Algorithms and Data Structures (II)

Gabriel Istrate

March 4, 2020



First of all ...
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Last time: Stacks

A Stack is a sequential organization of items in which the last
element inserted is the first element removed. They are often
referred to as LIFO, which stands for “last in first out.”

o Examples: letter basket, stack of trays, stack of plates.

@ Only element that may be accessed: the one that was most
recently inserted.

@ There are only two basic operations on stacks, the push (insert),
and the pop (read and delete).



Stacks: Implementation

2 3 4 5 6 7 2 3 4 5 6 7
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S.top =4 S.top =6

(2) (b) (©)
e (a). Stack representing set S = {2,6,9,15}.
o (b). After PUSH(S,3).
e (c). After POP(S).



Operator Precedence Parsing

@ We can use the stack class we just defined to parse and evaluate
mathematical expressions like:

5% (((9+8)*(4%6))+7)

o First, we transform it to postfix notation:
598 +46 %74 x

Usual form for arithmetic expressions: infix. terml op term2.

Postfix notation: terml term2 op.

How to convert infix to postfix: later !



Evaluating Postfix expressions

Then, the following C++ routine uses a stack to perform this
evaluation:

char c;

Stack acc(50);

int x;

while (cin.get(c))

{

x = 0;

while (¢ =="") cin.get(c);

if (¢ ==’+") x = acc.pop() + acc.pop();
if (c =="*") x = acc.pop() * acc.pop();
while (¢> 0" && ¢ <’9)

x = 10*x + (¢-’0%); cin.get(c);
acc.push(x);

)
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cout << acc.pop();




Explanation of code

@ We read one character at a time in c.
o In x we compute the value of the currently evaluated expression.

o After computing it we push the value on the stack - we will need
it later.

When reading an op we take the last two value off the stack and
apply the op on them and assign this to x.

When reading a digit we update value of x by making the last
read digit the least significant one.



Stacks: Applications

o Algorithms (later).
@ Recursion removal.

o Reversing things.

@ Procedure call and procedure return is similar to matching
symbols:

o When a procedure returns, it returns to the most recently active
procedure.

e When a procedure call is made, save current state on the stack.
On return, restore the state by popping the stack.

o Formal languages: pushdown automata.



e The ubiquitous “first-in first-out” container (FIFO)

Queues
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Queues

@ The ubiquitous “first-in first-out” container (FIFO)

o Interface

o Enqueue(Q, x) adds element x at the back of queue Q
o Dequeue(Q) extracts the element at the head of queue Q

o Implementation

e Q is an array of fixed length Q.length

e i.e., Q holds at most Q.length elements

e enqueueing more than Q elements causes an “overflow” error
e Q.head is the position of the “head” of the queue
e Q.tail is the first empty position at the tail of the queue



Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
3 else Q[Q.tail] = x

4 if Q.tail < Q.length

5 Q.tail = Q.tail + 1
6 else Q.tail = 1

7 if Q.tail == Q.head

8 Q. queue-full = true
9 Q. queue-empty = false
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Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
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6 else Q.tail = 1

7 if Q.tail == Q.head
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Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
5 e QQ.ai] = »
4 if Q.tail < Q.length

5 Q.tail = Q.tail + 1
6 else Q.tail = 1

7 if Q.tail == Q.head

8 Q. queue-full = true
9 Q. queue-empty = false

Q.head
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Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
3 else Q[Q.tail] = x

4 if Q.tail < Q.length

5 ‘Q.tail = Q.tail + 1‘
6 else Q.tail = 1
7
8
9

if Q.tail == Q.head
Q. queue-full = true
Q. queue-empty = false

Q.head
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Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
5 e QQ.ai] = »
4 if Q.tail < Q.length

5 Q.tail = Q.tail + 1
6 else Q.tail = 1

7 if Q.tail == Q.head

8 Q. queue-full = true
9 Q. queue-empty = false

Q.head
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Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
3 else Q[Q.tail] = x

4 if Q.tail < Q.length

5 Q.tail = Q.tail + 1
6 clse[Q =]

7 if Q.tail == Q.head

8 Q. queue-full = true
9 Q. queue-empty = false

Q.head
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Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
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Enqueue

Enqueue(Q,x)

1 if Q.queue-full

2 error “overflow”
3 else Q[Q.tail] = x

4 if Q.tail < Q.length

5 ‘Q.tail = Q.tail + 1‘
6 else Q.tail = 1
7
8
9

if Q.tail == Q.head
Q. queue-full = true
Q. queue-empty = false

Q.head
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Dequeue

Dequeue(Q)
1 if Q.queue-empty
error “underflow”
else x = Q[Q.head]
if Q.head < Q.length
Q.head = Q.head + 1
else Q.head = 1
if Q.tail == Q.head
Q. queue-empty = true
Q. queue-full = false
return x

O © 0O Ok W
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Dequeue

Dequeue(Q)
1 if Q.queue-empty
2 error “underflow”
3 else x = Q[Q.head]
4 if Q.head < Q.length
5 Q-head = Q.head + 1
6 else Q.head = 1
7 if Q.tail == Q.head
8 Q. queue-empty = true
9 Q. queue-full = false
10 return x
Q.head
ENSNSENENE
A
Q.tail



Dequeue

Dequeue(Q)
1 if Q.queue-empty
error “underflow”
else x = Q[Q.head]
if Q.head < Q.length
‘Q.head = Q.head + 1\
else Q.head = 1
if Q.tail == Q.head
Q. queue-empty = true
Q. queue-full = false
return x

[\)
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Dequeue

Dequeue(Q)
1 if Q.queue-empty
error “underflow”
else x = Q[Q.head]
if Q.head < Q.length
Q.head = Q.head + 1
else Q.head = 1
if Q.tail == Q.head
Q. queue-empty = true
Q. queue-full = false
return x

O © 0O Ok W
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Q.head

Q.tail
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Dequeue

Dequeue(Q)
1 if Q.queue-empty
2 error “underflow”
3 else x = Q[Q.head]
4 if Q.head < Q.length
5 Q-head = Q.head + 1
6 che[Qhend = 1
7 if Q.tail == Q.head
8 Q. queue-empty = true
9 Q. queue-full = false
10 return x
Q.head
Q.tail



Applications of Queues

e Scheduling (disk, CPU)
@ Used by operating systems to handle congestion.

o Algorithms (we’ll see): breadth-first search.



Stacks,Queues: Scorecard

Algorithm Complexity
Stack-Empty o(1) v
Push o(1) v
Pop o(1) v
Enqueue o(1) v
Dequeue o(1) v

Restrictions:  LIFO/FIFO orders only. x




Deques

Like queues but can enqueue/dequeue at both ends.
o Can modify the code for queues, add two more procedure.
o doit!

Complexity scorecard: similar to queues.



Dynamic sets

Major problem this semester:

Represent a set S whose elements may vary through time. May want
to perform some of:

INSERT(S x)

DELETE(S x)

SEARCH(S,x). Result YES/NO. Better: handle for x, if found.
MIN(S)

MAX(S)

SUCC(S,x), PRED(S,x)




Example: stacks/queues

o Stacks: dynamic sets with LIFO order.

o Queues: dynamic sets with FIFO order.



Dictionary

e A dictionary is an abstract data structure that represents a set of
elements (or keys)

e a dynamic set
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Dictionary

e A dictionary is an abstract data structure that represents a set of
elements (or keys)

e a dynamic set

o Interface (generic interface)

o Insert(D, k) adds a key k to the dictionary D
o Delete(D, k) removes key k from D
o Search(D, k) tells whether D contains a key k

o Implementation

e many (concrete) data structures

o we'll see: hash tables



Direct-Address Table

o A direct-address table implements a dictionary
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Direct-Address Table

o A direct-address table implements a dictionary
@ The universe of keys is U ={1,2,...,M}

o Implementation

e an array T of size M

e each key has its own position in T

Direct-Address-Insert(T, k)
1 T[k] = true

Direct-Address-Delete(T, k)
1 Tlk] = false

Direct-Address-Search(T, k)
1 return T[K]




Direct-Address Table (2) _

o Complexity
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e Space complexity is ©(|UJ) x

o |U]| is typically a very large number—U is the universe of keys!

o the represented set is typically much smaller than |U]

@ i.e., a direct-address table usually wastes a lot of space



Direct-Address Table (2)

o Complexity
All direct-address table operations are O(1)v’
So why isn’t every set implemented with a direct-address table?

e Space complexity is ©(|U])x

o |U]| is typically a very large number—U is the universe of keys!

o the represented set is typically much smaller than |U]

@ i.e., a direct-address table usually wastes a lot of space

o Want: the benefits of a direct-address table but with a table of
reasonable size.



Direct Access Tables: Scorecard

Algorithm  Complexity

INSERT O(1)v
DELETE o(1)v
SEARCH O(1)v

MEMORY:  6(M)x




Linked Lists

o Interface

o List-Insert(L, x) adds element x at beginning of a list L
o List-Delete(L, x) removes element x from a list L

o List-Search(L, k) finds an element whose key is k in a list L



Linked Lists

o Interface

o List-Insert(L, x) adds element x at beginning of a list L
o List-Delete(L, x) removes element x from a list L

o List-Search(L, k) finds an element whose key is k in a list L

o Implementation

e a doubly-linked list

e each element x: two “links” x.prev and x.next to the previous and
next elements, respectively

e each element x: key x.key



Linked List: Implementation

prev  key  next

@ Lt —Z BT

o Lt —ZEE— TP TR TR

©  Loead ——{/[25] T o] F— 6] T— [1]/]
o (a). Linked list representing set S = {1,4,9,16}.
o (b). After LIST-INSERT(S,25).
o (c). After LIST-DELETE(S,4).




Linked List: Implementation

List-Init(L)
1 L.head= NIL

List-Insert(L, x) List-Search(L, k)

1 x.next = L.head 1 x = L.head.next

2 if L.head # NIL 2 while x # NIL A x.key # k
3 L.head.prev = x 3 X = X.next

4 L.head = x 4 return x

b} x.prev = NIL




Linked List: Implementation (IT)

List-Delete(L, x)

1 if x.prev # NIL

2 X.prev.next = x.next
3 else L.head = x.next

4 if x.next # NIL

5 x.next.prev = x.prev




Linked List With a “Sentinel”

o instead of NIL sometimes convenient to have a dummy “sentinel”
element L.nil

o Simplifies LIST-DELETE .

o Adds more memory X.



Linked List With a “Sentinel”

List-Init(L)
1 L.nil.prev = L.nil
2 L.nil.next = L.nil

List-Insert(L, x) List-Search(L, k)

1 x.next = L.nil.next 1 x = L.nil.next

2 L.nil.next.prev = x 2 while x # L.nil A x.key # k
3 L.nil.next = x 3 X = X.next

4 x.prev = L.nil 4 return x




Linked Lists: Observations on Implementation

o Insert: at the head of the list.

o Possible: insert arbitrary position.



Circular Linked Lists

o Lo -

o Lo~ E I E G -

SRR e ) e B 2 B e LY
o Lo —HERCEZC DLW 2E R )

@ Can use nil sentinel as head of the list.

e (a): empty circular list.
e (b): Linked list representing set S = {1, 4,9, 16}.
(c): After LIST-INSERT(S,25).

(d): After LIST-DELETE(S 4).



Linked Lists: Scorecar_
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Linked Lists: Scorecard _

Algorithm Complexity

List-Insert
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Linked Lists: Scorecard

Algorithm Complexity
List-Insert o) v
List-Delete (with pointer) o(1) v
List-Search O(n) x




Linked Lists: to conclude

e Can reimplement Stacks/Queues using Linked Lists.

o Implementation with pointers: will not pass the class if you don’t
know it !



o Idea

o use a table T with |T| < [U|

e map each key k € U to a position in T, using a hash function

h:U—{1,....|T]}
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Hash Tables

o Idea

o use a table T with |T| < |U|

e map each key k € U to a position in T, using a hash function

h:U—{1,...,|T]}

Hash-Insert(T, k)
1 Tlh(k)] = true

Hash-Delete(T, k)
1 T[h(k)] = false

Hash-Search(T, k)
1 return Th(k)]

Are these algorithms always correct? No!

What if two distinct keys k; # ko collide? (Le., h(k;) = h(ks))
_ Algorithms and Data Structures (II)



Hash tables

o Hash Tables: work well “on the average”
@ Analogy: throw T balls at random into N bins.

o If T << N (in fact T = o(v/N) then with high-probability no two
balls land in the same bin.

e Want our hash-function to be "random-like”: elements of U
“thrown out uniformly” by h onto elements of T.



Hash Table: Chaining
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Hash Table: Chaining

U

X
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Hash Table: Chaining
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Hash Table: Chaining

v Chained-Hash-Insert(T, k)

1 return List-Insert(T[h(k)], k)
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Hash Table: Chaining

v Chained-Hash-Insert(T, k)

1 return List-Insert(T[h(k)], k)

[ >{la] |
>k |
| —>{la] F{ko] |

X

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)
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Hash Table: Chaining

v Chained-Hash-Insert(T, k)

1 return List-Insert(T[h(k)], k)

ENEE
- load factor
> . oozd: 1c£|)1
| T
AN

Chained-Hash-Search(T, k)
1 return List-Search(T[h(k)], k)
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@ We assume uniform hashing for our hash function
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@ So, given n distinct keys, the expected length n; of the linked list
at position i is
n
— =
T

o We further assume that h(k) can be computed in O(1) time

En] =



Hashing With Chaining: Analysis

@ We assume uniform hashing for our hash function
h:U— {1...]T|} (where |T| = T.length)
1
Prlh(k) =i] = ] forallie {1...|T|}

(The formalism is actually a bit more complicated.)

@ So, given n distinct keys, the expected length n; of the linked list
at position i is
n
E = — =
ol =y =@

o We further assume that h(k) can be computed in O(1) time

o Therefore, the complexity of Chained-Hash-Search is

O(1 + a)
D Algorithms and Data Structures (IT)




Open-Address Hash Table
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U
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Open-Address Hash Table

U Hash-Insert(T, k)
1 j=h(k)
E 2 fori= 1 to T.length
|| 3 if T[j] == nil
ki 1 TJj] = k
- ) return j
> ks 6 elseif j < T.length
_ 7 j=j+1
/] ko 8 elsej =1
k| 9 error “overflow”
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Open-Addressing (2)

o Idea: instead of using linked lists, we can store all the elements in
the table

o this implies a < 1
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Open-Addressing (2)

o Idea: instead of using linked lists, we can store all the elements in
the table

o this implies a < 1

@ When a collision occurs, we simply find another free cell in T

o A sequential “probe” may not be optimal

e can you figure out why?



Open-Addressing (3)

Hash-Insert(T, k)

1 fori= 1 to T.length
2 j = h(k,1i)

3 if T[j] == nil

4 T[] =k

) return j

6 error “overflow”




Open-Addressing (3)

Hash-Insert(T, k)

1 fori= 1 to T.length
2 j = h(k,1i)

3 if T[j] == nil

4 T[] =k

) return j

6 error “overflow”

e Notice that h(k,-) must be a permutation
o ie., h(k,1),h(k,2),...,h(k,|T|) must cover the entire table T



