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First of all ...
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Last time: Stacks

A Stack is a sequential organization of items in which the last
element inserted is the first element removed. They are often
referred to as LIFO, which stands for “last in first out.”
Examples: letter basket, stack of trays, stack of plates.
Only element that may be accessed: the one that was most
recently inserted.
There are only two basic operations on stacks, the push (insert),
and the pop (read and delete).

Gabriel Istrate Algorithms and Data Structures (II)



Stacks: Implementation

(a). Stack representing set S = {2, 6, 9, 15}.
(b). After PUSH(S,3).
(c). After POP(S).
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Operator Precedence Parsing

We can use the stack class we just defined to parse and evaluate
mathematical expressions like:

5 ∗ (((9+ 8) ∗ (4 ∗ 6)) + 7)

First, we transform it to postfix notation:
5 9 8 + 4 6 ∗ ∗ 7 + ∗

Usual form for arithmetic expressions: infix. term1 op term2.
Postfix notation: term1 term2 op.
How to convert infix to postfix: later !
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Evaluating Postfix expressions

Then, the following C++ routine uses a stack to perform this
evaluation:

1 char c;
2 Stack acc(50);
3 int x;
4 while (cin.get(c))
5 {
6 x = 0;
7 while (c == ’ ’ ) cin.get(c);
8 if (c == ’+’) x = acc.pop() + acc.pop();
9 if (c == ’*’) x = acc.pop() * acc.pop();

10 while (c≥ ’0’ && c ≤ ’9’)
11 x = 10*x + (c-’0’); cin.get(c);
12 acc.push(x);
13 }
14 cout << acc.pop();
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Explanation of code

We read one character at a time in c.
In x we compute the value of the currently evaluated expression.
After computing it we push the value on the stack - we will need
it later.
When reading an op we take the last two value off the stack and
apply the op on them and assign this to x.
When reading a digit we update value of x by making the last
read digit the least significant one.
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Stacks: Applications

Algorithms (later).
Recursion removal.
Reversing things.
Procedure call and procedure return is similar to matching
symbols:

When a procedure returns, it returns to the most recently active
procedure.
When a procedure call is made, save current state on the stack.
On return, restore the state by popping the stack.
Formal languages: pushdown automata.
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Queues

The ubiquitous “first-in first-out” container (FIFO)

Interface

Enqueue(Q, x) adds element x at the back of queue Q

Dequeue(Q) extracts the element at the head of queue Q

Implementation

Q is an array of fixed length Q. length

i.e., Q holds at most Q. length elements
enqueueing more than Q elements causes an “overflow” error

Q.head is the position of the “head” of the queue

Q.tail is the first empty position at the tail of the queue
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Enqueue
Enqueue(Q,x)
1 if Q.queue-full
2 error “overflow”
3 else Q[Q.tail] = x
4 if Q.tail < Q. length
5 Q.tail = Q.tail+ 1
6 else Q.tail = 1
7 if Q.tail == Q.head
8 Q.queue-full = true
9 Q.queue-empty = false
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Dequeue
Dequeue(Q)
1 if Q.queue-empty
2 error “underflow”
3 else x = Q[Q.head]
4 if Q.head < Q. length
5 Q.head = Q.head+ 1
6 else Q.head = 1
7 if Q.tail == Q.head
8 Q.queue-empty = true
9 Q.queue-full = false

10 return x
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Dequeue
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Applications of Queues

Scheduling (disk, CPU)
Used by operating systems to handle congestion.
Algorithms (we’ll see): breadth-first search.
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Stacks,Queues: Scorecard

Algorithm Complexity

Stack-Empty O(1) ✓

Push O(1) ✓

Pop O(1) ✓

Enqueue O(1) ✓

Dequeue O(1) ✓

Restrictions: LIFO/FIFO orders only. ×
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Deques

Like queues but can enqueue/dequeue at both ends.
Can modify the code for queues, add two more procedure.
do it !
Complexity scorecard: similar to queues.

Gabriel Istrate Algorithms and Data Structures (II)



Dynamic sets

Major problem this semester:
Represent a set S whose elements may vary through time. May want
to perform some of:

INSERT(S,x)
DELETE(S,x)
SEARCH(S,x). Result YES/NO. Better: handle for x, if found.
MIN(S)
MAX(S)
SUCC(S,x), PRED(S,x)
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Example: stacks/queues

Stacks: dynamic sets with LIFO order.
Queues: dynamic sets with FIFO order.
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Dictionary

A dictionary is an abstract data structure that represents a set of
elements (or keys)

a dynamic set

Interface (generic interface)

Insert(D, k) adds a key k to the dictionary D

Delete(D, k) removes key k from D

Search(D, k) tells whether D contains a key k

Implementation

many (concrete) data structures

we’ll see: hash tables
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Direct-Address Table
A direct-address table implements a dictionary

The universe of keys is U = {1, 2, . . . ,M}

Implementation
an array T of size M
each key has its own position in T

Direct-Address-Insert(T, k)
1 T[k] = true

Direct-Address-Delete(T, k)
1 T[k] = false

Direct-Address-Search(T, k)
1 return T[k]
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Direct-Address Table (2)

Complexity

All direct-address table operations are O(1)✓

So why isn’t every set implemented with a direct-address table?

Space complexity is Θ(|U|)×

|U| is typically a very large number—U is the universe of keys!

the represented set is typically much smaller than |U|
i.e., a direct-address table usually wastes a lot of space

Want: the benefits of a direct-address table but with a table of
reasonable size.
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Direct Access Tables: Scorecard

Algorithm Complexity

INSERT O(1)✓

DELETE O(1)✓

SEARCH O(1)✓

MEMORY: θ(M)×
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Linked Lists

Interface

List-Insert(L, x) adds element x at beginning of a list L

List-Delete(L, x) removes element x from a list L

List-Search(L, k) finds an element whose key is k in a list L

Implementation

a doubly-linked list

each element x: two “links” x.prev and x.next to the previous and
next elements, respectively

each element x: key x.key
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Linked List: Implementation

(a). Linked list representing set S = {1, 4, 9, 16}.
(b). After LIST-INSERT(S,25).
(c). After LIST-DELETE(S,4).

Gabriel Istrate Algorithms and Data Structures (II)



Linked List: Implementation

List-Init(L)
1 L.head= NIL

List-Insert(L, x)
1 x.next = L.head
2 if L.head ̸= NIL
3 L.head.prev = x
4 L.head = x
5 x.prev = NIL

List-Search(L, k)
1 x = L.head.next
2 while x ̸= NIL ∧ x.key ̸= k
3 x = x.next
4 return x
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Linked List: Implementation (II)

List-Delete(L, x)
1 if x.prev ̸= NIL
2 x.prev.next = x.next
3 else L.head = x.next
4 if x.next ̸= NIL
5 x.next.prev = x.prev
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Linked List With a “Sentinel”

instead of NIL sometimes convenient to have a dummy “sentinel”
element L.nil
Simplifies LIST-DELETE .
Adds more memory ×.
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Linked List With a “Sentinel”

List-Init(L)
1 L.nil.prev = L.nil
2 L.nil.next = L.nil

List-Insert(L, x)
1 x.next = L.nil.next
2 L.nil.next.prev = x
3 L.nil.next = x
4 x.prev = L.nil

List-Search(L, k)
1 x = L.nil.next
2 while x ̸= L.nil ∧ x.key ̸= k
3 x = x.next
4 return x

Gabriel Istrate Algorithms and Data Structures (II)



Linked Lists: Observations on Implementation

Insert: at the head of the list.
Possible: insert arbitrary position.
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Circular Linked Lists

Can use nil sentinel as head of the list.
(a): empty circular list.
(b): Linked list representing set S = {1, 4, 9, 16}.
(c): After LIST-INSERT(S,25).
(d): After LIST-DELETE(S,4).
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Linked Lists: Scorecard

Algorithm Complexity

List-Insert O(1) ✓

List-Delete (with pointer) O(1) ✓

List-Search Θ(n) ×

Gabriel Istrate Algorithms and Data Structures (II)



Linked Lists: Scorecard

Algorithm Complexity

List-Insert

O(1) ✓

List-Delete (with pointer) O(1) ✓

List-Search Θ(n) ×

Gabriel Istrate Algorithms and Data Structures (II)



Linked Lists: Scorecard

Algorithm Complexity

List-Insert O(1) ✓

List-Delete (with pointer)

O(1) ✓

List-Search Θ(n) ×

Gabriel Istrate Algorithms and Data Structures (II)



Linked Lists: Scorecard

Algorithm Complexity

List-Insert O(1) ✓

List-Delete (with pointer) O(1) ✓

List-Search

Θ(n) ×

Gabriel Istrate Algorithms and Data Structures (II)



Linked Lists: Scorecard

Algorithm Complexity

List-Insert O(1) ✓

List-Delete (with pointer) O(1) ✓

List-Search Θ(n) ×

Gabriel Istrate Algorithms and Data Structures (II)



Linked Lists: to conclude

Can reimplement Stacks/Queues using Linked Lists.
Implementation with pointers: will not pass the class if you don’t
know it !
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Hash Tables
Idea

use a table T with |T| ≪ |U|
map each key k ∈ U to a position in T, using a hash function

h : U → {1, . . . , |T|}

Hash-Insert(T, k)
1 T[h(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return T[h(k)]

Are these algorithms always correct? No!

What if two distinct keys k1 ̸= k2 collide? (I.e., h(k1) = h(k2))
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Hash tables

Hash Tables: work well ”on the average”
Analogy: throw T balls at random into N bins.
If T << N (in fact T = o(

√
N) then with high-probability no two

balls land in the same bin.
Want our hash-function to be ”random-like”: elements of U
”thrown out uniformly” by h onto elements of T.
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Hash Table: Chaining

U

T

k1

k2

k3

k4

k1

k3

k4 k2

Chained-Hash-Insert(T, k)
1 return List-Insert(T[h(k)], k)

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)

load factor
α = n

|T|
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Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T| for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T| = α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1+ α)

Gabriel Istrate Algorithms and Data Structures (II)



Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T| for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T| = α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1+ α)

Gabriel Istrate Algorithms and Data Structures (II)



Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T| for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T| = α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1+ α)

Gabriel Istrate Algorithms and Data Structures (II)



Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T| for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T| = α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1+ α)

Gabriel Istrate Algorithms and Data Structures (II)



Hashing With Chaining: Analysis
We assume uniform hashing for our hash function
h : U → {1 . . . |T|} (where |T| = T. length)

Pr[h(k) = i] = 1
|T| for all i ∈ {1 . . . |T|}

(The formalism is actually a bit more complicated.)

So, given n distinct keys, the expected length ni of the linked list
at position i is

E[ni] =
n
|T| = α

We further assume that h(k) can be computed in O(1) time

Therefore, the complexity of Chained-Hash-Search is

Θ(1+ α)

Gabriel Istrate Algorithms and Data Structures (II)



Open-Address Hash Table

U

T

k1

k1

k2 k2

k3

k3

k4

k4

Hash-Insert(T, k)
1 j = h(k)
2 for i = 1 to T. length
3 if T[j] == nil
4 T[j] = k
5 return j
6 elseif j < T. length
7 j = j+ 1
8 else j = 1
9 error “overflow”
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Open-Addressing (2)

Idea: instead of using linked lists, we can store all the elements in
the table

this implies α ≤ 1

When a collision occurs, we simply find another free cell in T

A sequential “probe” may not be optimal

can you figure out why?
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Open-Addressing (3)

Hash-Insert(T, k)
1 for i = 1 to T. length
2 j = h(k, i)
3 if T[j] == nil
4 T[j] = k
5 return j
6 error “overflow”

Notice that h(k, ·) must be a permutation

i.e., h(k, 1),h(k, 2), . . . , h(k, |T|) must cover the entire table T
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