
Algorithms and Data Structures (II)

Gabriel Istrate

May 27, 2020



Where are we:

The last topics of this course

Data Structures for external memory: B-Trees.

A bit of data compression

Tries.



Next: B-Trees

Outline:

Search in secondary storage

B-Trees

◮ properties

◮ search

◮ insertion



Complexity Model



Complexity Model

Basic assumption so far: data structures fit completely in main memory (RAM)

◮ all basic operations have the same cost

◮ even this is a rough approximation, since the main-memory system is not at all “flat”



Complexity Model

Basic assumption so far: data structures fit completely in main memory (RAM)

◮ all basic operations have the same cost

◮ even this is a rough approximation, since the main-memory system is not at all “flat”

However, some applications require more storage than what fits in main
memory

◮ we must use data structures that reside in secondary storage (i.e., disk)



Complexity Model

Basic assumption so far: data structures fit completely in main memory (RAM)

◮ all basic operations have the same cost

◮ even this is a rough approximation, since the main-memory system is not at all “flat”

However, some applications require more storage than what fits in main
memory

◮ we must use data structures that reside in secondary storage (i.e., disk)

Disk is 10,000–100,000 times slower than RAM



Idea



Idea

In a balanced binary tree, n keys require a tree of height h = ⌊log2 n⌋

◮ all the important operations require access to O(h) nodes

◮ each one accounting for one or very few basic operations



Idea

In a balanced binary tree, n keys require a tree of height h = ⌊log2 n⌋

◮ all the important operations require access to O(h) nodes

◮ each one accounting for one or very few basic operations

Idea: store several keys and pointers to children nodes in a single node



Idea

In a balanced binary tree, n keys require a tree of height h = ⌊log2 n⌋

◮ all the important operations require access to O(h) nodes

◮ each one accounting for one or very few basic operations

Idea: store several keys and pointers to children nodes in a single node

◮ in practice we increase the degree (or branching factor) of each node up to d > 2,
so h = ⌊logd n⌋

◮ in practice d can be as high as a few thousands



Idea

In a balanced binary tree, n keys require a tree of height h = ⌊log2 n⌋

◮ all the important operations require access to O(h) nodes

◮ each one accounting for one or very few basic operations

Idea: store several keys and pointers to children nodes in a single node

◮ in practice we increase the degree (or branching factor) of each node up to d > 2,
so h = ⌊logd n⌋

◮ in practice d can be as high as a few thousands

• • • · · · •

· · ·

E.g., if d = 1000, then
only three accesses (h = 2)
cover up to one billion keys



Definition of a B-Tree

x

• k1 • k2 • k3 · · · kx.n •

· · ·



Definition of a B-Tree

x

• k1 • k2 • k3 · · · kx.n •

· · ·

Every node x has the following fields

◮ x.n is the number of keys stored at each node



Definition of a B-Tree

x

• k1 • k2 • k3 · · · kx.n •

· · ·

Every node x has the following fields

◮ x.n is the number of keys stored at each node

◮ x.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the x.n keys stored in nondecreasing order



Definition of a B-Tree

x

• k1 • k2 • k3 · · · kx.n •

· · ·

Every node x has the following fields

◮ x.n is the number of keys stored at each node

◮ x.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the x.n keys stored in nondecreasing order

◮ x. leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node



Definition of a B-Tree

x

• k1 • k2 • k3 · · · kx.n •

· · ·

Every node x has the following fields

◮ x.n is the number of keys stored at each node

◮ x.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the x.n keys stored in nondecreasing order

◮ x. leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node

◮ x.c[1], x.c[2], . . . , x.c[x.n + 1] are the x.n + 1 pointers to its children, if x is an
internal node



Definition of a B-Tree (2)

x

• k1 • k2 • k3 · · · kx.n •

k ≤ k1 k1 ≤ k ≤ k2 k2 ≤ k ≤ k3
· · ·

k ≥ kx.n



Definition of a B-Tree (2)

x

• k1 • k2 • k3 · · · kx.n •

k ≤ k1 k1 ≤ k ≤ k2 k2 ≤ k ≤ k3
· · ·

k ≥ kx.n

The keys x.key[i] delimit the ranges of keys stored in each subtree



Definition of a B-Tree (2)

x

• k1 • k2 • k3 · · · kx.n •

k ≤ k1 k1 ≤ k ≤ k2 k2 ≤ k ≤ k3
· · ·

k ≥ kx.n

The keys x.key[i] delimit the ranges of keys stored in each subtree

x.c[1] −→ subtree containing keys k ≤ x.key[1]

x.c[2] −→ subtree containing keys k, x.key[1] ≤ k ≤ x.key[2]

x.c[3] −→ subtree containing keys k, x.key[2] ≤ k ≤ x.key[3]

. . .

x.c[x.n + 1] −→ subtree containing keys k, k ≥ x.key[x.n]



Defining properties of a B-Tree



Defining properties of a B-Tree

All leaves have the same depth



Defining properties of a B-Tree

All leaves have the same depth

Let t ≥ 2 be theminimum degree of the B-tree

◮ every node other than the root must have at least t − 1 keys

◮ every node must contain at most 2t − 1 keys

◮ a node is full when it contains exactly 2t − 1 keys

◮ a full node has 2t children

Nonleaf nodes: one more child than values, arranged like in a BST.



Defining properties of a B-Tree

All leaves have the same depth

Let t ≥ 2 be theminimum degree of the B-tree

◮ every node other than the root must have at least t − 1 keys

◮ every node must contain at most 2t − 1 keys

◮ a node is full when it contains exactly 2t − 1 keys

◮ a full node has 2t children

Nonleaf nodes: one more child than values, arranged like in a BST.



Example

· 25 · 72 ·

· 10 · 15 · · 30 · 54 · 65 · · 94 ·

6, 9 13, 14 19, 24 27, 29 40, 44 61, 62 70, 71 83, 91 96, 99



Search in B-Trees



Search in B-Trees

B-TREE-SEARCH(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key[i]
3 i = i + 1
4 if i ≤ x.n and k == x.key[i]
5 return (x, i)
6 if x. leaf
7 return NIL

8 else DISK-READ(x.c[i])
9 return B-TREE-SEARCH(x.c[i], k)



Height of a B-Tree



Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2



Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2

Proof:

◮ n ≥ 1, so the root has at least one key (and therefore two children)



Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2

Proof:

◮ n ≥ 1, so the root has at least one key (and therefore two children)

◮ every other node has at least t children



Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2

Proof:

◮ n ≥ 1, so the root has at least one key (and therefore two children)

◮ every other node has at least t children

◮ in the worst case, there are two subtrees (of the root) each one containing a total
of (n − 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t − 1 keys



Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2

Proof:

◮ n ≥ 1, so the root has at least one key (and therefore two children)

◮ every other node has at least t children

◮ in the worst case, there are two subtrees (of the root) each one containing a total
of (n − 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t − 1 keys

◮ each subtree contains 1 + t + t2 · · · + th−1 nodes, each one containing t − 1 keys



Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2

Proof:

◮ n ≥ 1, so the root has at least one key (and therefore two children)

◮ every other node has at least t children

◮ in the worst case, there are two subtrees (of the root) each one containing a total
of (n − 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t − 1 keys

◮ each subtree contains 1 + t + t2 · · · + th−1 nodes, each one containing t − 1 keys, so

n ≥ 1 + 2(th − 1)



Splitting



Splitting

x

· · · 10•85 · · ·

14, 35, 42, 51, 55, 68, 70

y



Splitting

x

· · · 10•85 · · ·

14, 35, 42, 51, 55, 68, 70

y

x

· · · 10•51•85 · · ·

14, 35, 42

y

55, 68, 70

z



Splitting

x

· · · 10•85 · · ·

14, 35, 42, 51, 55, 68, 70

y

x

· · · 10•51•85 · · ·

14, 35, 42

y

55, 68, 70

z

B-TREE-SPLIT-CHILD(x, i, y)

1 z = ALLOCATE-NODE()
2 z. leaf = y. leaf
3 z.n = t − 1
4 for j = 1 to t − 1
5 z.key[j] = y.key[j + t]
6 if not y. leaf
7 for j = 1 to t
8 z.c[j] = y.c[j + t]
9 y.n = t − 1
10 for j = x.n + 1 downto i + 1
11 x.c[j + 1] = x.c[j]
12 for j = x.n downto i
13 x.key[j + 1] = x.key[j]
14 x.key[i] = y.key[t]
15 x.n = x.n + 1
16 DISK-WRITE(y)
17 DISK-WRITE(z)
18 DISK-WRITE(x)



Complexity of B-TREE-SPLIT-CHILD

What is the complexity of
B-TREE-SPLIT-CHILD?



Complexity of B-TREE-SPLIT-CHILD

What is the complexity of
B-TREE-SPLIT-CHILD?

Θ(t) basic CPU operations



Complexity of B-TREE-SPLIT-CHILD

What is the complexity of
B-TREE-SPLIT-CHILD?

Θ(t) basic CPU operations

3 DISK-WRITE operations

B-TREE-SPLIT-CHILD(x, i, y)

1 z = ALLOCATE-NODE()
2 z. leaf = y. leaf
3 z.n = t − 1
4 for j = 1 to t − 1
5 x.key[j] = x.key[j + t]
6 if not x. leaf
7 for j = 1 to t
8 z.c[j] = y.c[j + t]
9 y.n = t − 1
10 for j = x.n + 1 downto i + 1
11 x.c[j + 1] = x.c[j]
12 for j = x.n downto i
13 x.key[j + 1] = x.key[j]
14 x.key[i] = y.key[t]
15 x.n = x.n + 1
16 DISK-WRITE(y)
17 DISK-WRITE(z)
18 DISK-WRITE(x)



Insertion Under Non-Full Node



Insertion Under Non-Full Node

B-TREE-INSERT-NONFULL(x, k)

1 i = x.n // assume x is not full
2 if x. leaf
3 while i ≥ 1 and k < x.key[i]
4 x.key[i + 1] = x.key[i]
5 i = i − 1
6 x.key[i + 1] = k
7 x.n = x.n + 1
8 DISK-WRITE(x)
9 else while i ≥ 1 and k < x.key[i]
10 i = i − 1
11 i = i + 1
12 DISK-READ(x.c[i])
13 if x.c[i].n == 2t − 1 // child x.c[i] is full
14 B-TREE-SPLIT-CHILD(x, i, x.c[i])
15 if k > x.key[i]
16 i = i + 1
17 B-TREE-INSERT-NONFULL(x.c[i], k)



Insertion Procedure



Insertion Procedure

B-TREE-INSERT(T, k)

1 r = T . root
2 if r.n == 2t − 1
3 s = ALLOCATE-NODE()
4 T . root = s
5 s. leaf = FALSE

6 s.n = 0
7 s.c[1] = r
8 B-TREE-SPLIT-CHILD(s, 1, r)
9 B-TREE-INSERT-NONFULL(s, k)
10 else B-TREE-INSERT-NONFULL(r, k)



Insertion Procedure

B-TREE-INSERT(T, k)

1 r = T . root
2 if r.n == 2t − 1
3 s = ALLOCATE-NODE()
4 T . root = s
5 s. leaf = FALSE

6 s.n = 0
7 s.c[1] = r
8 B-TREE-SPLIT-CHILD(s, 1, r)
9 B-TREE-INSERT-NONFULL(s, k)
10 else B-TREE-INSERT-NONFULL(r, k)

35, 42, 51, 55, 68

root

•51•

root

35, 42

y

55, 68

z



Complexity of Insertion

What is the complexity of B-TREE-INSERT?



Complexity of Insertion

What is the complexity of B-TREE-INSERT?

O(th) = O(t logt n) basic CPU steps operations



Complexity of Insertion

What is the complexity of B-TREE-INSERT?

O(th) = O(t logt n) basic CPU steps operations

O(h) = O(logt n) disk-access operations



Complexity of Insertion

What is the complexity of B-TREE-INSERT?

O(th) = O(t logt n) basic CPU steps operations

O(h) = O(logt n) disk-access operations

The best value for t can be determined according to

◮ the ratio between CPU (RAM) speed and disk-access time

◮ the block-size of the disk, which determines the maximum size of an object that
can be accessed (read/write) in one shot



Deletion

Mirror image of insertion.

In insertion: key always goes to leaf. Before inserting new key check if node to
insert is full

If so: first split node, to make it non-full.

: Deletion: want to delete from leaf. But key may not be in leaf.

Before deleting key check if node to delete from is minimal (t − 1 keys).



Deletion

Case 1: key is in a leaf, delete key.

Case 2: key is not in a leaf. Then its predecessor/successor are in leaf. Delete
key, promote pred/succ.

Cases 1/2 may cause leaf node to become defficient (too few keys). Have to
make it nonminimal.

Look at the immediately adjacent siblings of this node. Several cases:
◮ If there is a non-minimal sibling, then take a key/child pointer from that sibling to

the parent, and one key/child from parent to defficient leaf.
◮ If both siblings are minimal: merge node with one sibling (doesn’t matter which)

and one node from parent. If this makes the parent have too few nodes repeat
recursively.


