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Where are we:

Graphs: Representations and Algorithms

Continue with Minimum Spanning Tree.

Data Structures for external memory: B-Trees.



Minimum Spanning Tree: Algorithms
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◮ based on the generic minimum-spanning-tree algorithm (last time)
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Minimum Spanning Tree: Algorithms

Kruskal’s algorithm (1956)

◮ based on the generic minimum-spanning-tree algorithm (last time)

◮ incrementally builds a forest A

Prim’s algorithm (1957)

◮ based on the generic minimum-spanning-tree algorithm

◮ incrementally builds a single tree A
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Find-Set(x) returns the representative of the set containing x

◮ x, y ∈ S ⇒ Find-Set(x) = Find-Set(y)

◮ x ∈ S1 ∧ y ∈ S2 ∧ S1 , S2 ⇒ Find-Set(x) , Find-Set(y)

Union(x, y) joins the sets containing x and y



Kruskal’s Algorithm

MST-KRUSKAL(G,w)

1 A = ∅

2 for each vertex v ∈ V(G)
3 MAKE-SET(v) // disjoint-set data structure
4 sort E in non-decreasing order by weight w
5 for each edge (u, v) ∈ E, taken in non-decreasing order by w
6 if FIND-SET(u) , FIND-SET(v)
7 A = A ∪ {(u, v)}
8 UNION(u, v)
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5 for each edge (u, v) ∈ E, taken in non-decreasing order by w
6 if FIND-SET(u) , FIND-SET(v)
7 A = A ∪ {(u, v)}
8 UNION(u, v)
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7 A = A ∪ {(u, v)}
8 UNION(u, v)
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1 A = ∅

2 for each vertex v ∈ V(G)
3 MAKE-SET(v) // disjoint-set data structure
4 sort E in non-decreasing order by weight w
5 for each edge (u, v) ∈ E, taken in non-decreasing order by w
6 if FIND-SET(u) , FIND-SET(v)
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8 UNION(u, v)

|V | timesMAKE-SET (loop of line 2–3)

O(|E | log |E |) for sorting E (line 4)
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Complexity of MST-KRUSKAL

MST-KRUSKAL(G,w)

1 A = ∅

2 for each vertex v ∈ V(G)
3 MAKE-SET(v) // disjoint-set data structure
4 sort E in non-decreasing order by weight w
5 for each edge (u, v) ∈ E, taken in non-decreasing order by w
6 if FIND-SET(u) , FIND-SET(v)
7 A = A ∪ {(u, v)}
8 UNION(u, v)

|V | timesMAKE-SET (loop of line 2–3)

O(|E | log |E |) for sorting E (line 4)

2|E | times FIND-SET

O(|E |) times UNION
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So What’s the Complexity of MST-KRUSKAL ?

depends on the complexity of implementing DISJOINT-SET operations.

Can be done (complicated way) so that complexity of Kruskal: O(Elog(V)).

“Union-by-rank” and “path compression” heuristics.

Cormen: Chapter 21.



Prim’s Algorithm

Remember

In Kruskal’s algorithm: grow a forest.

In Prim’s algorithm: grow a tree.

Use: min-priority queue.

Remember ? First semester. Implemented using heaps.

Elements have “priorities”. An element with high priority is served before an
element with low priority.

Operations:

IS_EMPTY: O(1).

INSERT_WITH_PRIORITY: O(log n).

POP: O(log n).

PEEK: O(1).

(BUILD): O(n).

ADVANCED: Can improve over the heap implementation !



Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)



Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)
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Prim’s Algorithm

MST-PRIM(G,w, r)

1 for each vertex u ∈ V(G)
2 key[u] = ∞
3 π(u) = NIL

4 key[r] = 0
5 Q = V(G)
6 while Q , ∅
7 u = EXTRACT-MIN(Q) //min by key[u]
8 for each v ∈ Adj[u]
9 if v ∈ Q ∧ w(u, v) < key[v]
10 π(v) = u
11 key[v] = w(u, v)

a b c d

e f g h
1

4

3

2

31
2

1

1

11

3 1

2

Q = {}



Complexity of Prim’s Algorithm.

Come on, not again !

depends on the complexity of implementing PRIORITY QUEUE.
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Complexity of Prim’s Algorithm.

Come on, not again !

depends on the complexity of implementing PRIORITY QUEUE.

With binary min-heap: O(Elog(V)).

Can be done (more complicated way) so that complexity of Prim: O(E + Vlog(V)).

Cormen: Chapter 20 (Fibonacci heaps).
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Why do we care about MST ?

One answer: neat greedy algorithms.

MST: many applications ! (see Wikipedia). Subroutine/heuristic in many
scenarios. E.g. TSP.

One particular application: clustering.

Where do we go from here ? Matroids. “Abstract” formalism that generalizes
vector spaces and spanning trees (!). Cormen, 16.4.
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Clustering using MST algorithms.

Clustering: n points into some high-dimensional space. They may be
measurements, features, etc.

to group the points into k “clusters” so that points in the same clusters are
“close” and points in different clusters are “far apart”

Kruskal’s algorithm: points start into n clusters, eventually coalesce into one.

Why not stop when there are k clusters ? (or compute MST and remove heaviest
edges) ?



Next: B-Trees

Outline:

Search in secondary storage

B-Trees

◮ properties

◮ search

◮ insertion
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Complexity Model

Basic assumption so far: data structures fit completely in main memory (RAM)

◮ all basic operations have the same cost

◮ even this is a rough approximation, since the main-memory system is not at all “flat”

However, some applications require more storage than what fits in main
memory

◮ we must use data structures that reside in secondary storage (i.e., disk)

Disk is 10,000–100,000 times slower than RAM
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Memory access/transfer CPU cycles (≈ 1ns)

Register 1

L1 cache 4

L2 cache 10

Local L3 cache 40–75

Remote L3 cache 100–300

Local DRAM 60

Remote DRAM (main memory) 100

SSD seek 20,000

Send 2K bytes over 1 Gbps network 20,000

Read 1 MB sequentially from memory 250,000

Round trip within a datacenter 500,000

HDD seek 10,000,000

Read 1 MB sequentially from network 10,000,000

Read 1 MB sequentially from disk 30,000,000

Round-trip time USA–Europe 150,000,000
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Modeling Disk Access

Let x be a pointer to some (possibly complex) object

When the object is in memory, x can be used directly as a reference to the
object

◮ e.g., ℓ = x.size or x. root = y

When the object is on disk, we must first perform a disk-read operation

DISK-READ(x) reads the object into memory, allowing us to refer to it (and
modify it) through x

Any changes to the object in memory must be eventually saved onto the disk

DISK-WRITE(x) writes the object onto the disk (if the object was modified)
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2 while x , NIL
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Binary Trees on Disk

Assume each node x is stored on disk

ITERATIVE-TREE-SEARCH(T, k)

1 x = T .root
2 while x , NIL

3 DISK-READ(X)
4 if k == x.key
5 return x
6 elseif k < x.key
7 x = x. left
8 else x = x.right
9 return x

cost

c
c

100000c
c
c
c
c
c
c
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Basic Intuition

Assume we store the nodes of a search tree on disk

1. node accesses should be reduced to a minimum

2. spending more than a few basic operations for each node is not a problem

Rationale

◮ basic in-memory operations are much cheaper

◮ the bottleneck is with node accesses, which involve DISK-READ and DISK-WRITE

operations
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Idea

In a balanced binary tree, n keys require a tree of height h = ⌊log2 n⌋

◮ all the important operations require access to O(h) nodes

◮ each one accounting for one or very few basic operations

Idea: store several keys and pointers to children nodes in a single node

◮ in practice we increase the degree (or branching factor) of each node up to d > 2,
so h = ⌊logd n⌋

◮ in practice d can be as high as a few thousands

• • • · · · •

· · ·

E.g., if d = 1000, then
only three accesses (h = 2)
cover up to one billion keys
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Definition of a B-Tree

x

• k1 • k2 • k3 · · · kx.n •

· · ·

Every node x has the following fields

◮ x.n is the number of keys stored at each node

◮ x.key[1] ≤ x.key[2] ≤ . . . x.key[x.n] are the x.n keys stored in nondecreasing order

◮ x. leaf is a Boolean flag that is TRUE if x is a leaf node or FALSE if x is an internal node

◮ x.c[1], x.c[2], . . . , x.c[x.n + 1] are the x.n + 1 pointers to its children, if x is an
internal node
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Definition of a B-Tree (2)

x

• k1 • k2 • k3 · · · kx.n •

k ≤ k1 k1 ≤ k ≤ k2 k2 ≤ k ≤ k3
· · ·

k ≥ kx.n

The keys x.key[i] delimit the ranges of keys stored in each subtree

x.c[1] −→ subtree containing keys k ≤ x.key[1]

x.c[2] −→ subtree containing keys k, x.key[1] ≤ k ≤ x.key[2]

x.c[3] −→ subtree containing keys k, x.key[2] ≤ k ≤ x.key[3]

. . .

x.c[x.n + 1] −→ subtree containing keys k, k ≥ x.key[x.n]
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Definition of a B-Tree (3)

All leaves have the same depth

Let t ≥ 2 be theminimum degree of the B-tree

◮ every node other than the root must have at least t − 1 keys

◮ every node must contain at most 2t − 1 keys

◮ a node is full when it contains exactly 2t − 1 keys

◮ a full node has 2t children



Example

· 25 · 72 ·

· 10 · 15 · · 30 · 54 · 65 · · 94 ·

6, 9 13, 14 19, 24 27, 29 40, 44 61, 62 70, 71 83, 91 96, 99
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Search in B-Trees

B-TREE-SEARCH(x, k)

1 i = 1
2 while i ≤ x.n and k > x.key[i]
3 i = i + 1
4 if i ≤ x.n and k == x.key[i]
5 return (x, i)
6 if x. leaf
7 return NIL

8 else DISK-READ(x.c[i])
9 return B-TREE-SEARCH(x.c[i], k)
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◮ every other node has at least t children
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Height of a B-Tree

Theorem: the height of a B-tree containing n ≥ 1 keys and with a minimum
degree t ≥ 2 is

h ≤ logt
n + 1

2

Proof:

◮ n ≥ 1, so the root has at least one key (and therefore two children)

◮ every other node has at least t children

◮ in the worst case, there are two subtrees (of the root) each one containing a total
of (n − 1)/2 keys, and each one consisting of t-degree nodes, with each node
containing t − 1 keys

◮ each subtree contains 1 + t + t2 · · · + th−1 nodes, each one containing t − 1 keys, so

n ≥ 1 + 2(th − 1)
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Splitting

x

· · · 10•85 · · ·

14, 35, 42, 51, 55, 68, 70

y

x

· · · 10•51•85 · · ·

14, 35, 42

y

55, 68, 70

z

B-TREE-SPLIT-CHILD(x, i, y)

1 z = ALLOCATE-NODE()
2 z. leaf = y. leaf
3 z.n = t − 1
4 for j = 1 to t − 1
5 z.key[j] = y.key[j + t]
6 if not y. leaf
7 for j = 1 to t
8 z.c[j] = y.c[j + t]
9 y.n = t − 1
10 for j = x.n + 1 downto i + 1
11 x.c[j + 1] = x.c[j]
12 for j = x.n downto i
13 x.key[j + 1] = x.key[j]
14 x.key[i] = y.key[t]
15 x.n = x.n + 1
16 DISK-WRITE(y)
17 DISK-WRITE(z)
18 DISK-WRITE(x)
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Complexity of B-TREE-SPLIT-CHILD

What is the complexity of
B-TREE-SPLIT-CHILD?

Θ(t) basic CPU operations

3 DISK-WRITE operations

B-TREE-SPLIT-CHILD(x, i, y)

1 z = ALLOCATE-NODE()
2 z. leaf = y. leaf
3 z.n = t − 1
4 for j = 1 to t − 1
5 x.key[j] = x.key[j + t]
6 if not x. leaf
7 for j = 1 to t
8 z.c[j] = y.c[j + t]
9 y.n = t − 1
10 for j = x.n + 1 downto i + 1
11 x.c[j + 1] = x.c[j]
12 for j = x.n downto i
13 x.key[j + 1] = x.key[j]
14 x.key[i] = y.key[t]
15 x.n = x.n + 1
16 DISK-WRITE(y)
17 DISK-WRITE(z)
18 DISK-WRITE(x)
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Insertion Under Non-Full Node

B-TREE-INSERT-NONFULL(x, k)

1 i = x.n // assume x is not full
2 if x. leaf
3 while i ≥ 1 and k < x.key[i]
4 x.key[i + 1] = x.key[i]
5 i = i − 1
6 x.key[i + 1] = k
7 x.n = x.n + 1
8 DISK-WRITE(x)
9 else while i ≥ 1 and k < x.key[i]
10 i = i − 1
11 i = i + 1
12 DISK-READ(x.c[i])
13 if x.c[i].n == 2t − 1 // child x.c[i] is full
14 B-TREE-SPLIT-CHILD(x, i, x.c[i])
15 if k > x.key[i]
16 i = i + 1
17 B-TREE-INSERT-NONFULL(x.c[i], k)
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Insertion Procedure

B-TREE-INSERT(T, k)

1 r = T . root
2 if r.n == 2t − 1
3 s = ALLOCATE-NODE()
4 T . root = s
5 s. leaf = FALSE

6 s.n = 0
7 s.c[1] = r
8 B-TREE-SPLIT-CHILD(s, 1, r)
9 B-TREE-INSERT-NONFULL(s, k)
10 else B-TREE-INSERT-NONFULL(r, k)



Insertion Procedure

B-TREE-INSERT(T, k)

1 r = T . root
2 if r.n == 2t − 1
3 s = ALLOCATE-NODE()
4 T . root = s
5 s. leaf = FALSE

6 s.n = 0
7 s.c[1] = r
8 B-TREE-SPLIT-CHILD(s, 1, r)
9 B-TREE-INSERT-NONFULL(s, k)
10 else B-TREE-INSERT-NONFULL(r, k)

35, 42, 51, 55, 68

root

•51•

root

35, 42

y

55, 68

z
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Complexity of Insertion

What is the complexity of B-TREE-INSERT?

O(th) = O(t logt n) basic CPU steps operations

O(h) = O(logt n) disk-access operations

The best value for t can be determined according to

◮ the ratio between CPU (RAM) speed and disk-access time

◮ the block-size of the disk, which determines the maximum size of an object that
can be accessed (read/write) in one shot


