Algorithms and Data Structures (II)

Gabriel Istrate

March 18, 2020

Outline

- Wrap up hash tables.
- Skip lists.
- Binary search trees
- Randomized binary search trees

Where are we ?

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set

Where are we?

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set

■ Interface (generic interface)

- Insert(D, k) adds a key k to the dictionary D
- Delete(D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k

Where are we?

■ A dictionary is an abstract data structure that represents a set of elements (or keys)

- a dynamic set
- Interface (generic interface)
- Insert(D, k) adds a key k to the dictionary D
- Delete(D, k) removes key k from D
- $\operatorname{Search}(D, k)$ tells whether D contains a key k
- Implementation (so far)
- direct access tables. Linked lists. Hash tables.

Three versions: linear/quadratic/double probing.

Hash Tables: Scorecard

Algorithm	Average Complexity (Search successful/not)	
INSERT/SEARCH/DELETE, CHAINING:	$O(1+\alpha)$	\checkmark
SEARCH, LINEAR PROBING:	$\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right), \frac{1}{2}\left(1+\frac{1}{1-\alpha^{2}}\right)$	\checkmark
SEARCH, QUADRATIC PROBING:	$1-\ln (1-\alpha)-\frac{\alpha}{2}, \frac{1}{1-\alpha}-\alpha-\ln (1-\alpha)$	\checkmark
SEARCH, DOUBLE HASHING:	$\frac{1}{\alpha} \ln (1-\alpha), \frac{1}{1-\alpha}$	\checkmark

Reference, probing complexities: Drozdek/Knuth.
■ practical! \checkmark
■ Hard to analyze mathematically: those results under uniform hashing (not at all clear) \times
■ Somewhat hard to engineer. \times.

What can we do?

Perhaps $O(1(+\alpha))$ too ambitious ? Something, say $O(\log n)$?

What can we do?

Perhaps $O(1(+\alpha))$ too ambitious ? Something, say $O(\operatorname{logn})$?

In practice $\log (n)$ is a small number!

Advanced topic - Skip lists

Caution

Topic not in Cormen. See Drozdek for details/C++ implementation.

■ Problem with linked list: search is slow !... even when elements sorted.
■ Solution: lists of ordered elements that allow skipping some elements to speed up search.
■ Skip lists: variant of ordered linked lists that makes such search possible.

More advanced data structure (W. Pugh "Skip lists: a Probabilistic Alternative to Balanced Trees", Communication of the ACM 33(1990), pp. 668-676.) If anyone curious/interested in data structures/algorithms, can give paper to read; taste how a research article looks like.

Skip lists

Where does this ever get applied ? ...

Skip lists in real life

According to Wikipedia:
■ MemSQL - skip lists as prime indexing structure for its database technology.
■ Cyrus IMAP server - "skiplist" backend DB implementation
■ Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
■ QMap (up to Qt 4) template class of Qt that provides a dictionary.
■ Redis, ANSI-C open-source persistent key/value store for Posix systems, skip lists in implementation of ordered sets.
■ nessDB, a very fast key-value embedded Database Storage Engine.
■ skipdb: open-source DB format using ordered key/value pairs.
■ ConcurrentSkipListSet and ConcurrentSkipListMap in the Java 1.6 API.

Skip lists in real life (II)

According to Wikipedia:
■ Speed Tables: fast key-value datastore for Tcl that use skiplists for indexes and lockless shared memory.
■ leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values
■ MuQSS Scheduler for the Linux kernel uses skip lists
■ SkipMap uses skip lists as base data structure to build a more complex 3D Sparse Grid for Robot Mapping systems.

Skip lists: implementation

What we want

$k=1, \ldots,\left\lfloor\log _{2}(n)\right\rfloor, 1 \leq i \leq\left\lfloor n / 2^{k-1}\right\rfloor-1$.
■ Item $2^{k-1} \cdot i$ points to item $2^{k-1} \cdot(i+1)$.
■ every second node points to positions two node ahead,
■ every fourth node points to positions four nodes ahead,
■ every eigth node points to positions eigth nodes ahead,
■, and so on.

■ Different number of pointers in different nodes in the list!
■ half the nodes only one pointer.

- a quarter of the nodes two pointers,
- an eigth of the nodes four pointers,

■, and so on.

- $n \log _{2}(n) / 2$ pointers.

Search Algorithm

(1) First follow pointers on the highest level until a larger element is found or the list is exhausted.
(2) If a larger element is found, restart search from its predecessor, this time on a lower level.
(3) Continue doing this until element found, or you reach the first level and a larger element or the end of the list.

Major problem

■ When inserting/deleting a node, pointers of prev/next nodes have to be restructured.
■ Solution: rather than equal spacing, random spacing on a level.
■ Invariant: Number of nodes on each level: equal, in expectation to what it would be under equal spacing

Principle

If you're traveling 10 meters in 10 steps, a step is on average one meter.

■ Level numbering: start with zero.
■ New node inserted: probability $1 / 2$ on first level, $1 / 4$ second level, $1 / 8$ third level, . . ., etc.
■ Function chooseLevel: chooses randomly the level of the new node.
■ Generate random number. If in [0,1/2] level 1, [1/2,3/4] level 2, etc.
■ To delete node: have to update all links.

Computing the i 'th element faster than in $O(i)$
■ If we record "step sizes" in our lists we can even mimic indexing !
■ Start on highest level.
■ If step too big, restart search from predecessor, this time on a lower level.
■ Continue doing this until element found.

Update "step sizes" by insertion/deletion

Easy if you have doubly linked lists.
■ On deletion: pred[i].size+ $=$ deleted.size on all levels i.
■ On insertion: Simply keep track of predecessors and index of the inserteed sequence.

Skip Lists: Scorecard

Method Average Worst-Case

SPACE:	$O(n)$	$O(n \log (n))$
\checkmark		
SEARCH: $O(\log (n))$	$O(n)$	
\quad		
INSERT: $O(\log (n))$	$O(n)$	
\checkmark		
DELETE: $O(\log (n))$	$O(n)$	
$\quad \checkmark$		

■ quite practical! \checkmark

- Probabilistic, worst-case still bad. \times

■ Not completely easy to implement. \times.

Compared to what?

Binary search trees. Will learn about them next.

■ A binary search tree implements of a dynamic set

- over a totally ordered domain
- A binary search tree implements of a dynamic set
- over a totally ordered domain
- Interface
- Tree-Insert (T, k) adds a key k to the dictionary D
- Tree-Delete(T, k) removes key k from D
- Tree-Search (T, x) tells whether D contains a key k

Binary Search Trees

- A binary search tree implements of a dynamic set
- over a totally ordered domain
- Interface
- Tree-Insert (T, k) adds a key k to the dictionary D
- Tree-Delete (T, k) removes key k from D
- Tree-Search (T, x) tells whether D contains a key k
- tree-walk: Inorder-Tree-Walk(T), etc.

Binary Search Trees

■ A binary search tree implements of a dynamic set

- over a totally ordered domain
- Interface
- Tree-Insert (T, k) adds a key k to the dictionary D
- Tree-Delete(T, k) removes key k from D
- Tree-Search (T, x) tells whether D contains a key k
- tree-walk: Inorder-Tree-Walk(T), etc.
- Tree-Minimum(T) finds the smallest element in the tree
- Tree-Maximum(T) finds the largest element in the tree

Binary Search Trees

■ A binary search tree implements of a dynamic set

- over a totally ordered domain
- Interface
- Tree-Insert (T, k) adds a key k to the dictionary D
- Tree-Delete(T, k) removes key k from D
- Tree-Search (T, x) tells whether D contains a key k
- tree-walk: Inorder-Tree-Walk(T), etc.
- Tree-Minimum(T) finds the smallest element in the tree
- Tree-Maximum (T) finds the largest element in the tree
- iteration: Tree-Successor(x) and Tree-Predecessor (x) find the successor and predecessor, respectively, of an element x

Binary Search Trees (2)

- Implementation
- T represents the tree, which consists of a set of nodes

Binary Search Trees (2)

- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T

Binary Search Trees (2)

- Implementation
- T represents the tree, which consists of a set of nodes
- T.root is the root node of tree T

Node x

- x.parent is the parent of node x
- x. key is the key stored in node x
- x. left is the left child of node x
- x.right is the right child of node x

Binary Search Trees (3)

Binary Search Trees (3)

Binary Search Trees (3)

Binary Search Trees (3)

■ Binary-search-tree property

- for all nodes x, y, and z
- $y \in \operatorname{left-subtree}(x) \Rightarrow y$. key $\leq x$. key
- $z \in \operatorname{right-subtree}(x) \Rightarrow$ z.key \geq x.key

■ We want to go through the set of keys in order

■ We want to go through the set of keys in order

$$
\begin{array}{llllllllll}
2 & 4 & 5 & 9 & 12 & 13 & 15 & 17 & 18 & 19
\end{array}
$$

Inorder Tree Walk (2)

- A recursive algorithm

■ A recursive algorithm

$$
\begin{aligned}
\operatorname{INORDER-TREE-WALK}(x) 1 & \text { if } x \neq \text { NIL } \\
2 & \text { INORDER-TREE-WALK }(x . l e f t) \\
3 & \text { print } x . k e y \\
4 & \text { INORDER-TREE-WALK }(x . r i g h t)
\end{aligned}
$$

■ A recursive algorithm

$$
\begin{aligned}
\text { INORDER-TREE-WALK }(x) 1 & \text { if } x \neq \text { NIL } \\
2 & \text { INORDER-TREE-WALK }(x . l e f t) \\
3 & \text { print } x . k e y \\
4 & \text { INORDER-TREE-WALK }(x . r i g h t)
\end{aligned}
$$

And then we need a "starter" procedure

Inorder-Tree-Walk-Start $(T) 1$ Inorder-Tree-Walk((root)

Preorder Tree Walk

```
Preorder-Tree-WALk(x)1 if }x\not=\mathrm{ NIL
    2
    3
    4
        print x.key
        Preorder-Tree-Walk(x.left)
        Preorder-Tree-WAlk(x.right)
```

$$
\begin{aligned}
\text { Preorder-Tree-Walk }(x) 1 & \text { if } x \neq \text { NiL } \\
2 & \text { print } x . k e y \\
3 & \text { Preorder-Tree-Walk }(x . l e f t) \\
4 & \text { Preorder-Tree-WALk }(x . r i g h t)
\end{aligned}
$$

$$
\begin{aligned}
\text { Preorder-Tree-Walk }(x) 1 & \text { if } x \neq \text { NIL } \\
2 & \text { print } x . k e y \\
3 & \text { Preorder-Tree-Walk }(x . l e f t) \\
4 & \text { Preorder-Tree-WALk }(x . r i g h t)
\end{aligned}
$$

Postorder Tree Walk

Postorder-Tree-Walk $(x) 1$	if $x \neq$ NiL
2	Postorder-Tree-WALk($x . l e f t)$
3	Postorder-Tree-WALk $(x . r i g h t)$
4	print $x . k e y$

Postorder-Tree-Walk $(x) 1$ if $x \neq$ NIL

 Postorder-Tree-Walk(x.left) 3 Postorder-Tree-Walk (x.right) 4 print x.key

Postorder-Tree-Walk $(x) 1$ if $x \neq$ NIL

 Postorder-Tree-Walk(x.left) 3 Postorder-Tree-Walk(x.right) 4 print x.key

Reverse-Order Tree Walk

Reverse-Order Tree Walk

$$
\begin{aligned}
\text { Reverse-Order-Tree-Walk }(x) 1 & \text { if } x \neq \text { NiL } \\
2 & \text { Reverse-Order-Tree-WALk(} x . r i g h t) \\
3 & \text { print } x . k e y \\
4 & \text { Reverse-Order-Tree-WALk }(x . l e f t)
\end{aligned}
$$

Reverse-Order Tree Walk

Reverse-Order-Tree-Walk $(x) 1$ if $x \neq$ NiL Reverse-Order-Tree-Walk(x.right) print x. key Reverse-Order-Tree-Walk(x.left)

Reverse-Order Tree Walk

Reverse-Order-Tree-Walk $(x) 1$ if $x \neq$ NiL Reverse-Order-Tree-Walk($x . r i g h t$) print x. key Reverse-Order-Tree-WAlk(x.left)

Application of postorder: Computing Arithmetic Expressions

■ Arithmetic expressions can be represented by syntax trees.
■ Given an expression represented by tree, compute its value !
■ Each tree node: value field.

- Postorder traversal prints postfix notation/computes the value.

Complexity of Tree Walks

Complexity of Tree Walks

- The general recurrence is

$$
T(n)=T\left(n_{L}\right)+T\left(n-n_{L}-1\right)+\Theta(1)
$$

Complexity of Tree Walks

■ The general recurrence is

$$
T(n)=T\left(n_{L}\right)+T\left(n-n_{L}-1\right)+\Theta(1)
$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

- The general recurrence is

$$
T(n)=T\left(n_{L}\right)+T\left(n-n_{L}-1\right)+\Theta(1)
$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method

- The general recurrence is

$$
T(n)=T\left(n_{L}\right)+T\left(n-n_{L}-1\right)+\Theta(1)
$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method

- Can we do better?

Complexity of Tree Walks

- The general recurrence is

$$
T(n)=T\left(n_{L}\right)+T\left(n-n_{L}-1\right)+\Theta(1)
$$

INORDER-TREE-WALK	$\Theta(n)$
PREORDER-TREE-WALK	$\Theta(n)$
POSTORDER-TREE-WALK	$\Theta(n)$
REVERSE-ORDER-TREE-WALK	$\Theta(n)$

We could prove this using the substitution method
■ Can we do better? No!

- the length of the output is $\Theta(n)$

Minimum and Maximum Keys

Minimum and Maximum Keys

- Recall the binary-search-tree property
- for all nodes x, y, and z
- $y \in \operatorname{left-subtree}(x) \Rightarrow y$.key $\leq x$.key
- $z \in \operatorname{right-subtree~}(x) \Rightarrow$ z.key $\geq x$.key

Minimum and Maximum Keys

- Recall the binary-search-tree property
- for all nodes x, y, and z
- $y \in$ left-subtree $(x) \Rightarrow y$. key $\leq x$.key
- $z \in$ right-subtree $(x) \Rightarrow$ z.key $\geq x$.key

■ So, the minimum key is in all the way to the left

- similarly, the maximum key is all the way to the right

Successor and Predecessor

- Given a node x, find the node containing the next key value

Successor and Predecessor

- Given a node x, find the node containing the next key value

Successor and Predecessor

- Given a node x, find the node containing the next key value

Successor and Predecessor

■ Given a node x, find the node containing the next key value

Successor and Predecessor

- Given a node x, find the node containing the next key value

Successor and Predecessor

- Given a node x, find the node containing the next key value

Successor and Predecessor

- Given a node x, find the node containing the next key value

- The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

- Given a node x, find the node containing the next key value

- The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

- Given a node x, find the node containing the next key value

- The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

- Given a node x, find the node containing the next key value

- The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

- Given a node x, find the node containing the next key value

- The successor of x is the minimum of the right subtree of x, if that exists

Successor and Predecessor

- Given a node x, find the node containing the next key value

- The successor of x is the minimum of the right subtree of x, if that exists
- Otherwise it is the first ancestor a of x such that x falls in the left subtree of a

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x.right \neq NIL
 2 return Tree-Minimum(x.right)
 $3 y=x . p a r e n t$
 4 while $y \neq$ NIL and $x=y$.right
 $5 \quad x=y$
 $6 \quad y=y . p a r e n t$
 7 return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Successor and Predecessor(2)

Tree-Successor $(x) 1$ if x. right \neq NIL

2	return Tree-Minimum $(x . r i g h t)$
3	$y=x . p a r e n t$
4	while $y \neq$ NIL and $x=y . r i g h t ~$
5	$x=y$
6	$y=y . p a r e n t$
7	return y

Search

- Binary search (thus the name of the tree)

■ Binary search (thus the name of the tree)

$$
\begin{aligned}
\operatorname{Tree-SeARCH}(x, k) 1 & \text { if } x=\text { NIL or } k=x . \text { key } \\
2 & \text { return } x \\
3 & \text { if } k<x . k e y \\
4 & \text { return Tree-SEARCH }(x . \text { left }, k) \\
5 & \text { else return TreE-SEARCH }(x . r i g h t, k)
\end{aligned}
$$

■ Binary search (thus the name of the tree)

$$
\begin{aligned}
\operatorname{Tree-SeARCH}(x, k) 1 & \text { if } x=\text { NIL or } k=x . \text { key } \\
2 & \text { return } x \\
3 & \text { if } k<x . k e y \\
4 & \text { return Tree-SEARCH }(x . \text { left, } k) \\
5 & \text { else return TreE-SEARCH }(x . r i g h t, k)
\end{aligned}
$$

■ Is this correct?

■ Binary search (thus the name of the tree)

$$
\begin{aligned}
\operatorname{TrEE-SEARCH}(x, k) 1 & \text { if } x=\text { NIL or } k=x . \text { key } \\
2 & \text { return } x \\
3 & \text { if } k<x . k e y \\
4 & \text { return Tree-SEARCH }(x . \text { left }, k) \\
5 & \text { else return Tree-SEARCH }(x . r i g h t, k)
\end{aligned}
$$

■ Is this correct? Yes, thanks to the binary-search-tree property

■ Binary search (thus the name of the tree)

$$
\begin{aligned}
\operatorname{Tree-SeARCH}(x, k) 1 & \text { if } x=\text { NIL or } k=x . \text { key } \\
2 & \text { return } x \\
3 & \text { if } k<x . k e y \\
4 & \text { return Tree-SEARCH }(x . \text { left }, k) \\
5 & \text { else return TreE-SEARCH }(x . r i g h t, k)
\end{aligned}
$$

■ Is this correct? Yes, thanks to the binary-search-tree property
■ Complexity?

- Binary search (thus the name of the tree)

$$
\begin{aligned}
\operatorname{TrEe-SeARCH}(x, k) 1 & \text { if } x=\text { NIL or } k=x . \text { key } \\
2 & \text { return } x \\
3 & \text { if } k<x . k e y \\
4 & \text { return Tree-SEARCH }(x . \text { left }, k) \\
5 & \text { else return TreE-SEARCH }(x . \text { right }, k)
\end{aligned}
$$

■ Is this correct? Yes, thanks to the binary-search-tree property
■ Complexity?

$$
T(n)=\Theta(\text { depth of the tree })
$$

- Binary search (thus the name of the tree)

$$
\begin{aligned}
\operatorname{Tree-SeARCH}(x, k) 1 & \text { if } x=\text { NIL or } k=x . \text { key } \\
2 & \text { return } x \\
3 & \text { if } k<x . k e y \\
4 & \text { return Tree-SEARCH }(x . \text { left }, k) \\
5 & \text { else return TreE-SEARCH }(x . \text { right }, k)
\end{aligned}
$$

■ Is this correct? Yes, thanks to the binary-search-tree property
■ Complexity?

Search (2)

- Iterative binary search

Search (2)

■ Iterative binary search

$$
\begin{array}{rl}
\operatorname{Iterative-Tree-Search}(T, k) 1 & x=T . \text { root } \\
2 & \text { while } x \neq \text { NIL } \wedge k \neq x . \text { key } \\
3 & \text { if } k<x . \text { key } \\
4 & x=x . l e f t \\
5 & \text { else } x=x . \text { right } \\
6 & \text { return } x
\end{array}
$$

Insertion

- Idea
- in order to insert x, we search for x (more precisely x. key)
- if we don't find it, we add it where the search stopped

$$
\begin{array}{lll}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . k e y<x . \text { key } \\
6 & x=x . l e f t \\
7 & \text { else } x=x . r i g h t \\
7 & \text { z.parent }=y \\
& 9 & \text { if } y=\text { NIL } \\
10 & T . \text { root }=z \\
11 & \text { else if } z . k e y<y . k e y \\
12 & y . l e f t=z \\
13 & \text { else } y . \text { right }=z
\end{array}
$$

$$
\begin{array}{lll}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . k e y<x . \text { key } \\
6 & x=x . l e f t \\
7 & \text { else } x=x . r i g h t \\
7 & \text { z.parent }=y \\
9 & \text { if } y=\text { NIL } \\
10 & T . \text { root }=z \\
11 & \text { else if } z . k e y<y . k e y \\
12 & \text { y.left }=z \\
13 & \text { else } y . r i g h t=z
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Tree}-\operatorname{lnsert}(T, z) 1 \quad y=\operatorname{NiL} \\
& x=T \text {.root } \\
& \text { while } x \neq \text { NIL } \\
& y=x \\
& \text { if } z . \text { key < x.key } \\
& x=x \text {.left } \\
& \text { else } x=x . \text { right } \\
& \text { z.parent }=y \\
& \text { if } y=\text { NIL } \\
& \text { T. root }=z \\
& \text { else if } z . \text { key }<y \text {.key } \\
& 12 \quad y . l e f t=z \\
& 13 \quad \text { else } y . \text { right }=z \\
& 10 \\
& \begin{array}{lr}
11 & \text { else if } z . \text { key }<y . \text { key } \\
12 & y . l e f t=z \\
13 & \text { else } y . \text { right }=z
\end{array}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . \text { key }<x . \text { key } \\
6 & x=x . l e f t \\
6 & \text { else } x=x . \text { right } \\
7 & \text { z.parent }=y \\
8 & \text { if } y=\text { NIL } \\
9 & T . \text { root }=z \\
10 & \text { else if } z . k e y<y . k e y \\
11 & y . l e f t=z \\
12 & \text { else } y . \text { right }=z
\end{array}
$$

$$
\begin{array}{lcc}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . \text { ke } y<x . \text { key } \\
6 & x=x \text {.left } \\
7 & \text { else } x=x . \text { right } \\
7 & \text { z.parent }=y \\
9 & \text { if } y=\text { NIL } \\
10 & T . \text { root }=z \\
11 & \text { else if } z . k e y<y . k e y \\
12 & \text { else } y . \text { right }=z
\end{array}
$$

$$
\begin{array}{ccc}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . k e y<x . \text { key } \\
6 & x=x . l e f t \\
7 & \text { else } x=x . r i g h t \\
7 & \text { z.parent }=y \\
9 & \text { if } y=\text { NIL } \\
10 & T . \text { root }=z \\
11 & \text { else if } z . k e y<y . k e y \\
12 & y . l e f t=z \\
13 & \text { else } y . r i g h t=z
\end{array}
$$

$$
\begin{array}{ccc}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . k e y<x . \text { key } \\
6 & x=x . l e f t \\
7 & \text { else } x=x . r i g h t \\
7 & \text { z.parent }=y \\
9 & \text { if } y=\text { NIL } \\
10 & T . \text { root }=z \\
11 & \text { else if } z . k e y<y . k e y \\
12 & y . l e f t=z \\
13 & \text { else } y . r i g h t=z
\end{array}
$$

$$
\begin{array}{lll}
\text { Tree-Insert }(T, z) & 1 & y=\text { NIL } \\
2 & x=T . r o o t \\
3 & \text { while } x \neq \text { NIL } \\
4 & y=x \\
5 & \text { if } z . k e y<x . \text { key } \\
& 6 & x=x . l e f t \\
7 & \text { else } x=x . r i g h t \\
7 & \text { z.parent }=y \\
9 & \text { if } y=\text { NIL } \\
10 & T . r o o t=z \\
11 & \text { else if } z . k e y<y . k e y \\
12 & \text { else } y . \text { right }=z
\end{array}
$$

$$
T(n)=\Theta(h)
$$

Observation

- Both insertion and search operations have complexity h, where h is the height of the tree

Observation

■ Both insertion and search operations have complexity h, where h is the height of the tree

■ $h=O(\log n)$ in the average case

- i.e., with a random insertion order

Observation

■ Both insertion and search operations have complexity h, where h is the height of the tree

■ $h=O(\log n)$ in the average case

- i.e., with a random insertion order

■ $h=O(n)$ in some particular cases

Observation

■ Both insertion and search operations have complexity h, where h is the height of the tree

■ $h=O(\log n)$ in the average case

- i.e., with a random insertion order

■ $h=O(n)$ in some particular cases

- i.e., with ordered sequences

Observation

■ Both insertion and search operations have complexity h, where h is the height of the tree

■ $h=O(\log n)$ in the average case

- i.e., with a random insertion order

■ $h=O(n)$ in some particular cases

- i.e., with ordered sequences
- the problem is that the "worst" case is not that uncommon

Observation

■ Both insertion and search operations have complexity h, where h is the height of the tree

■ $h=O(\log n)$ in the average case

- i.e., with a random insertion order
- $h=O(n)$ in some particular cases
- i.e., with ordered sequences
- the problem is that the "worst" case is not that uncommon

■ Idea: use randomization to turn all cases in the average case

Randomized Insertion

■ Idea 1: insert every sequence as a random sequence

Randomized Insertion

■ Idea 1: insert every sequence as a random sequence

- i.e., given $A=\langle 1,2,3, \ldots, n\rangle$, insert a random permutation of A

Randomized Insertion

■ Idea 1: insert every sequence as a random sequence

- i.e., given $A=\langle 1,2,3, \ldots, n\rangle$, insert a random permutation of A
- problem: A is not necessarily known in advance

Randomized Insertion

■ Idea 1: insert every sequence as a random sequence

- i.e., given $A=\langle 1,2,3, \ldots, n\rangle$, insert a random permutation of A
- problem: A is not necessarily known in advance
- Idea 2: we can obtain a random permutation of the input sequence by randomly alternating two insertion procedures
- tail insertion: this is what Tree-Insert does

Randomized Insertion

■ Idea 1: insert every sequence as a random sequence

- i.e., given $A=\langle 1,2,3, \ldots, n\rangle$, insert a random permutation of A
- problem: A is not necessarily known in advance

■ Idea 2: we can obtain a random permutation of the input sequence by randomly alternating two insertion procedures

- tail insertion: this is what Tree-Insert does
- head insertion: for this we need a new procedure Tree-Root-Insert
- inserts n in T as if n was inserted as the first element

Randomized Insertion (2)

Tree-Randomized-Insert1 $(T, z) 1 \quad r=$ uniformly random value from $\{1, \ldots, t$.size +1 2 if $r=1$
3 Tree-Root-Insert (T, z)
4 else Tree-Insert (T, z)

Randomized Insertion (2)

Tree-Randomized-Insert1 $(T, z) 1 \quad r=$ uniformly random value from $\{1, \ldots, t$.size +1 2 if $r=1$ Tree-Root-Insert (T, z) 4 else Tree-Insert (T, z)

■ Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?

Randomized Insertion (2)

Tree-Randomized-Inserti $(T, z) 1 \quad r=$ uniformly random value from $\{1, \ldots, t$.size +1 2 if $r=1$ Tree-Root-Insert (T, z) 4 else Tree-Insert (T, z)

■ Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?
- no, clearly the last element can only go to the top or to the bottom

Randomized Insertion (2)

Tree-Randomized-Insert $1(T, z) 1 \quad r=$ uniformly random value from $\{1, \ldots, t$.size +1 2 if $r=1$ Tree-Root-Insert (T, z) 4 else Tree-Insert (T, z)

■ Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?
- no, clearly the last element can only go to the top or to the bottom

■ It is true that any node has the same probability of being inserted at the top

Randomized Insertion (2)

Tree-Randomized-Insert1 $(T, z) 1 \quad r=$ uniformly random value from $\{1, \ldots, t$.size +1 2 if $r=1$ Tree-Root-Insert (T, z) 4 else Tree-Insert (T, z)

■ Does this really simulate a random permutation?

- i.e., with all permutations being equally likely?
- no, clearly the last element can only go to the top or to the bottom

■ It is true that any node has the same probability of being inserted at the top

- this suggests a recursive application of this same procedure

Randomized Insertion (3)

Randomized Insertion (3)

```
Tree-RANDOMIZED-INSERT}(t,z) 1 if t = NIL
        return z
    3 r= uniformly random value from {1,\ldots,t.size + 1
    4 ~ i f ~ r = 1 ~ / / ~ P r [ r = 1 ] = 1 / ( t . s i z e ~ + 1 )
        z.size = t.size +1
        return Tree-Root-Insert( }t,z
    if z.key < t.key
        t.left = Tree-Randomized-Insert(t.left, z)
        else t.right = Tree-Randomized-Insert(t.right,z)
        t.size = t.size +1
    11 return t
```


Randomized Insertion (3)

```
Tree-RANDOMIZED-INSERT}(t,z)1 if t = NIL
        return z
    r= uniformly random value from {1, ..,t.size + 1
if r=1 // Pr[r=1]=1/(t.size + 1)
        z.size = t.size +1
        return Tree-Root-Insert( }t,z
    if z.key < t.key
        t.left = Tree-Randomized-Insert(t.left, z)
        else t.right = Tree-RaNDOMIZED-INSERT(t.right,z)
        t.size = t.size +1
    11 return t
```

■ Looks like this one really simulates a random permutation...

Rotation

■ $x=$ RIGHt-Rotate (x)

■ $x=$ Right-Rotate (x)
■ $x=$ Left-Rotate (x)

Right-Rotate $(x) 1$	l=x.left
2	x.left $=$ I.right
3	l.right $=x$
4	return $/$

$$
\begin{array}{rl}
\text { Left-Rotate }(x) 1 & r=x . \text { right } \\
2 & x . r i g h t=r . l e f t \\
3 & \text { r.left }=x \\
4 & \text { return } r
\end{array}
$$

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Root Insertion

1. Recursively insert z at the root of the appropriate subtree (right)
2. Rotate x with z (left-rotate)

Root Insertion (2)

Tree-Root-Insert $(x, z) 1$ if $x=$ NIL return z
3 if z. key <x.key
$4 \quad x$.left = Tree-Root-Insert $(x . l e f t, z)$
5 return Right-Rotate (x)
6 else x.right $=$ Tree-Root-Insert $(x . r i g h t, z)$
7 return Left-Rotate (x)

Observation

■ General strategies to deal with complexity in the worst case

Observation

■ General strategies to deal with complexity in the worst case

- randomization: turns any case into the average case
- the worst case is still possible, but it is extremely improbable

Observation

■ General strategies to deal with complexity in the worst case

- randomization: turns any case into the average case
- the worst case is still possible, but it is extremely improbable
- amortized maintenance: e.g., balancing a BST or resizing a hash table
- relatively expensive but "amortized" operations

Observation

■ General strategies to deal with complexity in the worst case

- randomization: turns any case into the average case
- the worst case is still possible, but it is extremely improbable
- amortized maintenance: e.g., balancing a BST or resizing a hash table
- relatively expensive but "amortized" operations
- optimized data structures: a self-balanced data structure
- guaranteed $O(\log n)$ complexity bounds

1. z has no children

2. z has no children

- simply remove z

1. z has no children

- simply remove z

1. z has no children

- simply remove z

2. z has one child

3. z has no children

- simply remove z

2. z has one child

- removez

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

1. z has no children

- simply remove z

2. z has one child

- removez
- connect z.parent to z.right

3. z has two children

Deletion

1. z has no children

- simply remove z

2. z has one child

- remove z
- connect z.parent to z.right

3. z has two children

- replace z with $y=\operatorname{Tree-Successor}(z)$
- remove y (1 child!)

Deletion

1. z has no children

- simply remove z

2. z has one child

- remove z
- connect z.parent to z.right

3. z has two children

- replace z with $y=\operatorname{Tree-Successor}(z)$
- remove y (1 child!)
- connect y.parent to y.right

```
\(\operatorname{Tree}-\operatorname{Delete}(T, z) 1\) if \(z\).left \(=\) Nil or \(z . r i g h t=\) Nil
    \(2 \quad y=z\)
        else \(y=\) Tree-Successor(z)
        if \(y\). left \(\neq\) NIL
        \(x=y\).left
        else \(x=y\).right
        if \(x \neq\) NIL
            x.parent \(=y\). parent
        if \(y\). parent \(==\) NIL
            T.root \(=x\)
        else if \(y=y\).parent. left
        \(y \cdot\) parent.left \(=x\)
        else \(y\).parent.right \(=x\)
        if \(y \neq z\)
        \(15 \quad\) z.key \(=y . k e y\)
        16 copy any other data from \(y\) into \(z\)
```

