Algorithms and Data Structures (II)

Gabriel Istrate

March 4, 2020

First of all ...

Last time: Stacks

- A Stack is a sequential organization of items in which the last element inserted is the first element removed. They are often referred to as LIFO, which stands for "last in first out."
- Examples: letter basket, stack of trays, stack of plates.
- Only element that may be accessed: the one that was most recently inserted.
- There are only two basic operations on stacks, the push (insert), and the pop (read and delete).

Stacks: Implementation

(a)

S.top $=6$
(b)

(c)

- (a). Stack representing set $S=\{2,6,9,15\}$.
- (b). After PUSH(S,3).
- (c). After POP(S).

Operator Precedence Parsing

- We can use the stack class we just defined to parse and evaluate mathematical expressions like:

$$
5 *(((9+8) *(4 * 6))+7)
$$

- First, we transform it to postfix notation:

$$
598+46 * * 7+*
$$

- Usual form for arithmetic expressions: infix. term1 op term2.
- Postfix notation: term1 term2 op.
- How to convert infix to postfix: later !

Evaluating Postfix expressions

Then, the following $\mathrm{C}++$ routine uses a stack to perform this evaluation:

```
1 char c;
    2 Stack acc(50);
    3 int x;
    4 while (cin.get(c))
    {
    6 x = 0;
    7 while (c == ', ) cin.get(c);
    8 if (c == '+') x = acc.pop() + acc.pop();
    9 if (c == '*') x = acc.pop() * acc.pop();
10 while ( }\textrm{c}\geq\mathrm{ '0' && c }\leq '9'
11 x = 10*x + (c-'0'); cin.get(c);
12 acc.push(x);
13 }
14 cout << acc.pop();
```


Explanation of code

- We read one character at a time in c.
- In x we compute the value of the currently evaluated expression.
- After computing it we push the value on the stack - we will need it later.
- When reading an op we take the last two value off the stack and apply the op on them and assign this to x .
- When reading a digit we update value of x by making the last read digit the least significant one.

Stacks: Applications

- Algorithms (later).
- Recursion removal.
- Reversing things.
- Procedure call and procedure return is similar to matching symbols:
- When a procedure returns, it returns to the most recently active procedure.
- When a procedure call is made, save current state on the stack. On return, restore the state by popping the stack.
- Formal languages: pushdown automata.

Queues

- The ubiquitous "first-in first-out" container (FIFO)

Queues

- The ubiquitous "first-in first-out" container (FIFO)
- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeue (Q) extracts the element at the head of queue Q

Queues

- The ubiquitous "first-in first-out" container (FIFO)
- Interface
- Enqueue (Q, x) adds element x at the back of queue Q
- Dequeue (Q) extracts the element at the head of queue Q
- Implementation
- Q is an array of fixed length Q.length
- i.e., Q holds at most Q.length elements
- enqueueing more than Q elements causes an "overflow" error
- Q.head is the position of the "head" of the queue
- Q.tail is the first empty position at the tail of the queue

Enqueue

Enqueue (Q, x)
1
if Q.queue-full

2 \quad error "overflow" \quad| 3 | else Q[Q.tail] $=\mathrm{x}$ |
| :--- | :---: |
| 4 | if Q.tail $<$ Q.length |
| 5 | Q.tail $=\mathrm{Q}$. tail +1 |
| 6 | else Q.tail $=1$ |
| 7 | if Q.tail $==\mathrm{Q}$. head |
| 8 | Q.queue-full $=$ true |
| 9 | Q.queue-empty $=$ false |

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Enqueue

Enqueue (Q, x)	
1	if Q.queue-full
2	error "overflow"
3	else Q[Q.tail] $=\mathrm{x}$
4	if Q.tail $<$ Q.length
5	Q.tail $=\mathrm{Q}$. tail +1
6	else Q.tail $=1$
7	if Q.tail $==\mathrm{Q}$. head
8	Q.queue-full $=$ true
9	Q.queue-empty $=$ false

Enqueue

Enqueue (Q, x)	
1	if Q.queue-full
2	error "overflow"
3	else
4	Q[Q.tail] $=\mathrm{x}$
5	if Q.tail $<\mathrm{Q}$. length
6	Q.tail $=\mathrm{Q}$. tail +1
7	else Q.tail $=1$
8	if Q.tail $==\mathrm{Q}$. head
9	Q.queue-full $=$ true

Enqueue

	queue(Q, x)
1	if Q.queue-full
2	error "overflow"
3	else $\mathrm{Q}[\mathrm{Q}$. tail $]=\mathrm{x}$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail $=1$
7	if Q.tail = = Q.head
8	Q.queue-full $=$ true
9	Q.queue-empty $=$ false

Enqueue

Enqueue

	queue(Q,x)
1	if Q.queue-full
2	error "overflow"
3	else $\mathrm{Q}[\mathrm{Q}$. tail] $=\mathrm{x}$
4	if Q.tail < Q.length
5	Q.tail $=$ Q.tail +1
6	else Q.tail $=1$
7	if Q.tail = = Q.head
8	Q.queue-full $=$ true
9	Q.queue-empty $=$ false

Enqueue

Enqueue

Enqueue (Q, x)
1
if Q.queue-full

2 \quad error "overflow" \quad| 3 | else Q[Q.tail] $=\mathrm{x}$ |
| :--- | :---: |
| 4 | if Q.tail $<$ Q.length |
| 5 | Q.tail $=$ Q.tail +1 |
| 6 | else Q.tail $=1$ |
| 7 | if Q.tail $==$ Q.head |
| 8 | Q.queue-full $=$ true |
| 9 | Q.queue-empty $=$ false |

Dequeue

Dequeue (Q)
1
if Q.queue-empty
2 \quad error "underflow"

Dequeue

Dequeue (Q)
1
if Q.queue-empty
2 \quad error "underflow"

Dequeue

Dequeue (Q)
1
if Q.queue-empty
2 \quad error "underflow"

Dequeue

Dequeue(Q)	
1	if Q.queue-empty
2	error "underflow"
3	else $\mathrm{x}=\mathrm{Q}$ [Q.head]
4	if Q.head < Q.length
5	Q.head $=$ Q.head +1
6	else Q.head $=1$
7	if Q.tail = = Q.head
8	Q.queue-empty $=$ true
9	Q.queue-full $=$ false
10	return x

Dequeue

Dequeue(Q)	
	if Q.queue-empty
2	error "underflow"
3	else $\mathrm{x}=\mathrm{Q}$ [Q.head]
4	if Q.head < Q.length
5	Q.head $=$ Q.head +1
6	else Q.head = 1
7	if Q.tail = = Q.head
8	Q.queue-empty $=$ true
9	Q.queue-full $=$ false
10	return x

Q.head

Applications of Queues

- Scheduling (disk, CPU)
- Used by operating systems to handle congestion.
- Algorithms (we'll see): breadth-first search.

Stacks,Queues: Scorecard

Algorithm	Complexity
Stack-Empty	O(1) \checkmark
Push	O(1) \checkmark
Pop	O(1) \checkmark
Enqueue	O(1) \checkmark
Dequeue	O(1) \checkmark
Restrictions:	LIFO $/$ FIFO orders only. \times

Deques

- Like queues but can enqueue/dequeue at both ends.
- Can modify the code for queues, add two more procedure.
- do it !
- Complexity scorecard: similar to queues.

Dynamic sets

Major problem this semester:

Represent a set S whose elements may vary through time. May want to perform some of:

- INSERT(S, x)
- DELETE(S,x)
- SEARCH(S,x). Result YES/NO. Better: handle for x, if found.
- $\operatorname{MIN}(S)$
- $\operatorname{MAX}(\mathrm{S})$
- $\operatorname{SUCC}(\mathrm{S}, \mathrm{x}), \operatorname{PRED}(\mathrm{S}, \mathrm{x})$

Example: stacks/queues

- Stacks: dynamic sets with LIFO order.
- Queues: dynamic sets with FIFO order.

Dictionary

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set

Dictionary

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert(D, k) adds a key k to the dictionary D
- Delete(D, k$)$ removes key k from D
- Search(D, k$)$ tells whether D contains a key k

Dictionary

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert(D, k) adds a key k to the dictionary D
- Delete(D, k$)$ removes key k from D
- Search(D, k$)$ tells whether D contains a key k
- Implementation
- many (concrete) data structures

Dictionary

- A dictionary is an abstract data structure that represents a set of elements (or keys)
- a dynamic set
- Interface (generic interface)
- Insert(D, k) adds a key k to the dictionary D
- Delete(D, k$)$ removes key k from D
- Search(D, k) tells whether D contains a key k
- Implementation
- many (concrete) data structures
- we'll see: hash tables

Direct-Address Table

- A direct-address table implements a dictionary

Direct-Address Table

- A direct-address table implements a dictionary
- The universe of keys is $\mathrm{U}=\{1,2, \ldots, \mathrm{M}\}$

Direct-Address Table

- A direct-address table implements a dictionary
- The universe of keys is $\mathrm{U}=\{1,2, \ldots, \mathrm{M}\}$
- Implementation
- an array T of size M
- each key has its own position in T

Direct-Address Table

- A direct-address table implements a dictionary
- The universe of keys is $\mathrm{U}=\{1,2, \ldots, \mathrm{M}\}$
- Implementation
- an array T of size M
- each key has its own position in T

```
Direct-Address-Insert (T, k)
\(1 \quad \mathrm{~T}[\mathrm{k}]=\) true
```

Direct-Address-Delete(T, k)
$1 \mathrm{~T}[\mathrm{k}]=$ false

> Direct-Address-Search(T, k$)$
> 1 return $\mathrm{T}[\mathrm{k}]$

Direct-Address Table (2)

- Complexity

Direct-Address Table (2)

- Complexity

All direct-address table operations are $\mathrm{O}(1) \checkmark$

Direct-Address Table (2)

- Complexity

All direct-address table operations are $\mathrm{O}(1) \checkmark$

So why isn't every set implemented with a direct-address table?

Direct-Address Table (2)

- Complexity

All direct-address table operations are $\mathrm{O}(1) \checkmark$

So why isn't every set implemented with a direct-address table?

- Space complexity is $\Theta(|\mathrm{U}|) \times$
- $|\mathrm{U}|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than $|\mathrm{U}|$
- i.e., a direct-address table usually wastes a lot of space

Direct-Address Table (2)

- Complexity

All direct-address table operations are $\mathrm{O}(1) \checkmark$

So why isn't every set implemented with a direct-address table?

- Space complexity is $\Theta(|\mathrm{U}|) \times$
- $|\mathrm{U}|$ is typically a very large number- U is the universe of keys!
- the represented set is typically much smaller than $|\mathrm{U}|$
- i.e., a direct-address table usually wastes a lot of space
- Want: the benefits of a direct-address table but with a table of reasonable size.

Direct Access Tables: Scorecard

Algorithm	Complexity
INSERT	$\mathrm{O}(1) \checkmark$
DELETE	$\mathrm{O}(1) \checkmark$
SEARCH	$\mathrm{O}(1) \checkmark$
MEMORY:	$\theta(\mathrm{M}) \times$

Linked Lists

- Interface
- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete(L, x) removes element x from a list L
- List-Search(L, k) finds an element whose key is k in a list L

Linked Lists

- Interface
- List-Insert (L, x) adds element x at beginning of a list L
- List-Delete(L, x) removes element x from a list L
- List-Search(L, k$)$ finds an element whose key is k in a list L
- Implementation
- a doubly-linked list
- each element x: two "links" x.prev and x.next to the previous and next elements, respectively
- each element x: key x. key

Linked List: Implementation

(a) L.head
prev key next
(b) L.head

(c) L.head \longrightarrow| | | 25 | \longrightarrow | \longrightarrow | 9 | \square | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- (a). Linked list representing set $\mathrm{S}=\{1,4,9,16\}$.
- (b). After LIST-INSERT(S,25).
- (c). After LIST-DELETE(S,4).

Linked List: Implementation

List-Init(L)
1 L.head = NIL

List-Insert(L, x)
1 x.next = L.head
2 if L.head \neq NIL
$3 \quad$ L.head. prev $=\mathrm{x}$
$4 \quad$ L.head $=\mathrm{x}$
$5 \quad$ x. prev $=$ NIL

```
List-Search(L, k)
1 x = L.head.next
2 while \(\mathrm{x} \neq\) NIL \(\wedge \mathrm{x}\). key \(\neq \mathrm{k}\)
\(3 \quad \mathrm{x}=\mathrm{x} . \mathrm{next}\)
4 return x
```


Linked List: Implementation (II)

```
List-Delete(L, x)
1 if \(x\).prev \(\neq\) NIL
\(2 \quad\) x.prev.next \(=\) x.next
3 else L.head \(=x\).next
4 if x.next \(\neq\) NIL
5
x.next.prev \(=x . p r e v\)
```


Linked List With a "Sentinel"

- instead of NIL sometimes convenient to have a dummy "sentinel" element L.nil
- Simplifies LIST-DELETE .
- Adds more memory \times.

Linked List With a "Sentinel"

```
List-Init(L)
1 L.nil.prev = L.nil
2 L.nil.next = L.nil
```

List-Insert(L, x)	
1	x.next = L.nil.next
2	L.nil.next.prev = x
3	L.nil.next = x
4	x.prev = L.nil

Linked Lists: Observations on Implementation

- Insert: at the head of the list.
- Possible: insert arbitrary position.

Circular Linked Lists

(a)

(b)

(c)

(d)

- Can use nil sentinel as head of the list.
- (a): empty circular list.
- (b): Linked list representing set $S=\{1,4,9,16\}$.
- (c): After LIST-INSERT(S,25).
- (d): After LIST-DELETE(S,4).

Linked Lists: Scorecard

Linked Lists: Scorecard

Algorithm
List-Insert

Complexity

Linked Lists: Scorecard

Algorithm	Complexity
List-Insert	$\mathrm{O}(1) \checkmark$
List-Delete (with pointer)	

Linked Lists: Scorecard

Algorithm	Complexity
List-Insert	$\mathrm{O}(1) \checkmark$
List-Delete (with pointer)	$\mathrm{O}(1) \checkmark$
List-Search	

Linked Lists: Scorecard

Algorithm	Complexity
List-Insert	$\mathrm{O}(1) \checkmark$
List-Delete (with pointer)	$\mathrm{O}(1) \checkmark$
List-Search	$\Theta(\mathrm{n}) \times$

Linked Lists: to conclude

- Can reimplement Stacks/Queues using Linked Lists.
- Implementation with pointers: will not pass the class if you don't know it!

Hash Tables

- Idea
- use a table T with $|\mathrm{T}| \ll|\mathrm{U}|$
- map each key $\mathrm{k} \in \mathrm{U}$ to a position in T , using a hash function

$$
\mathrm{h}: \mathrm{U} \rightarrow\{1, \ldots,|\mathrm{~T}|\}
$$

Hash Tables

- Idea
- use a table T with $|\mathrm{T}| \ll|\mathrm{U}|$
- map each key $\mathrm{k} \in \mathrm{U}$ to a position in T , using a hash function

$$
\mathrm{h}: \mathrm{U} \rightarrow\{1, \ldots,|\mathrm{~T}|\}
$$

Hash-Insert (T, k)			
1	$T[h(k)]=$ true	\quad	Hash-Delete (T, k)
:---			
$1 \quad T[h(k)]=$ false			

Hash-Search(T, k)
1 return $\mathrm{T}[\mathrm{h}(\mathrm{k})$]

Hash Tables

- Idea
- use a table T with $|\mathrm{T}| \ll|\mathrm{U}|$
- map each key $\mathrm{k} \in \mathrm{U}$ to a position in T , using a hash function

$$
\mathrm{h}: \mathrm{U} \rightarrow\{1, \ldots,|\mathrm{~T}|\}
$$

Hash-Insert (T, k)			
1	$\mathrm{~T}[\mathrm{~h}(\mathrm{k})]=$ true	\quad	Hash-Delete($\mathrm{T}, \mathrm{k})$
:---			
$1 \quad \mathrm{~T}[\mathrm{~h}(\mathrm{k})]=$ false			

> Hash-Search(T, k$)$
> $1 \quad$ return $\mathrm{T}[\mathrm{h}(\mathrm{k})]$

Are these algorithms always correct?

Hash Tables

- Idea
- use a table T with $|\mathrm{T}| \ll|\mathrm{U}|$
- map each key $\mathrm{k} \in \mathrm{U}$ to a position in T , using a hash function

$$
\mathrm{h}: \mathrm{U} \rightarrow\{1, \ldots,|\mathrm{~T}|\}
$$

Hash-Insert (T, k)			
1	$\mathrm{~T}[\mathrm{~h}(\mathrm{k})]=$ true	\quad	Hash-Delete($\mathrm{T}, \mathrm{k})$
:---			
$1 \quad \mathrm{~T}[\mathrm{~h}(\mathrm{k})]=$ false			

> Hash-Search (T, k)
> $1 \quad$ return $\mathrm{T}[\mathrm{h}(\mathrm{k})]$

Are these algorithms always correct? No!

Hash Tables

- Idea
- use a table T with $|\mathrm{T}| \ll|\mathrm{U}|$
- map each key $\mathrm{k} \in \mathrm{U}$ to a position in T , using a hash function

$$
\mathrm{h}: \mathrm{U} \rightarrow\{1, \ldots,|\mathrm{~T}|\}
$$

Hash-Insert (T, k)
$1 \quad \mathrm{~T}[\mathrm{~h}(\mathrm{k})]=$ true

Hash-Delete(T, k)
$1 \mathrm{~T}[\mathrm{~h}(\mathrm{k})]=$ false

Hash-Search (T, k)
 1 return $\mathrm{T}[\mathrm{h}(\mathrm{k})$]

Are these algorithms always correct? No!
What if two distinct keys $\mathrm{k}_{1} \neq \mathrm{k}_{2}$ collide? (I.e., $\mathrm{h}\left(\mathrm{k}_{1}\right)=\mathrm{h}\left(\mathrm{k}_{2}\right)$)

Hash tables

- Hash Tables: work well "on the average"
- Analogy: throw T balls at random into N bins.
- If $\mathrm{T} \ll \mathrm{N}$ (in fact $\mathrm{T}=\mathrm{o}(\sqrt{\mathrm{N}})$ then with high-probability no two balls land in the same bin.
- Want our hash-function to be "random-like": elements of U "thrown out uniformly" by h onto elements of T .

Hash Table: Chaining

Hashing With Chaining: Analysis

- We assume uniform hashing for our hash function $\mathrm{h}: \mathrm{U} \rightarrow\{1 \ldots|\mathrm{~T}|\}$ (where $|\mathrm{T}|=\mathrm{T}$. length)

Hashing With Chaining: Analysis

- We assume uniform hashing for our hash function $\mathrm{h}: \mathrm{U} \rightarrow\{1 \ldots|\mathrm{~T}|\}$ (where $|\mathrm{T}|=\mathrm{T}$. length)

$$
\operatorname{Pr}[\mathrm{h}(\mathrm{k})=\mathrm{i}]=\frac{1}{|\mathrm{~T}|} \quad \text { for all } \mathrm{i} \in\{1 \ldots|\mathrm{~T}|\}
$$

(The formalism is actually a bit more complicated.)

Hashing With Chaining: Analysis

- We assume uniform hashing for our hash function $\mathrm{h}: \mathrm{U} \rightarrow\{1 \ldots|\mathrm{~T}|\}$ (where $|\mathrm{T}|=\mathrm{T}$. length)

$$
\operatorname{Pr}[\mathrm{h}(\mathrm{k})=\mathrm{i}]=\frac{1}{|\mathrm{~T}|} \quad \text { for all } \mathrm{i} \in\{1 \ldots|\mathrm{~T}|\}
$$

(The formalism is actually a bit more complicated.)

- So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[\mathrm{n}_{\mathrm{i}}\right]=\frac{\mathrm{n}}{|\mathrm{~T}|}=\alpha
$$

Hashing With Chaining: Analysis

- We assume uniform hashing for our hash function $\mathrm{h}: \mathrm{U} \rightarrow\{1 \ldots|\mathrm{~T}|\}$ (where $|\mathrm{T}|=\mathrm{T}$. length)

$$
\operatorname{Pr}[\mathrm{h}(\mathrm{k})=\mathrm{i}]=\frac{1}{|\mathrm{~T}|} \quad \text { for all } \mathrm{i} \in\{1 \ldots|\mathrm{~T}|\}
$$

(The formalism is actually a bit more complicated.)

- So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[\mathrm{n}_{\mathrm{i}}\right]=\frac{\mathrm{n}}{|\mathrm{~T}|}=\alpha
$$

- We further assume that $\mathrm{h}(\mathrm{k})$ can be computed in $\mathrm{O}(1)$ time

Hashing With Chaining: Analysis

- We assume uniform hashing for our hash function $\mathrm{h}: \mathrm{U} \rightarrow\{1 \ldots|\mathrm{~T}|\}$ (where $|\mathrm{T}|=\mathrm{T}$. length)

$$
\operatorname{Pr}[\mathrm{h}(\mathrm{k})=\mathrm{i}]=\frac{1}{|\mathrm{~T}|} \quad \text { for all } \mathrm{i} \in\{1 \ldots|\mathrm{~T}|\}
$$

(The formalism is actually a bit more complicated.)

- So, given n distinct keys, the expected length n_{i} of the linked list at position i is

$$
\mathrm{E}\left[\mathrm{n}_{\mathrm{i}}\right]=\frac{\mathrm{n}}{|\mathrm{~T}|}=\alpha
$$

- We further assume that $\mathrm{h}(\mathrm{k})$ can be computed in $\mathrm{O}(1)$ time
- Therefore, the complexity of Chained-Hash-Search is

$$
\Theta(1+\alpha)
$$

Open-Address Hash Table

$$
\begin{aligned}
& \text { Hash-Insert(T, k) } \\
& 1 \mathrm{j}=\mathrm{h}(\mathrm{k}) \\
& 2 \text { for } \mathrm{i}=1 \text { to T.length } \\
& \text { if } \mathrm{T}[\mathrm{j}]==\text { nil } \\
& \mathrm{T}[\mathrm{j}]=\mathrm{k} \\
& \text { return j } \\
& \text { elseif } \mathrm{j}<\mathrm{T} \text {.length } \\
& \mathrm{j}=\mathrm{j}+1 \\
& \text { else } \mathrm{j}=1 \\
& 9 \text { error "overflow" }
\end{aligned}
$$

Open-Addressing (2)

- Idea: instead of using linked lists, we can store all the elements in the table
- this implies $\alpha \leq 1$

Open-Addressing (2)

- Idea: instead of using linked lists, we can store all the elements in the table
- this implies $\alpha \leq 1$
- When a collision occurs, we simply find another free cell in T

Open-Addressing (2)

- Idea: instead of using linked lists, we can store all the elements in the table
- this implies $\alpha \leq 1$
- When a collision occurs, we simply find another free cell in T
- A sequential "probe" may not be optimal
- can you figure out why?

Open-Addressing (3)

```
Hash-Insert(T, k)
1 for \(\mathrm{i}=1\) to T.length
\(2 \mathrm{j}=\mathrm{h}(\mathrm{k}, \mathrm{i})\)
        if \(T[j]==\) nil
                        \(\mathrm{T}[\mathrm{j}]=\mathrm{k}\)
            return j
6 error "overflow"
```


Open-Addressing (3)

```
Hash-Insert ( \(\mathrm{T}, \mathrm{k}\) )
1 for \(\mathrm{i}=1\) to T.length
\(2 \mathrm{j}=\mathrm{h}(\mathrm{k}, \mathrm{i})\)
    if \(T[j]==\) nil
\(4 \quad \mathrm{~T}[\mathrm{j}]=\mathrm{k}\)
5 return j
6 error "overflow"
```

- Notice that $\mathrm{h}(\mathrm{k}, \cdot)$ must be a permutation
- i.e., $\mathrm{h}(\mathrm{k}, 1), \mathrm{h}(\mathrm{k}, 2), \ldots, \mathrm{h}(\mathrm{k},|\mathrm{T}|)$ must cover the entire table T

