
Algorithms and Data Structures (II)

Gabriel Istrate

February 26, 2020

Gabriel Istrate Algorithms and Data Structures (II)

Organizational

Course objectives: present main data structures, improve alg
design.
Course webpage (when setup): moodle.e-uvt.ro
Class handouts: will be posted on webpage.
Seminar/lab: me+Teodora Voinea.

Gabriel Istrate Algorithms and Data Structures (II)

Organizational (II)

Grading: exam, (lab) homework/programming assignments.
Exact percentages: still undefined, probably 60%-40 %.
Course attendance: strongly recommended, not strictly enforced.

However
being a student is a full time job. Would your boss accept “couldn’t
do X because I had classes ?”.

Expect you: Work hard.
Exam: no point in memorizing courses, there will be no
”theory” part as such. Rather, I want to see that you
understood material.

Gabriel Istrate Algorithms and Data Structures (II)

Important

Academic honesty
OK/encouraged: speak up in class. Two-way, rather than
one-way communication. Request: be concise, to the point,
respect time spent together in class.
Disclaimer: I can make mistakes/be wrong. Let me know (in
person, email) how I can improve things.

Gabriel Istrate Algorithms and Data Structures (II)

Organizational (III)

This year: course redesign.
less programming, more math.
Reason: need to know pointers, you’re learning them this
semester.
However: mostly C, some basic features of C++, STL.
Please: brush up on/read basic features of C/C++, I will review
them in the Lab sections.
video lectures (linked on moodle).

Textbook: combination of texts.
Cormen, Leiserson, Rivest, Stein. First edition translated in
romanian as well. Theoretical, but very good book.
(secondary) Adam Drozdek ”Data structures and algorithms in
C++”, third edition or newer. Good for programming.

Gabriel Istrate Algorithms and Data Structures (II)

Where are we ?

Several methods for designing algorithms
Divide and conquer.
Greedy.
Dynamic programming.
(when everything fails) Backtracking.

Data structures
Paradigm for developing efficient algorithms based on abstraction:
Abstract operations needed by the program, change implementation
so that frequent operations run fast.

Gabriel Istrate Algorithms and Data Structures (II)

Example: Selection sort vs. HEAPSORT

Selection SORT
Elements to sort in a vector.
Find maximum element.
Swap it with the last element.
Proceed recursively.

Complexity

Finding maximum in a vector: Θ(n).
Complexity analysis: T (n) = T (n − 1) + θ(n).
Conclusion: Θ(n2)

Gabriel Istrate Algorithms and Data Structures (II)

Example: Selection sort vs. HEAPSORT

Selection SORT
Bottleneck in Selection Sort: Find maximum element
If we could improve finding max

HEAPSORT
Algorithm: Same idea.
Bottleneck: FindMax θ(n). Replace it with O(1) operation (via
heaps).
Complexity W (n) = θ(log n) (need also to update heap via
HEAPIFY)
New algorithm: complexity θ(n log(n)).

Gabriel Istrate Algorithms and Data Structures (II)

Why data structures ?

Data structures: algorithm development via primitive operations.

Modularity in algorithm design

You don’t build a house from scratch (bricks, frames, drywalls). Same
with algorithms/code.

Easier to solve problem/test solution only once.
Correctness: easier to check. easier to update.

Gabriel Istrate Algorithms and Data Structures (II)

Why data structures ? Performance.

You google something. Don’t want to wait 100 seconds !
Search: fast.
You play a game. Game engine must quickly retrieve/update
objects you see in front of you when you move your viewport.
Operations: often abstracted from requirements.

Most frequent operations should be fast.

How do you measure performance ?

O(n log n), θ(log n) ...

Gabriel Istrate Algorithms and Data Structures (II)

Example (operations from requirements)

1 2 3︸ ︷︷ ︸ 7 5 6 4︸ ︷︷ ︸ 8 9 10︸ ︷︷ ︸ 14 13 12 11︸ ︷︷ ︸ . . .
TCP: basis for much of Internet traffic.
Data requirement: We need to buffer a packet that is out-of order.
We need to pop elements that become in-order.
We need to test emptiness of buffer.
We need to produce first missing element (ACK).
Operation performance O(1)?.

Gabriel Istrate Algorithms and Data Structures (II)

Concepts

A data structure is a way to organize and store information

to facilitate access, or for other purposes

A data structure has an interface consisting of procedures for
adding, deleting, accessing, reorganizing, etc.

A data structure stores data and possibly meta-data

e.g., a heap needs an array A to store the keys, plus a variable
A.heap-size to remember how many elements are in the heap

Gabriel Istrate Algorithms and Data Structures (II)

What are data structures more concretely ?

data ...
E.g. complex numbers: two floats.
... together with operations one can perform on the data ...
Example: integer + (addition), - (subtraction), · (multiplication).
... and performance guarantees.

Note !
How to precisely implement operations is not a part of data structure
specification. Concepts, not code.

Gabriel Istrate Algorithms and Data Structures (II)

Data types

All DS that share a common structure and expose the same set
of operations.
Predefined data types: array, structures, files.
Scalar data type: ordering relation exists among elements.
More complicated: dynamic DS. Lists, circular lists, trees, hash
tables, graphs.

C++: Standard template library (STL):
library of container classes, algorithms, and iterators; provides many
of the basic algorithms and data structures of computer science

Gabriel Istrate Algorithms and Data Structures (II)

Example: Array data type/Vector

Ensures random access to its elements.
Complexity O(1).
Composed of objects of the same type.

Implementations
int myarray[10]; One dimensional arrays.
Multidimensional arrays.
type name[lim1]...[limn];

implementation in C++/STL: vector.

Gabriel Istrate Algorithms and Data Structures (II)

Example using vector class

#include<vector>
using namespace std;

int main(){

static const int SIZE = 10000;
vector<int> arr(SIZE);
arr.append(125);
. . ..
}

Gabriel Istrate Algorithms and Data Structures (II)

Vectors the C++/data structures way

Vector: black-box.
Random access: arr [i] should take Θ(1) time.
Black box (class implementation) may implement some other
operations, e.g. append.

Main point
You didn’t implement vector yourself. All you care is what operations
can you execute, and how complex they are.

This course
Define, implement various ”data structures”, and use them to get
better algorithms.

Gabriel Istrate Algorithms and Data Structures (II)

Some minimal C/C++ recap

You have an entire course for more.

Gabriel Istrate Algorithms and Data Structures (II)

Pointers in C(++)

Variables that hold addresses of other variables.

int i=15,j, *p,*q;

Dynamic memory allocation: p= new int;
Assignment: *p=20;
Deallocation: delete p;
Dangling reference: upon deallocation should
assign p = 0;

Gabriel Istrate Algorithms and Data Structures (II)

Pointers and arrays

int a[5],*p;

for(sum=a[0],i=1;i<5;i++)
sum += a[i];
or
for (sum=*a,i=1;i<5;i++)
sum += *(a+i);
or
for(sum=*a,p=a+1;p<a+5;p++)
sum += *p;

p = new int[n];
delete [] p;

Gabriel Istrate Algorithms and Data Structures (II)

Pointers and reference variables

int n = 5, ∗p = &n,&r = n;.
r is a reference variable. Must be initialized in definition as reference
to a particular variable.

reference: different name for/constant pointer to variable.
cout << n << ’ ’<< *p<<’ ’<< r<< endl;
5 5 5

n= 7 (*p = 7, r = 7)
cout << n << ’ ’<< *p<<’ ’<< r<< endl;
7 7 7

cout: C++ way to print. BEST WAY TO PASS PARAMETER: const
reference variables;

Gabriel Istrate Algorithms and Data Structures (II)

C++: classes, objects, member functions, oh
my !

in C++: classes - user-defined data types.
objects: instantiations of classes.
objects have behavior, member functions.

Example
Assume dog is a C++ class.
Assume Buddy is an ”object” of type dog.
Dogs behavior: bark, member function with no parameters.
To make Buddy bark: Buddy.bark() call member function bark
that belongs to Buddy.
C++: only so-called public member functions can be called from
outside the class code.

Gabriel Istrate Algorithms and Data Structures (II)

So let’s start ...

Today:
Stacks
Queues
Dequeues

Gabriel Istrate Algorithms and Data Structures (II)

Stacks

A Stack is a sequential organization of items in which the last
element inserted is the first element removed. They are often
referred to as LIFO, which stands for “last in first out.”
Examples: letter basket, stack of trays, stack of plates.
The only element of a stack that may be accessed is the one that
was most recently inserted.
There are only two basic operations on stacks, the push (insert),
and the pop (read and delete).

Gabriel Istrate Algorithms and Data Structures (II)

Stacks: Push and Pop

The operation push(x) places the item x onto the top of the
stack.
The operation pop() removes the top item from the stack, and
returns that item.
We need some way of detecting an empty stack (This is an
underfull stack).

In some cases, we can have pop() return some value that couldn’t
possibly be on the stack.
Example: If the items on the stack are positive integers, we can
return “-1” in case of underflow.
In other cases, we may be better off simply keeping track of the
size of the stack.

In some cases, we will also have to worry about filling the stack
(called overflow). One way to do this is to have push(x) return
“1” if it is successful, and “0” if it fails.

Gabriel Istrate Algorithms and Data Structures (II)

An Example Stack Operations
Assume we have a stack of size 3 which holds integers between -100
and 100. Here is a series of operations, and the results.

Operation Stack Contents Return
create ()
push(55) (55) 1
push(-7) (-7,55) 1
push(16) (16,-7,55) 1
pop (-7,55) 16
push(-8) (-8,-7,55) 1
push(23) (-8,-7,55) 0
pop (-7,55) -8
pop (55) -7
pop () 55
pop () 101

Gabriel Istrate Algorithms and Data Structures (II)

Array-based Stack Implementation

S is an array that holds the elements of the stack
S. top is the current position of the top element of S

STACK-EMPTY(S)
1 if S. top == 0
2 return TRUE

3 else return FALSE

PUSH(S,X)
1 S. top = S. top + 1
2 S[S. top] = x

POP(S)
1 if STACK-EMPTY(S)
2 error “underflow”
3 else S. top = S. top − 1
4 return S[S. top + 1]

Gabriel Istrate Algorithms and Data Structures (II)

Questions for you

1 What is the result of running operations PUSH(S,4), PUSH(S,1),
PUSH(S,3), POP(S), PUSH(S,8), POP(S) on an empty stack of
size 6 ?

2 Show how to implement a queue with two stacks. Analyze the
running time of the queue operations.

3 Explain how two implement two stacks in one array A[1 . . . n]
such that neither stack overflows unless the total number of
elements in both stacks is n. PUSH and POP should run in O(1)
time.

Gabriel Istrate Algorithms and Data Structures (II)

Example Application of Stacks: Balanced
Parantheses

Stacks can be used to check a program for balanced symbols
(such as {},(),[]).
Example: {()} is legal, as is {()({})}, whereas {((} and {(}) are
not (so simply counting symbols does not work).
If the symbols are balanced correctly, then when a closing
symbol is seen, it should match the “most recently seen”
unclosed opening symbol. Therefore, a stack will be appropriate.

Gabriel Istrate Algorithms and Data Structures (II)

Balanced symbols

The following algorithm will do the trick:
While there is still input:

s = next symbol
if (s is an opening symbol) push(s)
else //s is a closing symbol

if (Stack.Empty) report an error
else r = pop()
if(! Match(s,r)) report an error

If (! Stack.Empty) report an error

Gabriel Istrate Algorithms and Data Structures (II)

Examples

1. Input: { () }
Read {, so push {
Read (, so push (. Stack has { (
Read), so pop. popped item is (which matches). Stack has
now {.
Read }, so pop; popped item is { which matches }.
End of file; stack is empty, so the string is valid.

2. Input: { () ({) } } (This will fail.)

2. Input: { ({ }){ } () } (This will succeed.)

3. Input: { () }) (This will fail.)

Gabriel Istrate Algorithms and Data Structures (II)

Operator Precedence Parsing

We can use the stack class we just defined to parse and
evaluate mathematical expressions like:

5 ∗ (((9 + 8) ∗ (4 ∗ 6)) + 7)

First, we transform it to postfix notation:
5 9 8 + 4 6 ∗ ∗ 7 + ∗

Usual form for arithmetic expressions: infix. term1 op term2.
Postfix notation: term1 term2 op.
How to convert infix to postfix: later !

Gabriel Istrate Algorithms and Data Structures (II)

Evaluating Postfix expressions

Then, the following C++ routine uses a stack to perform this
evaluation:

1 char c;
2 Stack acc(50);
3 int x;
4 while (cin.get(c))
5 {
6 x = 0;
7 while (c == ’ ’) cin.get(c);
8 if (c == ’+’) x = acc.pop() + acc.pop();
9 if (c == ’*’) x = acc.pop() * acc.pop();

10 while (c≥ ’0’ && c ≤ ’9’)
11 x = 10*x + (c-’0’); cin.get(c);
12 acc.push(x);
13 }
14 cout << acc.pop() << ”;

Gabriel Istrate Algorithms and Data Structures (II)

Explanation of code

We read one character at a time in c.
In x we compute the value of the currently evaluated expression.
After computing it we push the value on the stack - we will need
it later.
When reading an op we take the last two value off the stack and
apply the op on them and assign this to x .
When reading a digit we update value of x by making the last
read digit the least significant one.

Gabriel Istrate Algorithms and Data Structures (II)

Stack Applications

Recursion removal can be done with stacks.
Reversing things is easily done with stacks.
Procedure call and procedure return is similar to matching
symbols:

When a procedure returns, it returns to the most recently active
procedure.
When a procedure call is made, save current state on the stack.
On return, restore the state by popping the stack.

Gabriel Istrate Algorithms and Data Structures (II)

Queue

The ubiquitous “first-in first-out” container (FIFO)

Interface

ENQUEUE(Q, x) adds element x at the back of queue Q

DEQUEUE(Q) extracts the element at the head of queue Q

Implementation

Q is an array of fixed length Q. length

i.e., Q holds at most Q. length elements

enqueueing more than Q elements causes an “overflow” error

Q.head is the position of the “head” of the queue

Q. tail is the first empty position at the tail of the queue

Gabriel Istrate Algorithms and Data Structures (II)

Enqueue

ENQUEUE(Q,X)
1 if Q.queue-full
2 error “overflow”
3 else Q[Q. tail] = xQ[Q. tail] = x
4 if Q. tail < Q. length
5 Q. tail = Q. tail + 1Q. tail = Q. tail + 1
6 else Q. tail = 1Q. tail = 1
7 if Q. tail == Q.head
8 Q.queue-full = TRUE

9 Q.queue-empty = FALSE

Gabriel Istrate Algorithms and Data Structures (II)

Dequeue

DEQUEUE(Q) 1 if Q.queue-empty
2 error “underflow”
3 else x = Q[Q.head]
4 if Q.head < Q. length
5 Q.head = Q.head + 1Q.head = Q.head + 1
6 else Q.head = 1Q.head = 1
7 if Q. tail == Q.head
8 Q.queue-empty = TRUE

9 Q.queue-full = FALSE

10 return x

Gabriel Istrate Algorithms and Data Structures (II)

Applications of Queues

Scheduling (disk, CPU)
Used by operating systems to handle congestion.
Algorithms (we’ll see)

Gabriel Istrate Algorithms and Data Structures (II)

Complexity

Algorithm Complexity

STACK-EMPTY O(1)

PUSH O(1)

POP O(1)

ENQUEUE O(1)

DEQUEUE O(1)

Gabriel Istrate Algorithms and Data Structures (II)

Linked List

Interface

LIST-INSERT(L, x) adds element x at beginning of a list L

LIST-DELETE(L, x) removes element x from a list L

LIST-SEARCH(L, k) finds an element whose key is k in a list L

Implementation

a doubly-linked list

each element x has two “links” x .prev and x .next to the previous
and next elements, respectively

each element x holds a key x .key

it is convenient to have a dummy “sentinel” element L.nil

Gabriel Istrate Algorithms and Data Structures (II)

Linked List

Interface

LIST-INSERT(L, x) adds element x at beginning of a list L

LIST-DELETE(L, x) removes element x from a list L

LIST-SEARCH(L, k) finds an element whose key is k in a list L

Implementation

a doubly-linked list

each element x has two “links” x .prev and x .next to the previous
and next elements, respectively

each element x holds a key x .key

it is convenient to have a dummy “sentinel” element L.nil

Gabriel Istrate Algorithms and Data Structures (II)

Linked List With a “Sentinel”

LIST-INIT(L)1 L.nil .prev = L.nil
2 L.nil .next = L.nil

LIST-INSERT(L, x)1 x .next = L.nil .next
2 L.nil .next .prev = x
3 L.nil .next = x
4 x .prev = L.nil

LIST-SEARCH(L, k)1 x = L.nil .next
2 while x 6= L.nil ∧ x .key 6= k
3 x = x .next
4 return x

Gabriel Istrate Algorithms and Data Structures (II)

