Algorithms and Data Structures (II)

Gabriel Istrate

May 6, 2020

Why did we want dynamic sets to start with ?

■ Wrap up Computational geometry

- Graph algorithms.

■ Goal: To see some algorithms that use stacks, queues, red-black trees.

■ uses a technique known as gift wrapping.
■ Simulates wrapping a piece of paper around set Q.
■ Start at the same point p_{0} as in Graham's scan.
■ Pull the paper to the right, then higher until it touches a point. This point is a vertex in the convex hull. Continue this way until we come back to p_{0}.
■ Formally: start at p_{0}. Choose p_{1} as the point with the smallest polar angle from p_{0}. Choose p_{2} as the point with the smallest polar angle from $p_{1} \ldots$
■ . . . until we reached the highest point p_{k}.
■ We have constructed the right chain.
■ Construct the left chain by starting from p_{k} and measuring polar angles with respect to the negative x-axis.

Figure 33.9 The operation of Jarvis's march. The first vertex chosen is the lowest point p_{0}. The next vertex, p_{1}, has the smallest polar angle of any point with respect to p_{0}. Then, p_{2} has the smallest polar angle with respect to p_{1}. The right chain goes as high as the highest point p_{3}. Then, the left chain is constructed by finding smallest polar angles with respect to the negative x-axis.

■ W.r.t. euclidean distance.

- Brute force: $\theta\left(n^{2}\right)$.
- Divide and conquer algorithm with $O(n \log n)$ complexity.

Finding closest points: Idea

■ Each iteration: subset $P \subseteq Q$, arrays X and Y.
■ Points in X are sorted in increasing order of their x coordinates.
■ Points in Y are sorted in increasing order of their y coordinates.
■ To maintain upper bound cannot afford to sort in each iteration.
■ $|P| \leq 3$: brute force. Otherwise recursive divide-and-conquer.
■ Divide: Find a vertical line $/$ that bisects set P into two sets P_{L} and P_{R} such that $\left|P_{L}\right|=\lceil|P| / 2\rceil,\left|P_{R}\right|=\lfloor|P| / 2\rfloor$, all points of P_{L} to the left, all points of P_{R} to the right.
■ X_{L} : subarray that contains point of P_{L}, X_{R} : subarray that contains point of P_{R}.
■ Similarly for Y.

Finding closest points (III)

■ Conquer. Recursive calls: P_{L}, X_{L}, Y_{L} and P_{R}, X_{R}, Y_{R}. Returns smallest distances δ_{L} and δ_{R}.
\square Combine. $\delta=\min \left\{\delta_{L}, \delta_{R}\right\}$.
■ Have to test whether some point in P_{L} is at distance $<\delta$ from some point in P_{R}.
■ Both such points, if they exist, are within the 2δ-wide strip around $/$.
■ Create an array Y^{\prime} which is Y with all points not in the 2δ-wide strip around $/$ removed, sorted by y-coordinate.
■ For each point p in Y^{\prime} try to find points in Y^{\prime} at distance less than δ.
■ Only the 7 points that follow p need to be considered.
■ Compute smallest such distance δ^{\prime}. If $\delta^{\prime}<\delta$ we found a better pair. Otherwise δ is the smallest distance.
■ Correctness, implementation nontrivial.

Figure 33.11 Key concepts in the proof that the closest-pair algorithm needs to check only 7 points following each point in the array Y^{\prime}. (a) If $p_{L} \in P_{L}$ and $p_{R} \in P_{R}$ are less than δ units apart, they must reside within a $\delta \times 2 \delta$ rectangle centered at line l. (b) How 4 points that are pairwise at least δ units apart can all reside within a $\delta \times \delta$ square. On the left are 4 points in P_{L}, and on the right are 4 points in P_{R}. There can be 8 points in the $\delta \times 2 \delta$ rectangle if the points shown on line l are actually pairs of coincident points with one point in P_{L} and one in P_{R}.

Correctness \& complexity

■ For each point: Consider the $\delta \times 2 \delta$ rectangle centered at line I.

- At most 8 points within this rectangle.

■ Assuming δ_{L} lower than δ_{R}, it follows that δ_{R} among the next 7 points following δ_{L}.

- $O(n \log n)$ bound from recurrence $T(n)=2 T(n / 2)+O(n)$.

■ Main difficulty: making sure that $X_{L}, X_{R}, Y_{L}, Y_{R}, Y^{\prime}$ sorted by appropriate coordinate.

■ Key observation: in each call we wish to form a sorted subset of a sorted array.

- Splitting the array into two halves.

■ Can be viewed as the inverse of the operation MERGE in MERGESORT.
$■$ How to get sorted arrays in the first place? presort. $\theta(n \log n)$.

```
length[ [YL ] = length [ }\mp@subsup{Y}{R}{}]=0\mathrm{ ;
for i = 1 to length[Y]
    if (Y[i] }\in\mp@subsup{P}{L}{}
    {
        length[\mp@subsup{Y}{L}{}]++;
        Y
    }
    else
    {
        length[YR] + +;
        YR}[length[Y [ ] ] = Y[i]
    }
}
```

Graph algorithms.

We live in a highly connected world ... flickr
YouTuhe frce oook $^{\text {ding }}$

myspace. col trient

Discover nempon

A certain disease from Wuhan, China has dramatic effects all over the planet ...
A software bug in the alarm system at the control room of FirstEnergy, in Akron, Ohio knocks out the power grid in the whole Northeast United States (2003).

To understand, for my (and your) generation

How do real networks look like?

 How do network properties impact the processes that take place on them?

Figure: (a). Air traffic map of the U.S. (b). Physical Internet

Marriage Networks of important families in Medieval Florence.

Interactome ...

Part of the DISC1 interactome, with genes represented by text in boxes and interactions noted by lines between the genes. From Hennah and Porteous (2009).

What's so interesting about networks?

Small worlds: everyone is "not very far from everyone".

(a). Distribution of heights in the U.S. population.
(b). Degree distribution (aproximately) power law. Few "tall" people, "many" well connected people

What's so interesting about networks? (II)

Centrality

Some nodes are "more important/central than others".

How do we measure centrality ?

- degree centrality: $c(y)=\frac{1}{n-1} \operatorname{deg}(y)$.
- betweenness centrality: $c(y)=\sum_{x \neq z} \frac{\sigma_{x, 2}[y]}{\sigma_{x, z}}$
- eigenvector centrality: $c(y)=w(y), w$ the eigenvector of the adjacency matrix A of G corresponding to the largest eigenvalue.

Want to read something interesting?

Despre cum orice lucru este conectat cu oricare altul și ce reprezintă asta pentru afaceri, ştiinţă şi viaţa cotidiană

Albert-László Barabási
"LINKED ne-ar putea schimba modul în care gândim orice rețea care ne afectează viața" - The New York Times

By the way, not only in America ...

Want to read something even more interesting?

SOCIAL AND ECONOMIC NETWORKS

What's in it for us, Computer Scientists?

Can you study large networks without good algorithms?

To conclude: Many Models and Applications

- Social networks: who knows who
- The Web graph: which page links to which
- The Internet graph: which router links to which
- Citation graphs: who references whose papers
- Planar graphs: which country is next to which

■ Well-shaped meshes: pretty pictures with triangles

- Geometric graphs: who is near who
- A graph

$$
G=(V, E)
$$

- V is the set of vertices (also called nodes)
- E is the set of edges
- A graph

$$
G=(V, E)
$$

■ V is the set of vertices (also called nodes)
■ E is the set of edges

- $E \subseteq V \times V$, i.e., E is a relation between vertices
- an edge $e=(u, v) \in V$ is a pair of vertices $u \in V$ and $v \in V$
- A graph

$$
G=(V, E)
$$

■ V is the set of vertices (also called nodes)

- E is the set of edges
- $E \subseteq V \times V$, i.e., E is a relation between vertices
- an edge $e=(u, v) \in V$ is a pair of vertices $u \in V$ and $v \in V$
- An undirected graph is characterized by a symmetric relation between vertices
- an edge is a set $e=\{u, v\}$ of two vertices

Graph Representation

■ How do we represent a graph $G=(E, V)$ in a computer?

Graph Representation

■ How do we represent a graph $G=(E, V)$ in a computer?
■ Adjacency-list representation
■ $V=\{1,2, \ldots|V|\}$
■ G consists of an array Adj
■ A vertex $u \in V$ is represented by an element in the array $A d j$

Graph Representation

■ How do we represent a graph $G=(E, V)$ in a computer?

- Adjacency-list representation

■ $V=\{1,2, \ldots|V|\}$
■ G consists of an array Adj
■ A vertex $u \in V$ is represented by an element in the array $A d j$
■ $\operatorname{Adj}[u]$ is the adjacency list of vertex u

- the list of the vertices that are adjacent to u
- i.e., the list of all v such that $(u, v) \in E$

Example

Example

Using the Adjacency List

Using the Adjacency List

■ Accessing a vertex u ?
\checkmark.

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

- optimal \checkmark

■ Iteration through V ?

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

- optimal \checkmark

■ Iteration through V ? $\Theta(|V|)$

- optimal \checkmark

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

- optimal \checkmark

■ Iteration through V ? $\Theta(|V|)$

- optimal \checkmark

■ Iteration through E ?

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

- optimal \checkmark

■ Iteration through V ? $\Theta(|V|)$

- optimal \checkmark
- Iteration through E ?

$$
\Theta(|V|+|E|)
$$

- okay (not optimal)

Using the Adjacency List

■ Accessing a vertex u ?

$$
O(1) \checkmark
$$

- optimal \checkmark
- Iteration through V ? $\Theta(|V|)$
- optimal \checkmark
- Iteration through E ?

$$
\Theta(|V|+|E|)
$$

- okay (not optimal)

■ Checking $(u, v) \in E$?

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

- optimal \checkmark
- Iteration through V ? $\Theta(|V|)$
- optimal \checkmark
- Iteration through E ?

$$
\Theta(|V|+|E|)
$$

- okay (not optimal)

■ Checking $(u, v) \in E$?

Using the Adjacency List

■ Accessing a vertex u ? $O(1) \checkmark$.

- optimal \checkmark
- Iteration through V ? $\Theta(|V|)$
- optimal \checkmark
- Iteration through E ?

$$
\Theta(|V|+|E|)
$$

- okay (not optimal)
- Checking $(u, v) \in E$?
- bad \times

Graph Representation (2)

- Adjacency-matrix representation

■ $V=\{1,2, \ldots|V|\}$

- G consists of a $|V| \times|V|$ matrix A
- $A=\left(a_{i j}\right)$ such that

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Example

Example

Example

Using the Adjacency Matrix

Using the Adjacency Matrix

■ Accessing a vertex u ?

1	2	3	4	5	6	7	8	9	10	11	12		
1						1	1						
2			1				1						
3				1			1						
4							1						
5							1						
6		1							1				
7							1						
8								1		1	1		
9											1	1	
10										1			
11													
12													

Using the Adjacency Matrix

■ Accessing a vertex u ?
$O(1)$

- optimal \checkmark

1	2	3	4	5	6	7	8	9	10	11	12	
					1	1						
2			1				1					
3				1			1					
4							1					
5									1			
6		1					1		1			
7								1		1	1	
8											1	1
9										1		
10												
11												1
12												

Using the Adjacency Matrix

■ Accessing a vertex u ?
O (1)

- optimal \checkmark

■ Iteration through V ?

				1							
1				1	1						
2		1				1					
3			1			1					
4						1					
5								1			
6	1					1		1			
7							1		1	1	
8										1	1
9									1		
10											
11											1
12											

Using the Adjacency Matrix

■ Accessing a vertex u ?

- optimal \checkmark
- Iteration through V ?
- optimal \checkmark
$O(1)$

	$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112\end{array}$											
1				1	1							
2		1				1						
3			1			1						
4						1						
5									1			
6	1					1			1			
7							1	1		1	1	
8											1	1
9										1		
10												
11												1
12												

■ Accessing a vertex u ?

- optimal \checkmark

■ Iteration through V ?

$$
\Theta(|V|)
$$

- optimal \checkmark

■ Iteration through E ?
$O(1)$

■ Accessing a vertex u ?

- optimal \checkmark

■ Iteration through V ?

$$
\Theta(|V|)
$$

- optimal \checkmark
- Iteration through E ? $\Theta\left(|V|^{2}\right)$

■ Accessing a vertex u ? $O(1)$

- optimal \checkmark
- Iteration through V ?

$$
\Theta(|V|)
$$

- optimal \checkmark
- Iteration through E ? $\Theta\left(|V|^{2}\right)$
- possibly very bad \times.

■ Checking $(u, v) \in E$?

■ Accessing a vertex u ? $O(1)$

- optimal \checkmark
- Iteration through V ?

$$
\Theta(|V|)
$$

- optimal \checkmark
- Iteration through E ?

$$
\Theta\left(|V|^{2}\right)
$$

- possibly very bad \times.

■ Checking $(u, v) \in E$?
$O(1)$

■ Accessing a vertex u ? $O(1)$

- optimal \checkmark
- Iteration through V ?

$$
\Theta(|V|)
$$

- optimal \checkmark

■ Iteration through E ?

$$
\Theta\left(|V|^{2}\right)
$$

- possibly very bad \times.

■ Checking $(u, v) \in E$?
$O(1)$

- optimal \checkmark

Space Complexity

■ Adjacency-list representation

Space Complexity

■ Adjacency-list representation

$$
\theta(|V|+|E|)
$$

Space Complexity

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal.

Space Complexity

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal.

■ Adjacency-matrix representation

Space Complexity

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal.

■ Adjacency-matrix representation

$$
\begin{array}{||l|}
\hline \Theta\left(|V|^{2}\right) \\
\hline
\end{array}
$$

Space Complexity

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal.

■ Adjacency-matrix representation

$$
\begin{array}{||c|}
\hline \Theta\left(|V|^{2}\right) \\
\hline
\end{array}
$$

possibly very bad \times.

Space Complexity

■ Adjacency-list representation

$$
\Theta(|V|+|E|)
$$

optimal.

■ Adjacency-matrix representation

$$
\Theta\left(|V|^{2}\right)
$$

possibly very bad \times.
■ When is the adjacency-matrix "very bad"?

Choosing a Graph Representation

■ Adjacency-list representation

- generally good, especially for its optimal space complexity
- bad for dense graphs and algorithms that require random access to edges
- preferable for sparse graphs or graphs with low degree

Choosing a Graph Representation

■ Adjacency-list representation

- generally good, especially for its optimal space complexity
- bad for dense graphs and algorithms that require random access to edges
- preferable for sparse graphs or graphs with low degree

■ Adjacency-matrix representation

- suffers from a bad space complexity
- good for algorithms that require random access to edges
- preferable for dense graphs

Breadth-First Search

■ One of the simplest but fundamental algorithms

- One of the simplest but fundamental algorithms

■ Input: $G=(V, E)$ and a vertex $s \in V$

- explores the graph, touching all vertices that are reachable from s
- iterates through the vertices at increasing distance (edge distance)
- computes the distance of each vertex from s
- produces a breadth-first tree rooted at s
- works on both directed and undirected graphs

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	ENQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{DEQUEUE}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{ENQUEUE}(Q, v)$
18	color $[u]=\operatorname{BLACK}$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=1 \\
& Q=\varnothing
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=1 \\
& Q=\{5\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=1 \\
& Q=\{5,6\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=5 \\
& Q=\{6\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=5 \\
& Q=\{6,9\}
\end{aligned}
$$

BFS Algorithm

$\operatorname{BFS}(G, s)$	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=6 \\
& Q=\{9\}
\end{aligned}
$$

BFS Algorithm

$\operatorname{BFS}(G, s)$	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=6 \\
& Q=\{9,2,7\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=6 \\
& Q=\{9,2,7\}
\end{aligned}
$$

BFS Algorithm

$\operatorname{BFS}(G, s)$	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
u & =9 \\
Q & =\{2,7\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=9 \\
& Q=\{2,7,10\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=2 \\
& Q=\{7,10\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	$d[u]=\infty$
4	$\pi[u]=$ NIL
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	ENQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{DEQUEUE}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	$\operatorname{ENQUEUE}(Q, v)$
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
u & =2 \\
Q & =\{7,10,3\}
\end{aligned}
$$

BFS Algorithm

BFS (G, s)	1	for each vertex $u \in V(G) \backslash\{s\}$
2	color $[u]=$ WHITE	
3	$d[u]=\infty$	
4	$\pi[u]=$ NIL	
5	color $[s]=$ GRAY	
6	$d[s]=0$	
7	$\pi[s]=$ NIL	
8	$Q=\varnothing$	
9	ENQUEUE (Q, s)	
10	while $Q \neq \varnothing$	
11	$u=\operatorname{DEQUEUE}(Q)$	
12	for each $v \in \operatorname{Adj}[u]$	
13	if $\operatorname{color}[v]==$ WHITE	
14	$\operatorname{color}[v]=$ GRAY	
15	$d[v]=d[u]+1$	
16	$\pi[v]=u$	
17	$\operatorname{ENQUEUE}(Q, v)$	
18	color $[u]=\operatorname{BLACK}$	

$$
\begin{aligned}
& u=7 \\
& Q=\{10,3\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
u & =7 \\
Q & =\{10,3,8\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
& u=7 \\
& Q=\{10,3,8,11\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
& u=10 \\
& Q=\{3,8,11\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
& u=3 \\
& Q=\{8,11\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
u & =3 \\
Q & =\{8,11,4\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	$d[u]=\infty$
4	$\pi[u]=$ NIL
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	ENQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{DEQUEUE}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
& u=8 \\
& Q=\{11,4\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
& u=8 \\
& Q=\{11,4,12\}
\end{aligned}
$$

BFS Algorithm

$$
\begin{array}{ccc}
\text { BFS }(G, s) & 1 & \text { for each vertex } u \in V(G) \backslash\{s\} \\
2 & \text { color }[u]=\text { WHITE } \\
3 & d[u]=\infty \\
4 & \pi[u]=\text { NIL } \\
5 & \text { color }[s]=\text { GRAY } \\
6 & d[s]=0 \\
7 & \pi[s]=\text { NIL } \\
8 & Q=\varnothing \\
9 & \text { ENQUEUE }(Q, s) \\
10 & \text { while } Q \neq \varnothing \\
11 & u=\operatorname{DEQUEUE}(Q) \\
12 & \text { for each } v \in A d j[u] \\
13 & \text { if } \operatorname{color}[v]==\text { WHITE } \\
14 & \operatorname{color}[v]=\text { GRAY } \\
15 & d[v]=d[u]+1 \\
16 & \pi[v]=u \\
17 & \operatorname{ENQUEUE}(Q, v) \\
18 & \operatorname{color}[u]=\operatorname{BLACK}
\end{array}
$$

$$
\begin{aligned}
& u=11 \\
& Q=\{4,12\}
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	$d[u]=\infty$
4	$\pi[u]=$ NIL
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	ENQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=\operatorname{DEQUEUE}(Q)$
12	for each $v \in \operatorname{Adj}[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

$$
\begin{aligned}
& u=4 \\
& Q=\{12\}
\end{aligned}
$$

BFS Algorithm

$$
\begin{array}{ccc}
\text { BFS }(G, s) & 1 & \text { for each vertex } u \in V(G) \backslash\{s\} \\
2 & \text { color }[u]=\text { WHITE } \\
3 & d[u]=\infty \\
4 & \pi[u]=\text { NIL } \\
5 & \text { color }[s]=\text { GRAY } \\
6 & d[s]=0 \\
7 & \pi[s]=\text { NIL } \\
8 & Q=\varnothing \\
9 & \text { ENQUEUE }(Q, s) \\
10 & \text { while } Q \neq \varnothing \\
11 & u=\operatorname{DEQUEUE}(Q) \\
12 & \text { for each } v \in A d j[u] \\
13 & \text { if } \operatorname{color}[v]==\text { WHITE } \\
14 & \operatorname{color}[v]=\text { GRAY } \\
15 & d[v]=d[u]+1 \\
16 & \pi[v]=u \\
17 & \operatorname{ENQUEUE}(Q, v) \\
18 & \operatorname{color}[u]=\operatorname{BLACK}
\end{array}
$$

$$
\begin{aligned}
& u=12 \\
& Q=\varnothing
\end{aligned}
$$

BFS Algorithm

BFS(G, s)	1
2	for each vertex $u \in V(G) \backslash\{s\}$
3	color $[u]=$ WHITE
4	$d[u]=\infty$
5	color $[s]=$ GRAY
6	$d[s]=0$
7	$\pi[s]=$ NIL
8	$Q=\varnothing$
9	EnQUEUE (Q, s)
10	while $Q \neq \varnothing$
11	$u=$ DEQUEUE (Q)
12	for each $v \in A d j[u]$
13	if $\operatorname{color}[v]==$ WHITE
14	$\operatorname{color}[v]=$ GRAY
15	$d[v]=d[u]+1$
16	$\pi[v]=u$
17	ENQUEUE (Q, v)
18	color $[u]=\operatorname{BLACK}$

Complexity of BFS

```
BFS(G,s) 1 for each vertex }u\inV(G)\{s
    color[u] = WHITE
    d[u]=\infty
    \pi[u]= NIL
    color[s] = GRAY
    d[s] = 0
    \pi[s]= NIL
    Q = \varnothing
    ENQUEUE(Q,s)
    while Q = \varnothing
        u = Dequeue(Q)
        for each v }\in\operatorname{Adj[u]
        if color[v] == WHITE
            color[v] = GRAY
            d[v]=d[u]+1
            \pi[v]=u
            Enqueue(Q,v)
        color[u] = BLACK
```


Complexity of BFS

```
BFS(G,s) 1 for each vertex }u\inV(G)\{s
            color[u] = WHITE
            d[u]=\infty
    \pi[u]= NIL
    color[s] = GRAY
    d[s] = 0
    \pi[s]= NIL
    Q = \varnothing
    ENQUEUE(Q,s)
    while Q = \varnothing
    u = Dequeue(Q)
    for each v }\in\operatorname{Adj[u]
        if color[v] == WHITE
            color[v] = GRAY
                d[v]=d[u]+1
            \pi[v]=u
            Enqueue(Q,v)
        color[u] = BLACK
```

■ We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

Complexity of BFS

```
BFS(G,s) 1 for each vertex }u\inV(G)\{s
    color[u] = WHITE
    d[u]=\infty
    \pi[u]= NIL
    color[s] = GRAY
    d[s] = 0
    \pi[s]= NIL
    Q = \varnothing
    ENQUEUE(Q,s)
    while Q = \varnothing
    u = Dequeue(Q)
    for each v }\in\operatorname{Adj[u]
        if color[v] == WHITE
            color[v] = GRAY
                d[v]=d[u]+1
            \pi[v]=u
            Enqueue(Q,v)
    color[u] = BLACK
```

■ We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

- So, the (dequeue) while loop executes $O(|V|)$ times

Complexity of BFS

```
BFS(G,s) 1 for each vertex }u\inV(G)\{s
    color[u] = WHITE
    d[u]=\infty
    \pi[u]= NIL
color[s] = GRAY
d[s] = 0
\pi[s]= NIL
Q = \varnothing
Enqueue(Q,s)
while Q = \varnothing
    u = Dequeue(Q)
    for each v }\in\operatorname{Adj[u]
        if color[v] == WHITE
            color[v] = GRAY
                d[v]=d[u]+1
                \pi[v]=u
                Enqueue(Q,v)
    color[u] = BLACK
```

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- So, the (dequeue) while loop executes $O(|V|)$ times

■ For each vertex u, the inner loop executes $\Theta\left(\left|E_{u}\right|\right)$, for a total of $O(|E|)$ steps

Complexity of BFS

```
BFS(G,s) 1 for each vertex }u\inV(G)\{s
    color[u] = WHITE
    d[u]=\infty
    \pi[u]= NIL
color[s] = GRAY
d[s] = 0
\pi[s]= NIL
Q = \varnothing
Enqueue(Q,s)
while Q = \varnothing
    u = Dequeue(Q)
    for each v }\in\operatorname{Adj[u]
        if color[v] == WHITE
                color[v] = GRAY
                d[v]=d[u]+1
                \pi[v]=u
                Enqueue(Q,v)
    color[u] = BLACK
```

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

■ So, the (dequeue) while loop executes $O(|V|)$ times

■ For each vertex u, the inner loop executes $\Theta\left(\left|E_{u}\right|\right)$, for a total of $O(|E|)$ steps
■ So, $O(|V|+|E|)$

Depth-First Search

Depth-First Search

■ Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end

- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

Depth-First Search

■ Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end

- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

■ Input: $G=(V, E)$

- explores the graph, touching all vertices

Depth-First Search

■ Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end

- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

■ Input: $G=(V, E)$

- explores the graph, touching all vertices
- produces a depth-first forest, consisting of all the depth-first trees defined by the DFS exploration

Depth-First Search

- Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end
- i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited
- Input: $G=(V, E)$
- explores the graph, touching all vertices
- produces a depth-first forest, consisting of all the depth-first trees defined by the DFS exploration
- associates two time-stamps to each vertex
- $d[u]$ records when u is first discovered
- $f[u]$ records when DFS finishes examining u 's edges, and therefore backtracks from u
$\operatorname{DFS}(G) 1$ for each vertex $u \in V(G) \quad \operatorname{DFS}-\operatorname{VISIT}(u) 1 \operatorname{color}[u]=\operatorname{GREY}$

2	color $[u]=$ WHITE	2	time $=$ time +1	
3	$\pi[u]=$ NIL	3	$d[u]=$ time	
4	time $=0 \\| / /$ "global" variable	4	for each $v \in \operatorname{Adj}[u]$	
5	for each vertex $u \in V(G)$	5	if $\operatorname{color}[v]==$ WHITE	
6	if color $[u]==$ WHITE	6	$\pi[v]=u$	
7	DFS-VISIT (u)	7	DFS-VISIT (v)	
		8	color $[u]=$ BLACK	
	9	time = time +1		
	10	$f[u]=$ time		

Complexity of DFS

Complexity of DFS

- The loop in DFS-VIsIT(u) (lines 4-7) accounts for $\Theta\left(\left|E_{u}\right|\right)$

Complexity of DFS

- The loop in DFS-VIsit (u) (lines 4-7) accounts for $\Theta\left(\left|E_{u}\right|\right)$
- We call DFS-Visit (u) once for each vertex u
- either in DFS, or recursively in DFS-VISIT
- because we call it only if color[u] = WHITE, but then we immediately set color $[u]=$ GREY

Complexity of DFS

- The loop in DFS-VIsIT (u) (lines 4-7) accounts for $\Theta\left(\left|E_{u}\right|\right)$
- We call $\operatorname{DFS}-\operatorname{Visit}(u)$ once for each vertex u
- either in DFS, or recursively in DFS-VISIT
- because we call it only if color[u] = WHITE, but then we immediately set color $[u]=$ GREY

■ So, the overall complexity is $\Theta(|V|+|E|)$

Applications of DFS: Topological Sort

■ Problem: (topological sort)
Given a directed acyclic graph (DAG)

- find an ordering of vertices such that you only end up with forward links

Applications of DFS: Topological Sort

■ Problem: (topological sort)
Given a directed acyclic graph (DAG)

- find an ordering of vertices such that you only end up with forward links

■ Example: dependencies in software packages

- find an installation order for a set of software packages
- such that every package is installed only after all the packages it depends on

Topological Sort Algorithm

Topological Sort Algorithm

Topological Sort Algorithm


```
TOPOLOGICAL-SORT(G)1 DFS(G)
    2 output V sorted in reverse order of f[·]
```

