
Programming 1 Introduction in
programming

Florin Roșu

Adrian Spătaru

Cosmin Bonchiș

Marian Neagul

Teodora Selea

Elena Flondor

What we will talk about?

• Course information
• Class requirements and evaluation

• Basic elements about Python
• Variables and data types

• Mathematical operations

Course Information

• An introductive course

• For beginners
ØYou cannot learn programming in a passive way
ØDo not be afraid of Python. Failure is an opportunity to learn
ØDownload our lecture and laboratory materials
ØUse any additional learning source that is suitable for your needs
ØExercise

Evaluation

• 40% Examen
• 60% Laboratory (4 Tests)

• 1 Bonus point for activity

About the course

Problems Solving

Concepts Programming Skills

Course content

• What is a computer and how is functioning
• Knowledge representation using data structures
• Iterative/recursive programming
• Algorithms verification
• System organization using modules, classes and objects
• Guidelines for writing programs
• Simple principles
• Refactoring

What does a computer?

• Fundamentally
• Runs milliards of computations per second
• Stores the result of the computations

• Uses hundreds of giga of memory

• Computations types?
• Computations predefined in language
• Computations defined by us - programmers

• Computers do/know what we tell them, nothing else

Types of knowledge

Declarative knowledge
• Assertion regarding facts
• Example
• 𝑥 is defined to be a value 𝑦

for wich 𝑦) = 𝑥 and 𝑦 > 0
• The definition above is

axiomatic. But this definition
does not help, in general, to find
the square it tells how to test a
value
• It tells WHAT but NOT

Imperative Knowledge
• Recipe. A set of rules.
• Tells how to deduce something

• Example: square root

Types of knowledge
Heron of Alexandria Method
Choose random a number G

If G*G is close enough to x:
then stop and the answer is

Otherways:
guess another G, based on the following

formula G = (G+x/G) / 2

Repeat

• Opposite to declarative
knowledge here we have
a method that tells what
to do in order to solve
the problem
• It is Clear!

Types of knowledge
Heron of Alexandria Method

g g*g x/g (g+x/g)/2

2 4 4.5 3,25

3,25 10,5625 2,7692 3,0096

3,0096 9,0576 2,9904 3

For x=9

Fast?

Recipe

1. A sequence of steps
2. A mechanism to manage the control, that tells when each step

must be executed
3. A modality to tell when to stop

When all three characteristics are satisfied we can talk about an
ALGORITHM

First computers – Numeric computers with fix
programs
• Office calculators
• Just for arithmetic operations

• Atanasoff–Berry Calculators (1942)
• Solve linear equations

• Turing Machine
• an electro-mechanical device used to decode Enigma

messages, a German device for encoding message in WW2

https://en.wikipedia.org/wiki/Atanasoff%E2%80%93Berry_computer

First computers – Numeric computers with fix
programs
• Could we create a computer with a fix program that receives like

input a diagram of a circuit of an another computer and configures in
such a way it works like it is described in that? 🤔
• Could it behave like an office calculator or like an Atanasoff-Berry calculator?

Exists! It is the hard of each computer: an interpreter.

First Computers – Numeric computers with a
stored programs

Memory Statement 1
Statement 2
...
Stetement n

Arithmetic-Logic Unit
(Elementery
Operations)

Input Output

Data

Control Unit

Program Counter
(PC) +1

Elementary architecture

Ø Some statements can modify PC to go to a
specific statement
§ Flux controller

Numeric computers with a stored programs

• A sequence of statements stored into computer memory
• A predefined set of primitive statements

• Arithmetic and Logic
• Simple conditional statements
• Data copy

• An interpreter (a special program) which executes the statements in
an order
• Uses conditional statements to control the statements flow
• Stops when it is finishing

What is a program?

A program is a recipe!
• It is formed from a fix set of statements and primitives

• With this set anything can be

• Which are this primitives?
• move left, move right, read, write, scan, noop

• In 1936 Alan Turing demonstrated that 6 primitives are enough to describe
any program that can be described through a mechanic process

One implication of the previous statement is that a program written into a
language can be translated in any other language.
Concept also known like “Turing Compatibility”.

What is a program?

• To describe/present recipe it is necessary a language. A programming
language. This course uses Python like programming language!

This is not a course about Python Language!

Recipe (algorithm)

• A programming language is formed from a set of primitive operations

• Expressions are complex (but valid) combinations of programming
language primitives

• The expressions and calculus have values and meaning into a
programming language

Languages

• Primitive statements
• Linguistic: words
• Programming language: numbers, strings, simple operators

Programming languages

Low/High Level ?

C

Python

JavaScript

Go

For general Usage
or Dedicated?

Matlab

Python

JavaScript

Compiled or
Interpreted?

C

Java

Python

JavaScript

Programming languages

• Syntax
ØWhich expressions are linked to this programming?
Ø„Boy a cat in the house” 🤔

• Semantic
ØStatic: tell which program have sense. What expression have sense?

Ø „This course is tasty” .
Ø Syntactically right?
Ø This kind of errors can generate unexpected behavior...

ØComplete: what is the expected result? What happens when you execute the
program?
ü STYLE: Depends on programmers!
üResult: fails, never stops, stops with an unexpected result or stops with an expected result

Objects (in Python)

• Programs use objects

• Objects have a type that tells the programming language what is
possible to do with this objects
• Moris is a dog and can do „hau hau”
• Pisi is a cat and can do „miau miau”

• Objects can be
• Scalar values (ex. value 42)
• Non-scalar (have an internal structure that can be accesed)

Scalar values

• Fundamental data types
ØNumbers

• 3 – int
• 3.14 – float

ØBooleans
ØTrue/False – bool

ØNoneType
ØOnly one value: None

ØStrings
• ‘Timișoara’ – str

• Usually we talk about the pair (type, value)
• For each data type we have a list of operators

• For Numbers+ - * / %
• For Strings: +, *

Can use type() to find an object type:

>> type(5)
Int
>> type(3.14)
float

Data Type Conversion

• Can convert objects of one type into another type

• float(3) → 3.0

• int(3.9) → 3

Operators for`int` and `float`

• i+j → addition
• i-j → difference
• i*j → multiply
• i/j → divide

• i%j → modulo i at j
• i**j → i at power j

Result of type float

If both operands are int the result is int
If one operand is float the result is float

Operators
Operator Descriere

** Power

~ + - Complement, plus și minus unary

* / % // Multiply, divide, modulo și „floor division”

+ - Addition și substarction

>> << Byte shifting(at right, at left)

& AND on bytes

^ | EXCLUSIVE OR on byte, OR on byte

<= < > >= Reletional operators

<> == != Equal operators

= %= /= //= -= += *= **= Assigment/short operations operators

is is not Identity operators

in not in Membership operators

not or and Logic operators

Variables

• Creates an association/link between a name and a value
• Assignment operation: x=3,

• Creates an association/link between value 3 and name x

• What is the type of a variable?
• For Python: the type is inherited (identified) from the value liked to the variable. The

variable does not have a type, the value referred by it has
• The variable type is dynamic, it changes based on the referred value
• Advice: do not change randomly the variables data type

• Variables names: it is important to have a since!
• Do not use reserved words

Variabiles

3

3.13

‘Timișoara’

x

x = 3

Expressions

• Way to name an expression?
• To reuse the name later!

• Can change the code easily later

pi = 3.14159
radius = 2.2
area = pi * (radius ** 2)

Strings

• Letters, numbers, special characters, spaces
• Defined using the symbols" or '

hi = 'salut’

• Concatenation
name = 'ion'
salut = hi + name

• Other operations
test = hi + " " + name * 2

Input/Outpu: print

• Used to display at standard output
• print keyword
x = 1
print(x)
x_str = str(x)
print (”A number is", x, ".", "x=", x)
print (”A number is" + x_str + ". " + "x= " +
x_str)

Input/output: input("")

• Displays what it receives like argument (what is specified between
quotation marks)
• Reads what the user is typing until it encounters the key ENTER
• Returns a value that is associated/linked to a variable
text = input(”Type something: ")
print(5*text) 🤔
• input returns an string that has to be converted at desired data type
num = int(input(”Type an integer number"))
print(5*num)

Comparing operator for
int, float, str data type
• i and j variables names
• All below comparation are evaluated to boolean values
i > j
i >= j
i < j
i <= j
i == j → equal operator, True if the value i is equal with the value of j
i != j → different operator, True if the value of i is different from the value of j
i is j → identity operator, True if i is the same with j

Logic operators
• a and b are boolean variables

not a → True if a is False
False if a is True

a and b → True if a and b are True
a or b → True if anya and b is True

A B A and B A or B

True True True True

True False False True

False True False True

False False False False

Conditional statement
if <condition>:

< expression >
< expression >
...

if < condition >:

< expression >

< expression >

...

elif < condition >:

< expression >

< expression >

...

else:

< expression >

< expression >

...

if < condition >:
< expression >
< expression >
...

else:
< expression >
< expression >
...

• <conditie> an expresion that evaluates to a boolean value True or False

Alignment
• VERY important in Python
• Used to identify blocks of code

x = float(input("x="))
y = float(input("y="))
if x == y:

print("x and y are equal")
if y != 0:

print (”so, x/y is", x/y)
elif x<y:

print ("x is smaller")
else:

print("y is smaller")
print (”END PROGRAM")

Bibliography

• https://youtu.be/0jljZRnHwOI?t=1020
• John Zelle, Python Programming: An Introduction to Computer

Science (chapter 1)

https://youtu.be/0jljZRnHwOI?t=1020
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=John+Zelle&search-alias=books&field-author=John+Zelle&sort=relevancerank

