to go through the set of keys in order

12
5 18

2 9 15 19
4 13 17

2 4 5 9 12 13 15 17 18 19

Gabriel Istrate Algorithms and Data Structures (II)

Inorder Tree Walk (2)
A recursive algorithm

INORDER-TREE-WALK(x)1 if x , NIL2 INORDER-TREE-WALK(x. left)3 print x.key4 INORDER-TREE-WALK(x.right)

And then we need a “starter” procedure
INORDER-TREE-WALK-START(T)1 INORDER-TREE-WALK(T .root)

Gabriel Istrate Algorithms and Data Structures (II)

Inorder Tree Walk (2)
A recursive algorithm

INORDER-TREE-WALK(x)1 if x , NIL2 INORDER-TREE-WALK(x. left)3 print x.key4 INORDER-TREE-WALK(x.right)

And then we need a “starter” procedure
INORDER-TREE-WALK-START(T)1 INORDER-TREE-WALK(T .root)

Gabriel Istrate Algorithms and Data Structures (II)

Inorder Tree Walk (2)
A recursive algorithm

INORDER-TREE-WALK(x)1 if x , NIL2 INORDER-TREE-WALK(x. left)3 print x.key4 INORDER-TREE-WALK(x.right)

And then we need a “starter” procedure
INORDER-TREE-WALK-START(T)1 INORDER-TREE-WALK(T .root)

Gabriel Istrate Algorithms and Data Structures (II)

Preorder Tree Walk

PREORDER-TREE-WALK(x)1 if x , NIL2 print x.key3 PREORDER-TREE-WALK(x. left)4 PREORDER-TREE-WALK(x.right)
12

5 18
2 9 15 19

4 13 17
12 5 2 4 9 18 15 13 17 19

Gabriel Istrate Algorithms and Data Structures (II)

Preorder Tree Walk
PREORDER-TREE-WALK(x)1 if x , NIL2 print x.key3 PREORDER-TREE-WALK(x. left)4 PREORDER-TREE-WALK(x.right)

12
5 18

2 9 15 19
4 13 17

12 5 2 4 9 18 15 13 17 19

Gabriel Istrate Algorithms and Data Structures (II)

Preorder Tree Walk
PREORDER-TREE-WALK(x)1 if x , NIL2 print x.key3 PREORDER-TREE-WALK(x. left)4 PREORDER-TREE-WALK(x.right)

12
5 18

2 9 15 19
4 13 17

12 5 2 4 9 18 15 13 17 19

Gabriel Istrate Algorithms and Data Structures (II)

Preorder Tree Walk
PREORDER-TREE-WALK(x)1 if x , NIL2 print x.key3 PREORDER-TREE-WALK(x. left)4 PREORDER-TREE-WALK(x.right)

12
5 18

2 9 15 19
4 13 17

12 5 2 4 9 18 15 13 17 19

Gabriel Istrate Algorithms and Data Structures (II)

Postorder Tree Walk

POSTORDER-TREE-WALK(x)1 if x , NIL2 POSTORDER-TREE-WALK(x. left)3 POSTORDER-TREE-WALK(x.right)4 print x.key
12

5 18
2 9 15 19

4 13 17
4 2 9 5 13 17 15 19 18 12

Gabriel Istrate Algorithms and Data Structures (II)

Postorder Tree Walk
POSTORDER-TREE-WALK(x)1 if x , NIL2 POSTORDER-TREE-WALK(x. left)3 POSTORDER-TREE-WALK(x.right)4 print x.key

12
5 18

2 9 15 19
4 13 17

4 2 9 5 13 17 15 19 18 12

Gabriel Istrate Algorithms and Data Structures (II)

Postorder Tree Walk
POSTORDER-TREE-WALK(x)1 if x , NIL2 POSTORDER-TREE-WALK(x. left)3 POSTORDER-TREE-WALK(x.right)4 print x.key

12
5 18

2 9 15 19
4 13 17

4 2 9 5 13 17 15 19 18 12

Gabriel Istrate Algorithms and Data Structures (II)

Postorder Tree Walk
POSTORDER-TREE-WALK(x)1 if x , NIL2 POSTORDER-TREE-WALK(x. left)3 POSTORDER-TREE-WALK(x.right)4 print x.key

12
5 18

2 9 15 19
4 13 17

4 2 9 5 13 17 15 19 18 12

Gabriel Istrate Algorithms and Data Structures (II)

Reverse-Order Tree Walk

REVERSE-ORDER-TREE-WALK(x)1 if x , NIL2 REVERSE-ORDER-TREE-WALK(x.right)3 print x.key4 REVERSE-ORDER-TREE-WALK(x. left)
12

5 18
2 9 15 19

4 13 17
19 18 17 15 13 12 9 5 4 2

Gabriel Istrate Algorithms and Data Structures (II)

Reverse-Order Tree Walk
REVERSE-ORDER-TREE-WALK(x)1 if x , NIL2 REVERSE-ORDER-TREE-WALK(x.right)3 print x.key4 REVERSE-ORDER-TREE-WALK(x. left)

12
5 18

2 9 15 19
4 13 17

19 18 17 15 13 12 9 5 4 2

Gabriel Istrate Algorithms and Data Structures (II)

Reverse-Order Tree Walk
REVERSE-ORDER-TREE-WALK(x)1 if x , NIL2 REVERSE-ORDER-TREE-WALK(x.right)3 print x.key4 REVERSE-ORDER-TREE-WALK(x. left)

12
5 18

2 9 15 19
4 13 17

19 18 17 15 13 12 9 5 4 2

Gabriel Istrate Algorithms and Data Structures (II)

Reverse-Order Tree Walk
REVERSE-ORDER-TREE-WALK(x)1 if x , NIL2 REVERSE-ORDER-TREE-WALK(x.right)3 print x.key4 REVERSE-ORDER-TREE-WALK(x. left)

12
5 18

2 9 15 19
4 13 17

19 18 17 15 13 12 9 5 4 2

Gabriel Istrate Algorithms and Data Structures (II)

Application of postorder: Computing Arithmetic Expressions
Arithmetic expressions can be represented by syntax trees.
Given an expression represented by tree, compute its value !
Each tree node: value field.
Postorder traversal prints postfix notation/computes the value.

Gabriel Istrate Algorithms and Data Structures (II)

Complexity of Tree Walks

The general recurrence is
T(n) = T(nL) + T(n − nL − 1) + Θ(1)

INORDER-TREE-WALK Θ(n)PREORDER-TREE-WALK Θ(n)POSTORDER-TREE-WALK Θ(n)REVERSE-ORDER-TREE-WALK Θ(n)
We could prove this using the substitution method
Can we do better? No!
▶ the length of the output is Θ(n)

Gabriel Istrate Algorithms and Data Structures (II)

Complexity of Tree Walks
The general recurrence is

T(n) = T(nL) + T(n − nL − 1) + Θ(1)

INORDER-TREE-WALK Θ(n)PREORDER-TREE-WALK Θ(n)POSTORDER-TREE-WALK Θ(n)REVERSE-ORDER-TREE-WALK Θ(n)
We could prove this using the substitution method
Can we do better? No!
▶ the length of the output is Θ(n)

Gabriel Istrate Algorithms and Data Structures (II)

Complexity of Tree Walks
The general recurrence is

T(n) = T(nL) + T(n − nL − 1) + Θ(1)

INORDER-TREE-WALK Θ(n)PREORDER-TREE-WALK Θ(n)POSTORDER-TREE-WALK Θ(n)REVERSE-ORDER-TREE-WALK Θ(n)

We could prove this using the substitution method
Can we do better? No!
▶ the length of the output is Θ(n)

Gabriel Istrate Algorithms and Data Structures (II)

Complexity of Tree Walks
The general recurrence is

T(n) = T(nL) + T(n − nL − 1) + Θ(1)

INORDER-TREE-WALK Θ(n)PREORDER-TREE-WALK Θ(n)POSTORDER-TREE-WALK Θ(n)REVERSE-ORDER-TREE-WALK Θ(n)
We could prove this using the substitution method

Can we do better? No!
▶ the length of the output is Θ(n)

Gabriel Istrate Algorithms and Data Structures (II)

Complexity of Tree Walks
The general recurrence is

T(n) = T(nL) + T(n − nL − 1) + Θ(1)

INORDER-TREE-WALK Θ(n)PREORDER-TREE-WALK Θ(n)POSTORDER-TREE-WALK Θ(n)REVERSE-ORDER-TREE-WALK Θ(n)
We could prove this using the substitution method
Can we do better?

No!
▶ the length of the output is Θ(n)

Gabriel Istrate Algorithms and Data Structures (II)

Complexity of Tree Walks
The general recurrence is

T(n) = T(nL) + T(n − nL − 1) + Θ(1)

INORDER-TREE-WALK Θ(n)PREORDER-TREE-WALK Θ(n)POSTORDER-TREE-WALK Θ(n)REVERSE-ORDER-TREE-WALK Θ(n)
We could prove this using the substitution method
Can we do better? No!
▶ the length of the output is Θ(n)

Gabriel Istrate Algorithms and Data Structures (II)

Minimum and Maximum Keys

Recall the binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

So, the minimum key is in all the way to the left
▶ similarly, the maximum key is all the way to the right

TREE-MINIMUM(x)1 while x. left , NIL2 x = x. left3 return x
TREE-MAXIMUM(x)1 while x.right , NIL2 x = x.right3 return x

Gabriel Istrate Algorithms and Data Structures (II)

Minimum and Maximum Keys
Recall the binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

So, the minimum key is in all the way to the left
▶ similarly, the maximum key is all the way to the right

TREE-MINIMUM(x)1 while x. left , NIL2 x = x. left3 return x
TREE-MAXIMUM(x)1 while x.right , NIL2 x = x.right3 return x

Gabriel Istrate Algorithms and Data Structures (II)

Minimum and Maximum Keys
Recall the binary-search-tree property
▶ for all nodes x, y, and z
▶ y ∈ left-subtree(x) ⇒ y.key ≤ x.key
▶ z ∈ right-subtree(x) ⇒ z.key ≥ x.key

So, the minimum key is in all the way to the left
▶ similarly, the maximum key is all the way to the right

TREE-MINIMUM(x)1 while x. left , NIL2 x = x. left3 return x
TREE-MAXIMUM(x)1 while x.right , NIL2 x = x.right3 return x

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists

Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor
Given a node x, find the node containing the next key value

12
5 18

2 9 15 19
4 13 17

The successor of x is theminimum of the right subtree of x, if that exists
Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Successor and Predecessor(2)
TREE-SUCCESSOR(x)1 if x.right , NIL2 return TREE-MINIMUM(x.right)3 y = x.parent4 while y , NIL and x = y.right5 x = y6 y = y.parent7 return y

12
5 18

2 9 15 19
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Search

Binary search (thus the name of the tree)
TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct?

Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property

Complexity?
T(n) = Θ(depth of the tree)

T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)

T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search
Binary search (thus the name of the tree)

TREE-SEARCH(x, k)1 if x = NIL or k = x.key2 return x3 if k < x.key4 return TREE-SEARCH(x. left, k)5 else return TREE-SEARCH(x.right, k)

Is this correct? Yes, thanks to the binary-search-tree property
Complexity?

T(n) = Θ(depth of the tree)
T(n) = O(n)

Gabriel Istrate Algorithms and Data Structures (II)

Search (2)

Iterative binary search
ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x

Gabriel Istrate Algorithms and Data Structures (II)

Search (2)
Iterative binary search

ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x

Gabriel Istrate Algorithms and Data Structures (II)

Search (2)
Iterative binary search

ITERATIVE-TREE-SEARCH(T, k)1 x = T .root2 while x , NIL ∧ k , x.key3 if k < x.key4 x = x. left5 else x = x.right6 return x

Gabriel Istrate Algorithms and Data Structures (II)

Insertion

12
5 18

2 9 15 19
4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped

Gabriel Istrate Algorithms and Data Structures (II)

Insertion
12

5 18
2 9 15 19

4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped

Gabriel Istrate Algorithms and Data Structures (II)

Insertion
12

5 18
2 9 15 19

4 13 17

Idea
▶ in order to insert x, we search for x (more precisely x.key)
▶ if we don’t find it, we add it where the search stopped

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

6

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

6

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 17

6

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 176

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 176

Gabriel Istrate Algorithms and Data Structures (II)

Insertion (2)
TREE-INSERT(T, z) 1 y = NIL2 x = T .root3 while x , NIL4 y = x5 if z.key < x.key6 x = x. left7 else x = x.right8 z.parent = y9 if y = NIL10 T .root = z11 else if z.key < y.key12 y. left = z13 else y.right = z

12
5 18

2 9 15
4 13 176

T(n) = Θ(h)

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree

h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases

▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences

▶ the problem is that the “worst” case is not that uncommon
Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Observation
Both insertion and search operations have complexity h, where h is the heightof the tree
h = O(log n) in the average case
▶ i.e., with a random insertion order

h = O(n) in some particular cases
▶ i.e., with ordered sequences
▶ the problem is that the “worst” case is not that uncommon

Idea: use randomization to turn all cases in the average case

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence

▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A

▶ problem: A is not necessarily known in advance
Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does

▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT
inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion
Idea 1: insert every sequence as a random sequence
▶ i.e., given A = ⟨1, 2, 3, . . . , n⟩, insert a random permutation of A
▶ problem: A is not necessarily known in advance

Idea 2: we can obtain a random permutation of the input sequence byrandomly alternating two insertion procedures
▶ tail insertion: this is what TREE-INSERT does
▶ head insertion: for this we need a new procedure TREE-ROOT-INSERT

inserts n in T as if n was inserted as the first element

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly random value from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly random value from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?

▶ no, clearly the last element can only go to the top or to the bottom
It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly random value from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly random value from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top

▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (2)
TREE-RANDOMIZED-INSERT1(T, z)1 r = uniformly random value from {1, . . . , t.size + 1}2 if r = 13 TREE-ROOT-INSERT(T, z)4 else TREE-INSERT(T, z)

Does this really simulate a random permutation?
▶ i.e., with all permutations being equally likely?
▶ no, clearly the last element can only go to the top or to the bottom

It is true that any node has the same probability of being inserted at the top
▶ this suggests a recursive application of this same procedure

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (3)

TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (3)
TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .

Gabriel Istrate Algorithms and Data Structures (II)

Randomized Insertion (3)
TREE-RANDOMIZED-INSERT(t, z) 1 if t = NIL2 return z3 r = uniformly random value from {1, . . . , t.size + 1}4 if r = 1 // Pr[r = 1] = 1/(t.size + 1)5 z.size = t.size + 16 return TREE-ROOT-INSERT(t, z)7 if z.key < t.key8 t. left = TREE-RANDOMIZED-INSERT(t. left, z)9 else t.right = TREE-RANDOMIZED-INSERT(t.right, z)10 t.size = t.size + 111 return t

Looks like this one really simulates a random permutation. . .

Gabriel Istrate Algorithms and Data Structures (II)

Rotation

x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)

x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x

b

a

k ≤ a a ≤ k ≤ b k ≥ b

x = RIGHT-ROTATE(x)
x = LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Rotation
x b

a
k ≤ a a ≤ k ≤ b

k ≥ b

x a

b
k ≤ a

a ≤ k ≤ b k ≥ b
LEFT-ROTATE

RIGHT-ROTATE

RIGHT-ROTATE(x)1 l = x. left2 x. left = l.right3 l.right = x4 return l

LEFT-ROTATE(x)1 r = x.right2 x.right = r. left3 r. left = x4 return r

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 18

.

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 18

.

15

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 18

.

15
root-insert

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 15

. 18
.

1. Recursively insert z at the root of the appropriate subtree (right)

2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5 15

. 18
.

left-rotate

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion

12
5

15

.
. . .

18
.

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Gabriel Istrate Algorithms and Data Structures (II)

Root Insertion (2)
TREE-ROOT-INSERT(x, z)1 if x = NIL2 return z3 if z.key < x.key4 x. left = TREE-ROOT-INSERT(x. left, z)5 return RIGHT-ROTATE(x)6 else x.right = TREE-ROOT-INSERT(x.right, z)7 return LEFT-ROTATE(x)

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case

▶ randomization: turns any case into the average case
the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case
▶ randomization: turns any case into the average case

the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case
▶ randomization: turns any case into the average case

the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Observation
General strategies to deal with complexity in the worst case
▶ randomization: turns any case into the average case

the worst case is still possible, but it is extremely improbable

▶ amortized maintenance: e.g., balancing a BST or resizing a hash table
relatively expensive but “amortized” operations

▶ optimized data structures: a self-balanced data structure
guaranteed O(log n) complexity bounds

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children

▶ simply remove z
2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6
18

15
5 20

2 12 17
31

27
4 10 16

7

X

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child

▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

23

6

15
5 20

2 12 17
31

27
4 10 16

7

X
1. z has no children

▶ simply remove z
2. z has one child

▶ remove z

▶ connect z.parent to z. right
3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children

▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion

6

15
5 20

2 12 17
31

27
4 10 16

7
X

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children
▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)

▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion
15

6 20
2 12 17

31
27

4 10 16

7

1. z has no children
▶ simply remove z

2. z has one child
▶ remove z
▶ connect z.parent to z. right

3. z has two children
▶ replace z withy = TREE-SUCCESSOR(z)
▶ remove y (1 child!)
▶ connect y.parent to y. right

Gabriel Istrate Algorithms and Data Structures (II)

Deletion (2)
TREE-DELETE(T, z) 1 if z. left = NIL or z. right = NIL2 y = z3 else y = TREE-SUCCESSOR(z)4 if y. left , NIL5 x = y. left6 else x = y. right7 if x , NIL8 x.parent = y.parent9 if y.parent == NIL10 T . root = x11 else if y = y.parent. left12 y.parent. left = x13 else y.parent. right = x14 if y , z15 z.key = y.key16 copy any other data from y into z

Gabriel Istrate Algorithms and Data Structures (II)

