
Programming 1
Introduction in
programming
Course 2

What we talked about in the last course?

• Course information
• Class requirements and evaluation

• Basic elements about Python
• Variables and data types

• Mathematical operations

What we will discuss today?

• Software development process

• Repetitive structures
• For, while, break, continue

• Predefined data structures
• List, tuples, dictionary, set

Consider the following scenario …

• You are a computer scientist
• You move to America
• In the morning you listen radio
• Hear the morning news that announce the temperature in Fahrenheit

degrees
• PROBLEM! – you cannot convert the Fahrenheit to Celsius degree in

order to know how to dress
• SOLUTION! – you think to write a computer program that does the

conversion for you

Write a computer program ….

• What information I provide to the computer?

• Which is the formula to convert from Farenheit to Celsius degrees?

• What should the computer respond me?

Write a computer program ….

• What information I provide to the computer?
• A value representing the temperature in Farenheit degree

• Which is the formula to convert from Farenheit to Celsius degrees?
• Find the conversion formula C= 𝐹 − 32 ∗ 5/9 (remark 5/9 evaluates to

float in Python 3)

• What should the computer respond me?
• A value that represents the temperature in Celsius degrees

… the program …

tempFarenheit = int (input (“Which is the temperature in Farenheit?”))
tempCelsius = (tempFarenheit – 32) * 5/9
print(“Temperature in Celsius degrees is “, tempCelsius)

TEST your program
• You should test for some known values if the program gives the expected

result
Which is the temperature in Farenheit?0
Temperature in Celsius degrees is -17.77777777777778

Which is the temperature in Farenheit?100
Temperature in Celsius degrees is 37.77777777777778

Software Development Process

• Computers must be told what to do right down to the last detail

• Problem solving
• Broken in stages
• Each stage

• Input
• Output

Software Development Process - Steps

• Analyze the problem
• Figure out exactly what is the problem that has to be resolved
• Try to understood as much as possible about the problem

• Determine Specifications (also called Requirements)
• Create a Design
• Implement the Design
• Tests/Debug the program
• Maintain the program

Software Development Process - Steps

• Analyze the problem
• Determine Specifications (also called Requirements)
• Describe exactly what your program does
• Do not worry how it will be implemented
• Clearly identify the available information and what is the expected result

• Create a Design
• Implement the Design
• Tests/Debug the program
• Maintain the program

Software Development Process - Steps

• Analyze the problem
• Determine Specifications (also called Requirements)
• Create a Design
• Formulate the overall structure of the program
• Identify and describe the algorithms and data structures

• Implement the Design
• Tests/Debug the program
• Maintain the program

Software Development Process - Steps

• Analyze the problem
• Determine Specifications (also called Requirements)
• Create a Design
• Implement the Design
• Translate the design into a programming language

• Tests/Debug the program
• Maintain the program

Software Development Process - Steps

• Analyze the problem
• Determine Specifications (also called Requirements)
• Create a Design
• Implement the Design
• Tests/Debug the program
• Try out to see if it is working
• It could contain ERRORS (also called bugs) that break the program execution

• DEBUGGING – the process of identifying and resolving the errors

• Maintain the program
• Continue developing the programs to respond to users needs.

https://en.wikipedia.org/wiki/Software_bug#Etymology

Software Development Process - Steps

• Analyze the problem
• Determine Specifications (also called Requirements)
• Create a Design
• Implement the Design
• Tests/Debug the program
• Maintain the program
• Continue developing the program to respond to new users needs.

Temperature converter

• There would be other solution(s) to solve the problem?
• If you would be an expert in AI (Artificial Intelligence)

• Program would automatically identify from radio news the temperature value
• Using speech recognition

• Display / Announce you about the temperature

… how we solve the following …

• Calculate the following sum

𝑆+ =,
-./

+

𝑖 = 1 + 2 +⋯+ 𝑛

• If n=2?
• If n=3?
• If n = 100?

… how we solve the following …

• Calculate the following sum

𝑆+ =,
-./

+

𝑖 = 1 + 2 +⋯+ 𝑛

• If we rewrite the formula like
𝑆+ = 𝑆+56 + 𝑛

• What about 𝑆-?
𝑆- = 𝑆-56 + 𝑖

• Algorithm ?

… how we solve the following …

• Calculate the following sum

𝑆+ =,
-./

+

𝑖 = 0 + 1 + 2 +⋯+ 𝑛

• What about 𝑆-?
𝑆- = 𝑆-56 + 𝑖

• Algorithm ?
1) Read a variable n
2) Set s with first element of the series (s=0) and set i=0
3) if i <= m then

4) Calculate next series element s = s + i
5) Increment n (i=i+1)
6) Go to step 3)

Read a variable n

Define first element of the
series i=0, s=0

i<=n

Calculate the next element
s = s +i, i = i + 1

yes

Display sno

Repetitive statements

• In most software, the statements in the program must be repeated
several times

• Loop is a control structure that repeats a group of steps in a program
• Loop body stands for the repeated statements

• The repetitive statements (loops) in Python are for and while

Repetitive statements - while

• Syntax
while <condition> :

Statement(s)
[else:

statement(s)]

• An expression that evaluates to a Boolean value (True,
False)

• Loop body, it is executed as long as the <condition> is
True

• Can be formed from one ore more statements
• All statements bellowing to while should be at least

with one space aligned to right

• Optional clause (can be omitted) specific to Python
language that executes when while loop finishesA loop is called infinite loop if its <condition> is

always True.

Repetitive statements - while
Calculate 𝑆𝒊 = 𝑆-56 + 𝑖 Translated to Python programming language

n = int(input("n="))
s = 0
i = 0
while i <= n:

s = s + i
i = i + 1

else:
print("S=", s)

Read a variable n

Define first element of the
series i=0, s=0

i<=n

Calculate the next element
s = s +i, i = i + 1

yes

Display sno

Repetitive statements - while

• More examples
• A la russe multiplication

• Multiply two numbers x and y using
the following algorithm:
• Write x and y on the same line
• Divide x with 2 and write the

quotient under x
• Multiply y with 2 and write the

result under y
• Continue while x is different from 1
• The n*m multiplication result is the

sum of values from y column that
correspond to odd numbers on x
column

X = 13 Y = 25

13 25

6 50

3 100

1 200

Example

Result: x*y = 25 + 100 + 200 = 325

Repetitive statements - while

• More examples
• A la russe multiplication

• Multiply two numbers x and y using
the following algorithm:
• Write x and y on the same line
• Divide x with 2 and write the

quotient under x
• Multiply y with 2 and write the

result under y
• Continue while x is different from 1
• The n*m multiplication result is the

sum of values from y column that
correspond to odd numbers on x
column

X = 13 Y = 25

13 25

6 50

3 100

1 200

Result: x*y = 25 + 100 + 200 = 325

Lets try to reformulate

Step1: result = 0
Step2: if x is odd then result = result + y
Step3: x becomes x/2
Step4: y becomes y*2
Step5: if x not equal with 1 go to Step2;

otherwise result = result + y
Step6: display the result

Repetitive statements - while
X = 13 Y = 25

13 25

6 50

3 100

1 200

Result: x*y = 25 + 100 + 200 = 325

Lets try to reformulate

Step1: result = 0
Step2: if x is odd then result = result + y
Step3: x becomes x/2
Step4: y becomes y*2
Step5: if x not equal with 1 go to Step2;

otherwise result = result + y
Step6: display the result

result = 0

Read x,y

x>=1

result = result + yx%2== 1

x = x/2

y = y*2

Display result

Repetitive statements - while
X = 13 Y = 25

13 25

6 50

3 100

1 200

Result: x*y = 25 + 100 + 200 = 325

Lets try to reformulate

Step1: result = 0
Step2: if x is odd then result = result + y
Step3: x becomes x/2
Step4: y becomes y*2
Step5: if x not equal with 1 go to Step2;

otherwise result = result + y
Step6: display the result

result = 0

Read x,y

x>=1

result = result + yx%2== 1

x = x/2

y = y*2

Display result

x = int(input("x="))
y = int(input("y="))
result = 0
while x>=1:

if x%2 == 1:
result = result + y

x = x // 2
y = y * 2

print('x*y=', result)

Repetitive statements - while

• Use to get input from users

r=int(input("Response correct at the following? (3+4-2)"))
while r != 5:

r=int(input("Response correct at the following? (3+4-2)"))

• Used to count something

i=0 # initialize e value
while i < 5:

print(i)

i += 1 #modify the value

Repetitive statements - for

• For statements behave differently in Python from other programming
languages as C, C++, Java, Pascal
• It iterates on lists
• Does not use expressions to iterate

=>
First discuss briefly about lists in Python

Data Structures

• Lists

• Sets

• Tuples

• Dictionaries

Lists

• What is a list?
• a collection of objects
• it represents an ordered sequence of data

• Example
• [1, 2, -3, 5, 7]
• [‘abc’, ‘efg’, ‘hij’]
• []
• lst = [3, 5, 8]

Generating lists of numbers

• Range function
• Syntax

• range([start,] stop [, step])
• Generates a list of numeric values in interval [start, stop) with step frequency

• Example
• range(5) → [0, 1, 2, 3, 4]
• range(2,5) → [2, 3, 4]
• range(0,5,2) → [0, 2, 4]
• range(10, 0, -2) → [10, 8, 6, 4, 2]

Back to repetitive statements - for

• For iterates over a sequence (list) of values
• Syntax

for <variable> in <sequence>:
statement(s)

• Example
• Display the content of a list using for statement

lst = [1, 3, 5, 7]
for el in lst:

print (el)

Back to repetitive statements - for

Rewrite using for
i=0 # initialize the value
while i < 5:

print(i)
i += 1 #modify the value

USING FOR
for i in range(5):

print (i)

In Python:
Not all you write with while can be written with for.

Break repetitive statements

• Sometime repetitive statements have to be break

• Break statements
• Break

• Interrupt a cycle

• Continue
• Skip some of cycle body statements

Break Statement

• A loop control statement which is
used to terminate the loop.

• As soon as the break statement is
encountered
• The loop iterations stops
• The control returns from the loop

immediately to the first statement after
the loop.

• Example
• Simulate a two dices throwing, stop when

7 is thrown

from random import random
while True:

dice1 = 1 + int(random()*6)
dice2 = 1 + int(random()*6)
print ("dice1=", dice1, "dice2=", dice2)
if dice1+dice2 == 7:

break

Continue statement

• A loop control statement that is
used to skip the remaining
statements within the body
• The loop condition is checked to

see if the loop should continue or
be exited

• Example
• Calculate the sum of even

numbers of a list

l = [23, 45, 66, 77, 98]
s = 0
for el in l:

if el % 2 == 1:
continue

s += el
print("S=", s)

Nested loops

• As conditional statements can be
nested loops can also be

• How to draw the following figure?

• Solution

n = int(input("n="))
for i in range(n):

for j in range(n):
print('*', end='')

print()

Data Structures Again ….

• The Python language supports native the following data structures

• Lists

• Sets

• Tuples

• Dictionaries

Lists

• What is a list?
• a collection of objects
• it represents an ordered sequence of data
• Are mutable objects

• Example
• [1, 2, -3, 5, 7]
• L1 = [‘abc’, ‘efg’, ‘hij’]
• []
• lst = [3, 5, 8]

Python lists are internally represented as arrays.

Object 1 Object 2 Object 3 … Object N
-N -(N-1) -(N-2) … -1

0 1 2 … N-1
Index

List Objects

More about lists

• List are specified using []

• List elements
• usually homogeneous (ie, all integers)
• can contain mixed types (not common)

• List elements can be referred by index
• First index is 0
• Last index is the length of the list -1

List operations

lst = [“aa”, 3, “bb”, [1, 2]]

• Finding the number of elements of
a list
• len(lst) → 4

• Accessing an element from a list
• lst[3] → [1, 2]

• Modifying an element of a list
• lst[3] = “asd” → [“aa”, 3, “bb”, “asd”]

• Adding elements to list
• lst.append(“zzz”) → [“aa”, 3, “bb”, [1, 2],

“zzz”]
• lst.insert(2, “cc”) → [“aa”, 3, “cc”, “bb”, [1, 2]

• Removing elements from a list
• lst.pop() → [“aa”, 3, “bb”]
• lst.remove(3) → [“aa”, “bb”, [1, 2]
• del(lst[2]) → [“aa”, 3, [1, 2]

List operations

• Slicing
• Extracting sublists from list

• Example
• L = [8, 9, 10, 11, 12, 13, 14, 15]
• L[3:5] → [11, 12]
• L[:3] → [8, 9, 10]
• L[5:] → [13, 14, 15]
• L[0:6:2] → [8, 10, 12]

List operations

• Sorting
• sort()
• sorted()

• Example
• L = [“red”, “green”, “blue”]

• L.sort() -> [“blue”, “green”, “red”]
print(L)

• print(sorted(L))
print(L)

0
red

1
green

2
blue

L

0
blue

1
green

2
red

L

0
red

1
green

2
blue

L A new list is
returned by
sorted() function
that contains the
sorted list

Tuples

• What are tuples?
• Are sequence of ordered and immutable objects

• Represented with parentheses
• Example
• T = () #empty tuple
• T = (“Programming I”, “S1”, 6)
• T[1] -> accessing value “S1”
• len(T) -> evaluate to 3
• (“Programming I”, “S1”, 6) + (3, 4) -> (“Programming I”, “S1”, 6, 3, 4)
• T[1:3] -> evaluates to ('S1', 6)
• T[1:2] -> evaluates to ('S1',)

Immutable - cannot
change an element
value

The comma is added to make the object a tuple

Tuple useful for …

• Swapping variables

• Returning multiple values from a function
• A function return a single value
• Tuples allow to return multiple values

X=Y
Y=X

aux=X
X=Y
Y=aux

(X, Y) = (Y, X)

NOT OK OK OK

Tuple - Immutable

• Immutable
• cannot change an element value

• Example
• T = (“Programming I”, “S1”, 6)
• T[1] = “S2” -> ERROR

List - Mutable

• Lists are mutable
• Values of the stored elements can be changed

• Example
• L = [“red”, “green”, “blue”]

• L[1] = “orange”

0
red

1
green

2
blue

L

0
red

1
orange

2
blue

L

List - Mutable

• Lists are mutable

• Behave differently than immutable types

• Is an object in memory

• Variable name points to object

• Any variable pointing to that object is affected

• Key phrase to keep in mind when working with lists is side effects

MUTATION, ALIASING, CLONING

Aliases

a=1

b=a

b=2
print(a)

print(b)

flowers = ["tulips", "roses", "anemones"]

shop_flowers = flowers

shop_flowers.append("carnations")
print(flowers)

print(shop_flowers)

1
2 ['tulips', 'roses', 'anemones', 'carnations’]

['tulips', 'roses', 'anemones', 'carnations']

Alias are names that refers same values.
Changes done in the value reflect into all aliases variable.

0
tulips

1
roses

2
anemones

3
carnations

flowers

shop_flowers

Lists of lists of lists …

• It is possible to define nested lists
• Mutation can be side effect

line1 = [1, 2, 3]
line2 = [4, 5, 6]
mat = [line1, line2, [9, 8, 7]]
print(mat)

line1.append(10)
print(mat)

[[1, 2, 3], [4, 5, 6], [9, 8, 7]]
[[1, 2, 3, 10], [4, 5, 6], [9, 8, 7]]

1
2

0
1

2
3

1
5

0
4

2
6

1
8

0
9

2
7

10 2

line1

line2

mat 3
10

1
2

0
1

2
3

1
5

0
4

2
6

1
8

0
9

2
7

10 2

line1

line2

mat

Cloning

line1 = [1, 2, 3]
line2 = [4, 5, 6]
mat = [line1[:], line2, [9, 8, 7]]
print(mat)
line1.append(10)
print(mat)

[[1, 2, 3], [4, 5, 6], [9, 8, 7]]
[[1, 2, 3], [4, 5, 6], [9, 8, 7]]

1
2

0
1

2
3

1
5

0
4

2
6

1
8

0
9

2
7

10 2

line1

line2

mat 3
10

1
2

0
1

2
3

Cloning

• Create a new list and copy every element using [:]

• Example
• new_list = L1[:]

Set

• A set is an unordered collection of items.

• Every element is unique (no duplicates) and must be immutable.

• Itself is mutable - can add or remove items from it.

• Can be used to perform mathematical set operations like union,
intersection, symmetric difference

Set

• Creating
S = set() #empty set
S = {1, 2, 3}

S={} #NOT OK is a initialization for other object type dictionary
print(type(S))

• Adding elements
S.add(2)
S.add(2)

Set Operations

• Removing elements
• S.remove(2) #removes the element with value 2

• Union 𝐴 ∪ 𝐵
• A.union(B)

• Intersection 𝐴 ∩ 𝐵
• A.intersection(B)

• Difference 𝐴 − 𝐵
• A.difference(B)

• Membership 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝐵
• element in A

Dictionaries

• How to store information about students?

Names =[‘Ionescu Ion’, ‘Popescu Pavel’, ‘Marinecu Maria’]
Current_year_mean = [9.4, 8, 6.78]
Year = [1, 2, 1]

• a separate list for each item
• each list must have the same length
• info stored across lists at same index, each index refers to info for a

different person

How to update students information?

name = input(“Student name”)
i = names.index(name)
Current_year_mean[i] = 8.7
Year[i] = 2

• messy if have a lot of different info to keep track of
• must maintain many lists and pass them as arguments
• must always index using integers
• must remember to change multiple lists

Better and clearer - dictionary

• Use one data structure
• Index based on key not on position in data structure

A List

0 Element 1

1 Element 2

2 Element 3

3 Element 4

… …

A Dictionary

Key 1 Value 1

Key 2 Value 2

Key 3 Value 3

Key 4 Value 4

… …

Index

Element

Custom index

Element

Dictionaries

• Store pairs of data
• (key, value)

• Creating
• dict1={} #empty dictionary
• dict_grades= {‘Ionescu Ion’ : 9.4, ‘Popescu Pavel’ : 8, ‘Marinecu Maria’ : 6.78}

Key 1 Value 1 Key 2 Value 2 Key 3 Value 3

Dictionary

• Accessing elements
• Similar with list
• Using key

• Example
• dict_grades= {‘Ionescu Ion’ : 9.4, ‘Popescu Pavel’ : 8, ‘Marinecu Maria’ : 6.78}
• dict_grades[‘Ionescu Ion’] evaluates to 9.4
• dict_grades[‘Ionescu Vasile’] evaluates to error key does not exist

Dictionary Operations

• dict_grades= {‘Ionescu Ion’ : 9.4, ‘Popescu Pavel’ : 8, ‘Marinecu Maria’ :
6.78}

• Add an entry
• dict_grades[‘Enescu Ene’] = 8.7

• Test if an entry is in dictionary
• ‘Ionescu Ion’ in dict_grades

• Delete an entry
• del(dict_grades[‘Ionescu Ion’])

Dictionary - itertate

• dict_grades= {‘Ionescu Ion’ : 9.4, ‘Popescu Pavel’ : 8, ‘Marinecu Maria’ : 6.78}

• Get keys
• dict_ grades.keys()
for key in dict_grades.keys():

print(key)

• Get values
• dict_ grades.values()
for value in dict_grades.value():

print(value)

• Get (key, value) pairs
• dict_ grades.items()
for key, value in dict_grades.items():

print(key, “:”, value)

Dictionary keys and values

• Values
• Any type (immutable and mutable)
• Can be duplicated
• Dictionary values can be lists, even other dictionaries!

• Keys
• must be unique
• Immutable type (int, float, string, tuple, bool)
• actually need an object that is hashable, but think of as immutable as all

• Immutable types are hashable
• Careful with float type as a key
• no order to keys or values!

d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

Lists vs. Dictionaries

Lists
• ordered sequence of elements

• look up (reference) elements by
an integer index

• indices have an order

• index is an integer

Dictionaries
• matches “keys” to “values”

• look up one item by another
item

• no order is guaranteed

• key can be any immutable type

Bibliography

• https://youtu.be/0jljZRnHwOI?t=1020
• https://www.youtube.com/watch?v=RvRKT-jXvko
• John Zelle, Python Programming: An Introduction to Computer

Science (chapter 2)

https://youtu.be/0jljZRnHwOI?t=1020
https://www.youtube.com/watch?v=RvRKT-jXvko
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=John+Zelle&search-alias=books&field-author=John+Zelle&sort=relevancerank

