
Algorithms and Data Structures (II)

Gabriel Istrate

March 10, 2020

Gabriel Istrate Algorithms and Data Structures (II)

Dictionary

A dictionary is an abstract data structure that represents a set of
elements (or keys)

a dynamic set

Interface (generic interface)

Insert(D, k) adds a key k to the dictionary D

Delete(D, k) removes key k from D

Search(D, k) tells whether D contains a key k

Implementation

many (concrete) data structures

we’ll see: hash tables

Gabriel Istrate Algorithms and Data Structures (II)

Dictionary

A dictionary is an abstract data structure that represents a set of
elements (or keys)

a dynamic set

Interface (generic interface)

Insert(D, k) adds a key k to the dictionary D

Delete(D, k) removes key k from D

Search(D, k) tells whether D contains a key k

Implementation

many (concrete) data structures

we’ll see: hash tables

Gabriel Istrate Algorithms and Data Structures (II)

Dictionary

A dictionary is an abstract data structure that represents a set of
elements (or keys)

a dynamic set

Interface (generic interface)

Insert(D, k) adds a key k to the dictionary D

Delete(D, k) removes key k from D

Search(D, k) tells whether D contains a key k

Implementation

many (concrete) data structures

we’ll see: hash tables

Gabriel Istrate Algorithms and Data Structures (II)

Dictionary

A dictionary is an abstract data structure that represents a set of
elements (or keys)

a dynamic set

Interface (generic interface)

Insert(D, k) adds a key k to the dictionary D

Delete(D, k) removes key k from D

Search(D, k) tells whether D contains a key k

Implementation

many (concrete) data structures

we’ll see: hash tables

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table
A direct-address table implements a dictionary

The universe of keys is U = {1, 2, . . . ,M}

Implementation
an array T of size M
we store keys directly in T !

Direct-Address-Insert(T, k)
1 T[k] = true

Direct-Address-Delete(T, k)
1 T[k] = false

Direct-Address-Search(T, k)
1 return T[k]

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table
A direct-address table implements a dictionary

The universe of keys is U = {1, 2, . . . ,M}

Implementation
an array T of size M
we store keys directly in T !

Direct-Address-Insert(T, k)
1 T[k] = true

Direct-Address-Delete(T, k)
1 T[k] = false

Direct-Address-Search(T, k)
1 return T[k]

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table
A direct-address table implements a dictionary

The universe of keys is U = {1, 2, . . . ,M}

Implementation
an array T of size M
we store keys directly in T !

Direct-Address-Insert(T, k)
1 T[k] = true

Direct-Address-Delete(T, k)
1 T[k] = false

Direct-Address-Search(T, k)
1 return T[k]

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table
A direct-address table implements a dictionary

The universe of keys is U = {1, 2, . . . ,M}

Implementation
an array T of size M
we store keys directly in T !

Direct-Address-Insert(T, k)
1 T[k] = true

Direct-Address-Delete(T, k)
1 T[k] = false

Direct-Address-Search(T, k)
1 return T[k]

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table (2)

Complexity

All direct-address table operations are O(1)✓

So why isn’t every set implemented with a direct-address table?

Space complexity is Θ(|U|)×

|U| is typically a very large number—U is the universe of keys!

the represented set is typically much smaller than |U|
i.e., a direct-address table usually wastes a lot of space

Want: the benefits of a direct-address table but with a table of
reasonable size.

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table (2)

Complexity

All direct-address table operations are O(1)✓

So why isn’t every set implemented with a direct-address table?

Space complexity is Θ(|U|)×

|U| is typically a very large number—U is the universe of keys!

the represented set is typically much smaller than |U|
i.e., a direct-address table usually wastes a lot of space

Want: the benefits of a direct-address table but with a table of
reasonable size.

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table (2)

Complexity

All direct-address table operations are O(1)✓

So why isn’t every set implemented with a direct-address table?

Space complexity is Θ(|U|)×

|U| is typically a very large number—U is the universe of keys!

the represented set is typically much smaller than |U|
i.e., a direct-address table usually wastes a lot of space

Want: the benefits of a direct-address table but with a table of
reasonable size.

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table (2)

Complexity

All direct-address table operations are O(1)✓

So why isn’t every set implemented with a direct-address table?

Space complexity is Θ(|U|)×

|U| is typically a very large number—U is the universe of keys!

the represented set is typically much smaller than |U|
i.e., a direct-address table usually wastes a lot of space

Want: the benefits of a direct-address table but with a table of
reasonable size.

Gabriel Istrate Algorithms and Data Structures (II)

Direct-Address Table (2)

Complexity

All direct-address table operations are O(1)✓

So why isn’t every set implemented with a direct-address table?

Space complexity is Θ(|U|)×

|U| is typically a very large number—U is the universe of keys!

the represented set is typically much smaller than |U|
i.e., a direct-address table usually wastes a lot of space

Want: the benefits of a direct-address table but with a table of
reasonable size.

Gabriel Istrate Algorithms and Data Structures (II)

Direct Access Tables: Scorecard

Algorithm Complexity

INSERT O(1)✓

DELETE O(1)✓

SEARCH O(1)✓

MEMORY: θ(M)×

Gabriel Istrate Algorithms and Data Structures (II)

Hash Tables
Idea

use a table T with |T| ≪ |U|
map each key k ∈ U to a position in T, using a hash function

h : U → {1, . . . , |T|}

h(k) easy (O(1)) to compute given k

Hash-Insert(T, k)
1 T[h(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return T[h(k)]

Are these algorithms always correct? No!

What if two distinct keys k1 ̸= k2 collide? (I.e., h(k1) = h(k2))

Gabriel Istrate Algorithms and Data Structures (II)

Hash Tables
Idea

use a table T with |T| ≪ |U|
map each key k ∈ U to a position in T, using a hash function

h : U → {1, . . . , |T|}

h(k) easy (O(1)) to compute given k

Hash-Insert(T, k)
1 T[h(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return T[h(k)]

Are these algorithms always correct? No!

What if two distinct keys k1 ̸= k2 collide? (I.e., h(k1) = h(k2))

Gabriel Istrate Algorithms and Data Structures (II)

Hash Tables
Idea

use a table T with |T| ≪ |U|
map each key k ∈ U to a position in T, using a hash function

h : U → {1, . . . , |T|}

h(k) easy (O(1)) to compute given k

Hash-Insert(T, k)
1 T[h(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return T[h(k)]

Are these algorithms always correct?

No!

What if two distinct keys k1 ̸= k2 collide? (I.e., h(k1) = h(k2))

Gabriel Istrate Algorithms and Data Structures (II)

Hash Tables
Idea

use a table T with |T| ≪ |U|
map each key k ∈ U to a position in T, using a hash function

h : U → {1, . . . , |T|}

h(k) easy (O(1)) to compute given k

Hash-Insert(T, k)
1 T[h(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return T[h(k)]

Are these algorithms always correct? No!

What if two distinct keys k1 ̸= k2 collide? (I.e., h(k1) = h(k2))

Gabriel Istrate Algorithms and Data Structures (II)

Hash Tables
Idea

use a table T with |T| ≪ |U|
map each key k ∈ U to a position in T, using a hash function

h : U → {1, . . . , |T|}

h(k) easy (O(1)) to compute given k

Hash-Insert(T, k)
1 T[h(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return T[h(k)]

Are these algorithms always correct? No!

What if two distinct keys k1 ̸= k2 collide? (I.e., h(k1) = h(k2))Gabriel Istrate Algorithms and Data Structures (II)

Hash tables

Work well ”on the average”
Analogy: throw T balls at random into N bins.
If T << N (in fact T = o(

√
N) then with high-probability no two

balls land in the same bin.
On the average: T/N balls in each bin.
Want our hash-function to be ”random-like”: elements of U
”thrown out uniformly” by h onto elements of T.

Gabriel Istrate Algorithms and Data Structures (II)

Hashing With Chaining

Store all objects that map to the same bucket in a linked list.
”Hope” that hash function is ”uniform enough”, linked lists are
not too large, set operations are efficient.

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T

k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hash Table: Chaining

U

T
k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|

Gabriel Istrate Algorithms and Data Structures (II)

Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T|

for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T|

= α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1 + α)

Gabriel Istrate Algorithms and Data Structures (II)

Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T|

for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T|

= α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1 + α)

Gabriel Istrate Algorithms and Data Structures (II)

Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T|

for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T|

= α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1 + α)

Gabriel Istrate Algorithms and Data Structures (II)

Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T|

for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T|

= α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1 + α)

Gabriel Istrate Algorithms and Data Structures (II)

Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T|

for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T|

= α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1 + α)

Gabriel Istrate Algorithms and Data Structures (II)

Hashing with Open Addressing

Alternative to chaining: instead of using linked lists,store all the
elements in the table

this implies α ≤ 1

When a collision occurs, simply find another free cell in T

A sequential “probing” method may not be optimal

can you imagine why?

Gabriel Istrate Algorithms and Data Structures (II)

Hashing with Open Addressing

Alternative to chaining: instead of using linked lists,store all the
elements in the table

this implies α ≤ 1

When a collision occurs, simply find another free cell in T

A sequential “probing” method may not be optimal

can you imagine why?

Gabriel Istrate Algorithms and Data Structures (II)

Hashing with Open Addressing

Alternative to chaining: instead of using linked lists,store all the
elements in the table

this implies α ≤ 1

When a collision occurs, simply find another free cell in T

A sequential “probing” method may not be optimal

can you imagine why?

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T

k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2

k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Address Hash Table

U

T
k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j + 1
8 else j = 1
9 error “overflow”

Gabriel Istrate Algorithms and Data Structures (II)

Open-Addressing (3)

Hash-Insert(T, k)
1 for i = 1 to T. length
2 j = h(k, i)
3 if T[j] == nil
4 T[j] = k
5 return j
6 error “overflow”

Notice that h(k, ·) must be a permutation

i.e., h(k, 1),h(k, 2), . . . , h(k, |T|) must cover the entire table T

Gabriel Istrate Algorithms and Data Structures (II)

Open-Addressing (3)

Hash-Insert(T, k)
1 for i = 1 to T. length
2 j = h(k, i)
3 if T[j] == nil
4 T[j] = k
5 return j
6 error “overflow”

Notice that h(k, ·) must be a permutation

i.e., h(k, 1),h(k, 2), . . . , h(k, |T|) must cover the entire table T

Gabriel Istrate Algorithms and Data Structures (II)

Procedure HASH-SEARCH

Gabriel Istrate Algorithms and Data Structures (II)

Open-address hashing
Deletion: difficult. Marking NIL does not work.
Doing so might make it impossible to retrieve any key during
whose insertion probed slot i and found it occupied.
One solution: DELETED instead of NIL. Problem: search time
no longer dependent on load factor.
Techniques for probing: linear probing, quadratic probing and
double hashing.
Linear probing: given auxiliary hash function
h′ : U → {0, . . . ,m − 1}, use hash function

h(k, i) = (h′(k) + i) mod m.

Easy to implement but suffers from problem called primary
clustering.
Long runs of occupied slots build up, increasing average search
time.

Gabriel Istrate Algorithms and Data Structures (II)

Open-address hashing

Quadratic probing

h(k, i) = (h′(k) + c1i + c2i2) mod m.

Works much better than linear probing, but to make use of full
hash table the values of c1, c2,m are constrained.
Suffers from secondary clustering: if two keys have the same
initial probe position then their probe sequences are the same.

Gabriel Istrate Algorithms and Data Structures (II)

Open-address hashing

Double hashing

h(k, i) = (h1(k) + ih2(k)) mod m.

Among the best methods for open addressing.
h2(k) must be relative prime to m. One solution is m a power of
two and h2(k) odd.
Another one: m prime, h2(k) < m.
Given an open address hash table with load factor α = n/m < 1
the expected number of probes in an unsuccessful search is at
most 1/(1 − α), assuming uniform hashing.

Gabriel Istrate Algorithms and Data Structures (II)

Double hashing

Gabriel Istrate Algorithms and Data Structures (II)

Good hash functions

Caution
The area of designing good hash function huge.
Theoreticians and practitioners as well.
Many hash functions good for specific goal.
Appearing next does not mean you should blindly use them !
Drozdek: discusses some more ”practical” examples.
Here: we follow CORMEN, concentrate on general ideas.

Requirements
A good hash function satisfies (approximately) the assumption of
uniform hashing.
Unfortunately, usually we don’t know probability distribution of
the keys, and keys might not be drawn independently.

Gabriel Istrate Algorithms and Data Structures (II)

Good hash functions

Good case: if items are random real numbers k uniformly
distributed in [0, 1), h(k) = ⌊km satisfies simple uniform hashing
conditions.
Most hash functions assume universe of keys are the natural
numbers.
E.g. character string = integer in base 128 notation.
Identifier pt. ASCII p = 112, t = 116, becomes
112 · 128 + 116 = 14452.
Division method: h(k) = k mod m. Avoid some values of m,e.g.
powers of two. Indeed, if m = 2p then h(k) = the p lowest bits of
k. Unless we know that p lowest bits of keys are uniform not a
good idea.
Prime not too close to an exact power of two = often a good
choice.

Gabriel Istrate Algorithms and Data Structures (II)

Folding

Input: broken into pieces.
Combined in some way.

Example
SSN (American CNP): 123456789.
Divide into three parts: 123, 456, 789.
Add these: 1368.
Reduced modulo table-size (1000): 368

Gabriel Istrate Algorithms and Data Structures (II)

Good hash functions: Multiplication method

Multiplication method: Two stage procedure
First, multiply key by constant A in range 0 < A < 1, extract
fractional part.
Then multiply by m, extract floor.
h(k) = ⌊m(kA mod 1)⌋.
Value of m not critical. m = 2p.
Easy implementation. Restrict A = s/2w, w=machine word size.
Better with some values of A than other. Knuth suggests
A ∼ (

√
5 − 1)/2 will work well.

Gabriel Istrate Algorithms and Data Structures (II)

Multiplication-method of hashing

Gabriel Istrate Algorithms and Data Structures (II)

Universal hashing

Any fixed hash function vulnerable to worst case behavior:
if ”adversary” chooses n keys that all hash to the same slot, this
yields average search time of θ(n).
Practical example: Crosby and Wallach (USENIX’03) have
shown that one can slow down to a halt systems by attacking
implementations of hash tables in Perl, squid web proxy, Bro
intrusion detection.
Cause: hashing mechanism known (due to, e.g. publicly available
implementation).
Solution: choose hash function randomly, independent of the
keys that are going to be stored.

Gabriel Istrate Algorithms and Data Structures (II)

Attack when hashing mechanism known

Denial of Service via Algorithmic Complexity Attacks

Scott A. Crosby Dan S. Wallach
scrosby@cs.rice.edu dwallach@cs.rice.edu

Department of Computer Science, Rice University

Abstract

We present a new class of low-bandwidth denial of
service attacks that exploit algorithmic deficiencies
in many common applications’ data structures. Fre-
quently used data structures have “average-case”
expected running time that’s far more efficient than
the worst case. For example, both binary trees and
hash tables can degenerate to linked lists with care-
fully chosen input. We show how an attacker can
effectively compute such input, and we demonstrate
attacks against the hash table implementations in
two versions of Perl, the Squid web proxy, and the
Bro intrusion detection system. Using bandwidth
less than a typical dialup modem, we can bring a
dedicated Bro server to its knees; after six min-
utes of carefully chosen packets, our Bro server was
dropping as much as 71% of its traffic and consum-
ing all of its CPU. We show how modern universal
hashing techniques can yield performance compa-
rable to commonplace hash functions while being
provably secure against these attacks.

1 Introduction

When analyzing the running time of algorithms,
a common technique is to differentiate best-case,
common-case, and worst-cast performance. For ex-
ample, an unbalanced binary tree will be expected
to consume O(n logn) time to insert n elements,
but if the elements happen to be sorted beforehand,
then the tree would degenerate to a linked list, and
it would take O(n2) time to insert all n elements.
Similarly, a hash table would be expected to con-

sume O(n) time to insert n elements. However, if
each element hashes to the same bucket, the hash
table will also degenerate to a linked list, and it will
take O(n2) time to insert n elements.

While balanced tree algorithms, such as red-black
trees [11], AVL trees [1], and treaps [17] can avoid
predictable input which causes worst-case behav-
ior, and universal hash functions [5] can be used
to make hash functions that are not predictable by
an attacker, many common applications use simpler
algorithms. If an attacker can control and predict
the inputs being used by these algorithms, then the
attacker may be able to induce the worst-case exe-
cution time, effectively causing a denial-of-service
(DoS) attack.

Such algorithmic DoS attacks have much in com-
mon with other low-bandwidth DoS attacks, such as
stack smashing [2] or the ping-of-death 1, wherein a
relatively short message causes an Internet server to
crash or misbehave. While a variety of techniques
can be used to address these DoS attacks, com-
mon industrial practice still allows bugs like these
to appear in commercial products. However, unlike
stack smashing, attacks that target poorly chosen al-
gorithms can function even against code written in
safe languages. One early example was discovered
by Garfinkel [10], who described nested HTML
tables that induced the browser to perform super-
linear work to derive the table’s on-screen layout.
More recently, Stubblefield and Dean [8] described
attacks against SSL servers, where a malicious
web client can coerce a web server into perform-
ing expensive RSA decryption operations. They

1http://www.insecure.org/sploits/
ping-o-death.html has a nice summary.

Gabriel Istrate Algorithms and Data Structures (II)

Universal hashing

H finite collection of hash functions that map universe U into
{0, 1, . . . ,m − 1}.
Such a collection is called universal if for every keys k ̸= l ∈ U,
the number of hash functions h ∈ H for which h(k) = h(l) is at
most |H/m|.
Suppose a hash function h is chosen from a universal collection of
hash functions, and is used to hash n keys into a table T of size
m (using chaining).
If key is not in the table expected length of the list that k hashes
to is at most α.
If key is not in the table expected length of the list that k hashes
to is at most 1 + α.

Gabriel Istrate Algorithms and Data Structures (II)

A universal class of hash functions

Due to Carter and Wegman.
a ≡ b (mod p) if p|(a − b).
Zp: integers modulo p. p prime.
How do we choose p ? So that all keys are in the range 0 to p− 1.
m: number of slots in the hash table.
a ∈ Z∗

p, b ∈ Zp.
ha,b(k) = ((ak + b) (mod p)) (mod m).

Hp,m = {ha,b : a ∈ Z∗
p,b ∈ Zp}.

Other applications of this set of hash functions: pseudo-random
generators.

Gabriel Istrate Algorithms and Data Structures (II)

Perfect hashing

Hashing can provide worst-case performance when the set of keys
is static: once stored in the table, the set of keys never changes.
Example: set of files on a DVD-R (finished).
Perfect hashing: the worst-case number of accesses to perform a
search is O(1).
Idea: two-level hashing with universal hashing at each level.
First level: the n keys are hashed into m slots using a hashing
function chosen from a family of universal hash functions.
Instead of chaining: Use (small) secondary table Sj with an
associated hash function hj.
Choosing hj carefully guarantees no collisions.

Gabriel Istrate Algorithms and Data Structures (II)

Perfect hashing with chaining

Gabriel Istrate Algorithms and Data Structures (II)

Perfect hashing: design

nj = number of elements that hash to slot j.
We let mj = |Sj| = n2

j .

Idea: if m = n2 and we store n keys in a table of size m = n2

using a hash function randomly chosen from a set of universal
hash function then the collision probability is at most 1/2.
Find a good hash function using O(1) trials.
Expected amount of memory O(n).
Why this works: proof omitted (see Cormen if curious).

Gabriel Istrate Algorithms and Data Structures (II)

Hashing: there is more

Cryptographic hash functions: hash functions with good security
properties.
Most well-known cryptographic hash function: md5 (Rabin).
You probably have encountered it if you downloaded anything
large from the web.
(sha-1), sha-2, sha-3.
U.S. Government standards.
(Some) attacks on sha-1 (CWI Amsterdam, 2017)

SHA1(”The quick brown fox jumps over the lazy dog”) gives
hexadecimal: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12 gives
Base64 binary to ASCII text encoding:
L9ThxnotKPzthJ7hu3bnORuT6xI=

Gabriel Istrate Algorithms and Data Structures (II)

Bloom filters

Probabilistic data structure. Used to test membership of an
element in a dataset.
NO answer: correct
YES anwer: possibly false positive.

Gabriel Istrate Algorithms and Data Structures (II)

Hashing: where to go from here

MapReduce model for grid computing: programming with hash
functions.
Data: key-value pairs.
Map: applied in parallel to every pair (keyed by k1). Produces a
list of pairs (keyed by k2) for each call.
Mapreduce collects all pairs with the same k2 and groups them
together.
Reduce: applied in parallel to each group, which in turn
produces a collection of values in the same domain.

Gabriel Istrate Algorithms and Data Structures (II)

Hashing: where to go from here
Locality-sensitive hashing: reduces the dimensionality of
high-dimensional data. LSH hashes input items so that similar
items map to the same ’buckets’ with high probability.

Gabriel Istrate Algorithms and Data Structures (II)

Hashing in programming languages

Python: dictionaries.
Hash tables in STL: some implementations (e.g. SGI). Most
functionality provided by associative container map
(implemented using red-black trees).
However: C++-11: two implementations, std::unordered_map
and std::unordered_set.

Gabriel Istrate Algorithms and Data Structures (II)

