
Algorithms for
Data Compression

[CLRS] – chap 16.3
(plus some material not in

Cormen)

Outline

• The Data compression problem
• Techniques for lossless compression:

– Based on codewords
• Huffman codes

– Based on dictionaries
• Lempel-Ziv, Lempel-Ziv-Welch

The Data Compression Problem
• Compression: transforming the way information

is represented
• Compression saves:

– space (external storage media)
– time (when transmitting information over a network)

• Types of compression:
– Lossless: the compressed information can be

decompressed into the original information
• Examples: zip

– Lossy: the decompressed information differs from the
original, but ideally in an insignificant manner

• Examples: jpeg compression

Lossless compression

• The basic principle for lossless
compression is to identify and eliminate
redundant information

• Techniques used for codification:
– Codewords
– Dictionaries

Codewords
• Each character is represented by a codeword

(an unique binary string)
– Fixed-length codes: all characters are represented

by codewords of the same length (example: ASCII
code)

– Variable-length codes: frequent characters get short
codewords and infrequent characters get longer
codewords

Prefix Codes
• A code is called a prefix code if no codeword is a

prefix of any other codeword (actually “prefix-
free codes” would be a better name)

• This property is important for being able to
decode a message in a simple and
unambiguous way:
– We can match the compressed bits with their original

characters as we decompress bits in order
– Example: 0 0 1 0 1 1 10 1 is unambiguously decoded

into aabe (assuming codes from previous table)

Representation of Prefix Codes
• A binary tree whose leaves are the given characters. The

codeword for a character is the simple path from the root
to that character, where 0 means “go to the left child”
and 1 means “go to the right child.”

Constructing the
optimal prefix code

• Given a tree T corresponding to a prefix code, we can
compute the number of bits B(T) required to encode a
file.

• For each character c in the alphabet C, let the attribute
c.freq denote the frequency of c in the file and let dT(c)
denote the depth of c’s leaf in the tree.

• The number of bits B(T) required to encode a file is the
Cost of the tree:

• B(T) should be minimal !

Huffmann algorithm for
constructing optimal prefix codes

• The principle of Huffman’s algorithm is following:
• Input data: frequencies of the characters to be encoded
• The binary tree is built bottom->up
• We have a forest of trees that are united until one single

tree results
• Initially, each character is its own tree
• Repeatedly find the two root nodes with lowest

frequencies, create a new root with these nodes as its
children, and give this new root the sum of its children
frequencies

Example - Huffman

[CLRS] – fig 16.5

Step1:

Step2:

Step3:

Example – Huffman (cont)

[CLRS] – fig 16.5

Step 4:

Step 5:

Example – Huffman (final)

[CLRS] – fig 16.5

Step 6:

[chap 9, pg 164]

Huffman encoding
• Input: a text, using an alphabet of n characters
• Output: a Huffman codes table and the encoded

text
• Preprocessing:

– Computing frequencies of characters in text (requires
one full pass over the input text)

– Building Huffman codes
• Encoding:

– Read input text character by character, replace every
character by its code(=string of bits) and write output
text

Huffman decoding
• Input: a Huffman codes table and the encoded

text
• Output: the original text
• Starting at the root of the Huffman tree, read one

bit of the encoded text and travel down the tree
on the left child(bit 0) or right child (bit 1) until
arriving at a leaf. Write the decoded character
(corresponding to the leaf) and resume
procedure from the root.

Huffman encoding - Example
• Input text: ABRACABABRA
• Compute char frequencies: A=5, B=3, R=2, C=1
• Build code tree:

11

6

3

A=5

C=1 R=2

B=3

0 1

10

0 1

• Encoded text: 01110101000110111010 20 bits
• Coding of orginal text with fixed-length code: 11*2=22 bits
• Attention ! The output will contain the encoded text +

coding information ! (in this small example, actual size of
output will be bigger than input in this case)

Huffman decoding - Example
• Input: coding information + encoded text

– A=5, B=3, R=2, C=1
– 01110101000110111010

• Build code tree:
11

6

3

A=5

C=1 R=2

B=3

0 1

10

0 1

• Decoded text:
• ABRACABABRA

Huffman coding in practice
• Can be applied to compress as well binary files

(characters = bytes, alphabet = 256
“characters”)

• Codes = strings of bits
• Implementing Encoding and Decoding involves

bitwise operations !

Disadvantages of Huffman codes

• Requires two passes over the input (one to
compute frequencies, one for coding), thus
encoding is slow

• Requires storing the Huffman codes (or at
least character frequencies) in the encoded
file, thus reducing the compression benefit
obtained by encoding

• => these disadvantages can be improved by
Adaptive Huffman Codes (also called Dynamic
Huffman Codes)

Principles of Adaptive Huffman
• Encoding and Decoding work adaptively,

updating character frequencies and the binary
tree as they compress or decompress in just one
pass

Adaptive Huffman encoding
The compression program starts with an empty binary

tree.
While (input text not finished)

Read character c from input
If (c is already in binary tree) then

Writes code of c
Increases frequency of c
If necessary updates binary tree

Else
Writes c unencoded (+ escape sequence)
Adds c to the binary tree

Adaptive Huffman decoding
The decompression program starts with an empty

binary tree.
While (coded input text not finished)

Read bits from input until reaching a code or
the escape sequence

If (bits represent code of a character c) then
Write c
Increases frequency of c
If necessary updates binary tree

Else
Read bits of new character c
Write c
Adds c to the binary tree

Adaptive Huffman
• Main issue: to correctly and efficiently update the code

tree when adding new character or increasing the
frequency of a character
– one cannot just run the Huffman algo for building the tree

every time one frequency gets modified
• Both the coder and the decoder must use exactly the

same algo for updating code trees (otherwise
decoding will not work !)

• Known solutions to this problem:
– FGK algorithm (Faller, Gallagher, Knuth)
– Vitter algorithm

Outline

• The Data compression problem
• Techniques for lossless compression:

– Based on codewords
• Huffman codes

– Based on dictionaries
• Lempel-Ziv, Lempel-Ziv-Welch

Dictionary-based encoding
• Dictionary-based algorithms do not encode

single symbols as variable-length bit strings;
they encode variable-length strings of symbols
as single tokens
– The tokens form an index into a phrase dictionary
– If the tokens are smaller than the phrases they

replace, compression occurs.

Dictionary-based encoding
example

• Dictionary:
1. ASK

2. NOT

3. WHAT

4. YOUR

5. COUNTRY
6. CAN

7. DO

8. FOR

9. YOU

• Original text:
• ASK NOT WHAT YOUR COUNTRY CAN

DO FOR YOU ASK WHAT YOU CAN
DO FOR YOUR COUNTRY

• Encoded based on
dictionary :

• 1 2 3 4 5 6 7 8 9 1 3 9 6 7 8
4 5

Dictionary-based encoding in
practice

• Problems in practice:
– Where is the dictionary ? (external/internal) ?

– Dictionary is known in advance (static) or not ?

– Size of dictionary is large -> size of dictionary index
word may be comparable or bigger than some words

• If index word is on 4 bytes => dictionary may hold 232 words

LZ-77
• Abraham Lempel & Jacob Ziv: 1977: proposed a

dictionary-based approach for compression
– Idea:

• dictionary is actually the text itself
• First occurrence of a “word” in input => “word” is written in

output
• Next occurences of a “word” in input => instead of writing

“word” in output, write only a “reference” to its first occurrence

– “word”: any sequence of characters
– “reference”: A match is encoded by a length-distance

pair, meaning: "the next length characters are equal to
the characters exactly distance characters behind it in
the input".

LZ-77 Principle Example

• Input text:
• IN_SPAIN_IT_RAINS_ON_THE_PLAIN

• Coding:
• IN_SPAIN_IT_RAINS_ON_THE_PLAIN

• Coded output:
• IN_SPA{3,6}IT_R{3,8}S_ON_THE_PL{3,22}

LZ-78 and LZW

• Lempel-Ziv 1978
– Builds an explicit Dictionary structure of all character

sequences that it has seen and uses indices into this
dictionary to represent character sequences

• Welch 1984 -> LZW
– The dictionary is not empty at start, but initialized with

256 single-character sequences (the ith entry is ASCII
code i)

LZW compressing principle
• The compressor builds up strings, inserting them into the

dictionary and producing as output indices into the
dictionary.

• The compressor builds up strings in the dictionary one
character at a time, so that whenever it inserts a string
into the dictionary, that string is the same as some string
already in the dictionary but extended by one character.
The compressor manages a string s of consecutive
characters from the input, maintaining the invariant that
the dictionary always contains s in some entry (even if s
is a single character)

[Alg. Unlocked, chap 9, pg 172]

LZW Compressor Example

• Input text: TATAGATCTTAATATA

• Step 1: initialize dictionary with entries indices 0-255, corresponding
to all ASCII characters

• Step 2: s=T

• Step 3:

LZW Compressor Example (cont)
Input text: TATAGATCTTAATATA

LZW Decompressing principle
• Input: a sequence of indices only.
• The dictionary does not have be stored with the

compressed information, LZW decompression rebuilds
the dictionary directly from the compressed information !

• Like the compressor, the decompressor seeds the
dictionary with the 256 single-character sequences
corresponding to the ASCII character set. It reads a
sequence of indices into the dictionary as its input, and it
mirrors what the compressor did to build the dictionary.
Whenever it produces output, it’s from a string that it has
added to the dictionary.

[Unlocked, chap 9]

LZW Decompressor Example
Input: indices: 84, 65, 256, 71, 257, 67, 84, 256, 257, 264

LZW Implementation

• Dictionary has to be implemented in an
efficient way
– Tries
– Hashtables

Problem:
• A dictionary structure, used to store a dynamic set

of words that may contain common prefixes.
– Word=string of elements from an alphabet;

alphabet=the set of all possible elements in the words
• Solution:

– We can exploit the common prefixes of the words, and
associate the words(the elements of the set) with paths
in a tree instead of nodes of a tree

– Solution: Tries
– Multipath trees
– If the alphabet has N symbols, a node may have N children

Example Trie
B S

E Y E H

A E L E

N L

A

G RD

T

T

E

BAD
BAG
BAR
BART
BE
BY
BYTE
SEA
SEE
SEEN
SELL
SHE

Tries
• Trie tree: tree structure whose edges are labeled with the elements of

the alphabet.
• Each node can have up to N children, where N is the size of the

alphabet.
• Nodes correspond to strings of elements of the alphabet: each node

corresponds to the sequence of elements traversed on the path from the
root to that node.

• The dictionary maps a string s to a value v by storing the value v in the
node of s. If a string that is a prefix of another string in the dictionary is
not used, it has nil as its value.

• Possible implementation: a trie tree node structure contains an array
of N links to child nodes (a link to a child node can be also nil) and a link
to the current strings value (it can be also nil).

Trie Tree Example
B S

E Y E H

A E L E

N LDictionary: (Words with values):
BE = 5, BY =3,

SEA=9, SEE=7, SEEN=8,
SELL=2, SHE=4

5 3

9

8 2

47

Dictionary with Trie tree - Example

A T

T T A T

A C A

C G

A

G

(65) (67) (71) (84)

(257)

Words in dictionary: A, C, G, T, AT, CT, GA, TA, TT, ATA, ATC, TAA, TAG

(261) (259) (256) (262)

(264) (260) (263) (258)

LZW Efficiency
• Biggest problem: size of dictionary is large =>

indices need several bytes to be represented =>
compression rate is low

• Possible measures:
– Run Huffman encoding on LZW output (will work well

because many indices in the LZW sequence are from
the lower part)

– Limit size of dictionary
• once the dictionary reaches a maximum size, no other

entries are ever inserted.
• In another approach, once the dictionary reaches a maximum

size, it is cleared out (except for the first 256 entries), and the
process of filling the dictionary restarts from the point in the
text

Data compression in practice
• Known file compression utilities:

– Gzip, PKZIP, ZIP: the DEFLATE approach(2 phases
compression, applying LZ77 and Huffman)

– Compress(UNIX distribution compressing tool): LZW
• Microsoft NTFS : a modified LZ77
• Image formats:

– GIF: LZW
• Fax machines: a modified Huffman encoding

• LZ77: free to use => in open-source sw
• LZ78, LZW: was protected by many patents

