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A Tutorial Guide to the EDSAC Simulator 

for 

Windows, Macintosh, and Linux 
 

 

 

Abstract 

 

The EDSAC was the world’s first stored-program computer to operate a regular 

computing service. Designed and built at Cambridge University, the EDSAC 

performed its first fully automatic calculation on 6 May 1949. The simulator is a 

faithful emulation of the EDSAC designed to run on a personal computer. The user 

interface has all the controls and displays of the original machine, and the system 

includes a library of original programs, subroutines, debugging software, and program 

documentation. The Tutorial Guide includes a description of the EDSAC and an 

account of the programming techniques developed for it during 1949-51. Several 

demonstration programs and programming problems are supplied, so that users can 

gain first-hand experience of what it was like to develop and run a program on a first-

generation computer. 
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Before You Begin: What the Papers Said 

 

In the late 1940s the EDSAC - and “electronic brains” in general - captured the public 

imagination and were widely reported in the press. Before you begin using the 

simulator you might like to read the newspaper headlines and extracts below; while 

not always accurate or temperate, they do capture the excitement of the period. 

 

A Don Builds a Memory 

 

Short, dapper Dr. M.V. Wilkes, director of the Cambridge mathematical laboratory 

and ex-wartime radar backroom boy, is in charge of the calculator ... He told me 

yesterday: “The brain will carry out mathematical research. It may make sensational 

discoveries in engineering, astronomy, and atomic physics. It may even solve 

economic and philosophic problems too complicated for the human mind. There are 

millions of vital questions we wish to put to it.” 

- Daily Mail, October 1947 

New Brain Stores Orders 

 

The world’s most advanced electronic calculator, one of the so-called mechanical 

minds, was recently completed at Cambridge University mathematical laboratory. 

Yesterday the joint designers, Mr. M.V. Wilkes and Mr. W. Renwick, gave me a 

preview of “Edsac” (electronic delay storage automatic calculator). It has a 3,500-

valve “brain” weighing about a ton. ... A team of 10 have been assembling “Edsac’s” 

120 racks of valves, covering a floor area of about 500 square feet, since early in 

1946. 

- Daily Telegraph, June 1949 

Mechanical Brain 

 

On the top floor of a rather drab building in a narrow Cambridge back street is an 

apparatus which seems to consist chiefly of a vast number of valves set in grey 

painted racks. ... this weird array of wires and valves is a “mechanical brain.” It has 

just been completed and it is the most advanced in the world. It is probably the major 

scientific marvel of 1949 and although until now we have lagged behind America in 

mechanical brains this one puts us streets ahead ... 

 

 This is how it works. First Mr Wilkes fed a strip of paper punched with holes 

into a “ticker-tape” machine. As the paper ticked through ... miniature television 

screens showed a row of green blobs ... then almost instantaneously a teleprinter 

nearby began to print rows of figures. That was all. There were no dramatic sparks, no 

dramatic flashes ... 

 

 There are not enough “brains” to go around at the moment, but a dozen would 

probably be sufficient for the whole country ... The future? The “brain” may one day 

come down to our level and help with our income-tax and book-keeping calculations. 

But this is speculation and there is no sign of it so far. 

- The Star, June 1949 
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1  GETTING STARTED 

 

The purpose of the EDSAC simulator is to provide an understanding of what 

programming was like on a first-generation computer. The material in this guide is 

accessible at several levels. This section, Getting Started, gives a broad overview of 

the technology of the EDSAC, and enables the first demonstration programs that were 

designed to put the machine through its paces to be run; this material should be 

accessible to any computer literate person. Section 2, Architecture and Arithmetic, 

describes the EDSAC’s architecture, the instruction set, data storage, and arithmetic; 

this material should be accessible to anyone who is familiar with twos-complement 

arithmetic and basic computer structure. Sections 3 and 4, which cover programming 

and debugging, should be accessible to anyone familiar with programming. Finally, in 

Section 5 a number of programming problems are given, which range from 

elementary to quite difficult.  

 

This Tutorial Guide assumes that you are familiar with your personal computer user 

interface and text-editing conventions, but assumes no familiarity with the EDSAC 

itself. So that you can explore the EDSAC without recourse to other materials, this 

guide is designed as a self-contained document; however, you should note that this 

still leaves quite a lot more you can learn about the EDSAC. Details of the literature 

on the EDSAC are given in the Bibliography. 

 

You will find the Tutorial Guide is of most value if you work through it 

systematically, run each demonstration program as it is encountered, and attempt at 

least some of the exercises. This is advisable, not least, because the EDSAC simulator 

is an accurate representation of a very primitive computer system - there are, 

deliberately, almost no facilities provided for trouble-shooting, other than those which 

were originally provided on the EDSAC. 

 

1.1  Display and Controls 

 

The EDSAC simulator runs in a simple Interactive Development Environment (IDE) 

in which you can either edit program texts or run programs (Fig. 1). However, before 

examining the simulator in detail it will be useful to see what the original EDSAC 

environment looked like (Fig. 2). 1  

 
Fig. 2a shows a general view of the EDSAC taken shortly after its completion in May 
1949. Like all stored-program computers, the EDSAC had a processor, a memory, and 
input-output devices. The processor occupied most of the bulk of the EDSAC - some 
3500 electronic tubes in all. The memory cannot be seen in the general view, but Fig. 
2b shows a battery of the mercury delay lines from which it was constructed, 
photographed shortly before the machine was put together. Input-output was achieved 
on the EDSAC by means of a 5-track paper-tape reader operating at 50 characters per 
second, and a Creed teleprinter operating at 62/3 characters per second. This equipment 
can be seen on the wooden table at the right of the general view. 
 

A little more about the memory. The main memory was designed to have a total of 32 

delay-lines (or “tanks”), each of which stored 32 words of 18 bits. Hence the total 

                                                 
1 In this manual “Edsac” applies specifically to the simulator; “EDSAC” is used to refer to the original 

computer. 
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memory capacity of the EDSAC was the equivalent of about 2 kilobytes. The same 

technology of mercury delay lines was also used for the processor registers - although 

the delay lines were much shorter as they stored only a few bits of information. The 

two types of delay line were therefore known as long and short tanks. A useful feature 

of this early serial memory technology was that it was possible to display the contents 

of the store on Cathode Ray Tube (CRT) monitors. Three of the EDSAC’s monitor 

tubes can be seen in the general view at the back of the photograph, and towards the 

right; a much better photograph is shown in Fig. 2c. The left monitor tube in this 

photograph shows the contents of the counter (a kind of internal clock). The right 

monitor shows the Sequence Control Tank (which contains the address of the current 

instruction). The centre monitor shows the 32 words in a long tank - just one of the 

main memory tanks could be displayed at any time, as determined by a rotary switch. 

Three further monitor tubes, which are not shown here, displayed the other processor 

registers - the Order Tank (which held the current instruction), the Accumulator, and 

two multiplication registers. The monitor tubes were a very important way of 

observing the progress of a program and debugging it - although this was time 

consuming, so that software debugging aids were soon invented (of which more in 

Section 4). 

 

The EDSAC was controlled by five push buttons: Start, Stop, Clear, Reset, and Single 

E.P., whose purpose is self-evident except for the last. The Single E.P. button caused 

a single instruction to be obeyed, which enabled a program to be executed one 

instruction at a time.  

 

The EDSAC was a research machine rather than a production model, so it tended to 

be enhanced from time to time. For example, initially only 512 words of memory 

were provided; this gradually built up to 1024 words as all 32 long tanks were got 

working. The Clear button was another early addition - at first, the memory had to be 

cleared by earthing the electrical terminals with a wet finger! Another improvement 

was the addition of a rotary dial which enabled a single decimal digit to be input by 

the machine operator. The version of EDSAC provided by the simulator corresponds 

to the machine which existed during 1949-1951, and it is compatible with all the 

software developed during that period. 

 

Now we can get back to the Edsac simulator, shown as the main window in Fig. 1. 

The top-left of the simulator display represents the main-memory monitor tube. In this 

display, a binary “one” is represented by a bright spot and a “zero” by a single pixel - 

the appearance of this display conforms quite closely to that of the original machine. 

The panel at the bottom left of the display shows in a slightly stylized form the five 

registers, or short tanks, that were useful to programmers: the Sequence Control Tank, 

the Order Tank, the Multiplier and Multiplicand registers, and the Accumulator. In the 

register panel a control labelled Long Tank is used to select the memory tank 

displayed on the monitor tube. 

 

At the bottom right is the telephone dial input. Immediately above this is a clock 

which shows the time in minutes and seconds that Edsac has been running - not 

necessarily in real time, but the time that the original EDSAC would have taken to do 

the identical computation. The clock can be used to time programs; and the speed that 

the hands sweep around the face gives a good feel for the degree to which time has 

been speeded up or slowed down by the simulator. 



 

 

Fig 1. The Edsac Simulator 

(a) Toolbar, above 
(b) Program text, below 
(c) Simulator display, 

right 



(a) A photograph of the EDSAC taken shortly after its completion in May 1949. The left three-quarters
of the picture shows the main racks of the arithmetic unit, control and memory. The input-output
equipment (a paper-tape reader and teleprinter) can be seen on the table towards the right. Three of
the monitor tubes can be seen to the rear and right of the picture. The EDSAC operated at a speed
of approximately 600 operations per second.

(b) Mercury delay lines or “long tanks” for the
main memory, with M.V. Wilkes looking
on. The battery of 16 tanks shown here had
a capacity of 512 words - the equivalent of
a little over 1 Kilobyte.

(c) EDSAC monitor tubes showing: left, the Counter; centre,
the 32 words in a long tank; right, the Sequence Control
Register.

Fig. 2  The EDSAC environment
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On a personal computer the simulator will normally run significantly faster than the 

original EDSAC. To run the simulator at the original speed, the Real Time option on 

the Edsac menu or toolbar should be checked. If this item is left unchecked, the 

simulator will run as fast as the hardware permits. Generating the bit-by-bit display 

produces a massive computational overhead, so Edsac can be made to run faster by 

turning off the register displays by unchecking the Short Tanks checkbox on the 

toolbar. (Note that the Long Tank display is updated relatively infrequently compared 

with the registers, so that it will not normally significantly affect the performance of 

the simulator.) 

 

The teleprinter output produced during the running of a program is shown in the text 

window at the top right of the display. Although only the last few lines printed are 

visible in the window, when the simulator is not running the scroll bar can be used to 

examine the full output produced. The FEED button on the toolbar can be used to 

advance paper manually, a line at a time. 

 

Finally, in the very centre of the display are the five main control buttons of the 

EDSAC: Start, Stop, Clear, Reset, and Single E.P.  

 
1.2  The June 1949 Programs 
 

In June 1949, the EDSAC was demonstrated in public for the first time to the 

delegates of a conference on High-Speed Automatic Calculating Machines organized 

by the Cambridge University Mathematical Laboratory. For the purpose of this 

demonstration two programs were run: one printed a table of squares and first 

differences, and the other printed a table of prime numbers. We will run the Squares 

program now, and you can explore the Primes program later. It should be emphasized 

that these programs - like most of the routines supplied with the Edsac simulator - 

have not been rewritten, but are historical artifacts. They have been sitting in the 

original conference proceedings since 1949, only awaiting a simulator to bring them 

back to life.  

 

The Squares and Primes programs used a loading program known as Initial Orders 1 - 

this was a short routine that read the user’s program from paper tape and placed it in 

the main memory. To select these initial orders, chose “Initial Orders 1” from the 

Edsac menu, or directly from the toolbar. Next, ensure that RealTime is checked on 

the Edsac menu. Open the Squares program, either by selecting Open... from the File 

menu, or directly from the toolbar. You will find the Squares program in the 

Demonstration Programs folder in the Edsac Tapes folder. Note that when the 

program has been selected, its name is displayed in the title bar of the output window 

of the simulator confirming your choice.  

 

Press Clear. Ensure Long Tank number 0 is selected. Press the Start button. You will 

now see the Initial Orders occupying words 0-31.  The display will come to life as the 

instructions of the Squares program are read in.  

 

Now, use the Long Tank control to display memory tank number 1. You will see the 

instructions of the Squares program being loaded one-by-one into locations 32 

upwards. When tank 1 is full, look at tank 2 filling, and so on. Also, have a look at 

tank 1 again, and observe the data words in the main memory being changed. 
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Eventually, the Squares program will have been completely loaded and will start 

printing out a table of squares and come to a stop (or you can press the Stop button 

when you have seen enough).  

 

We will now examine the Squares program. Bring the program text window to the 

front by clicking on the window, or selecting it from the Window menu. It should 

look the same as Fig. 3b. You can have as many text windows open as you like, each 

one of which will correspond to a program “tape”. Of course only one tape can be 

mounted on the Edsac tape-reader at any time, as indicated by the program name in 

the title bar of the Edsac output window; this will normally be the front-most text 

window - if you want to change tapes you can do this by bringing the appropriate 

window to the front. 

 

Fig. 3a shows the manuscript for the Squares program, which includes comments and 

layout characters. (You will find manuscripts corresponding to most of the 

demonstration programs and library subroutines in the Program Documentation - see 

below.) On the program tape comments were omitted, and no layout characters 

whatever were used. This meant that tapes were physically very short; for example, 

the Squares program would have been only about a metre long, with a few inches of 

leader tape at either end. On the simulator, new lines and spaces are ignored and can 

be used freely to layout programs - this is advisable even though it is not quite 

authentic. In addition comments, which are completely ignored by the simulator, can 

be inserted in square brackets. Comments are highlighted in red.  

 

1.3 The Simulator Environment 

 

The simulator environment includes an integral text editor so that you can create, 

amend, and print program files. You can edit programs using the usual cut-and-paste 

conventions and there is also a search facility.  

 

You can print the teleprinter output by choosing “Print Edsac Output” from the Edsac 

menu, or you can save it permanently by selecting “Save Edsac Output As...”. (There 

is also a “Literal Output” choice on the File menu. This produces Edsac output as if it 

had been punched onto paper tape rather than printed on the teleprinter. This is useful 

if you want the output from one program to become the input of another.)  

 

There are additional controls for the simulator on the Edsac menu and toolbar. You 

can clear the output window with the Discard Edsac Output command, zeroize the 

clock, and select the Initial Orders you wish to use. You can turn the sound on or off 

according to taste. If you wish to set any of these options by default, choose the 

Edsac|Options menu item. Finally, the Hints option enables you to display the 

contents of a store word or a register as a symbolic instruction or decimal number by 

pointing at it on the simulator display. (Obviously there was no such feature on the 

original EDSAC, but this facility will put you on a par with contemporary 

programmers who developed over time the skill of reading binary numbers straight 

from the monitors.) 

 

The Library menu and the tabbed control at the right of the toolbar give access to the 

subroutine library – this will be covered in full in sections 4 and 5  



 
 

 

 
 

 

 

 
 

(a) Program manuscript, right        (b) Program tape, above top 

(c) Printout, above middle   (d) Flow-diagram, above 

 

 

PRINT SQUARES 

 

         31   T  123 S   As required by 
     initial input 
enter   32   E   84 S Jump to 84 
    
         33 5P      S   Used to keep count 

     of subtractions   
         34 5P      S   Power of 10 being   
     subtracted 
         35 5P10000 S   
         36 5P 1000 S   For use in the decimal 
         37 5P  100 S    binary conversion   
         38 5P   10 S   
         39 5P    1 S  
         40 5Q      S  
         41 5      S Figures 
         42 5A   40 S  
         43 5      S Space 
         44 5      S Line feed 
         45 5      S Carriage return 
         46 5O   43 S  
         47 5O   33 S   
         48 5P      S   Becomes number to be 
     printed 
   94   49   A   46 S   Put O 43 S in 65S 
         50   T   65 S   
   72   51   T  129 S Clear 129S 
         52   (A 35 S)   Put power of 10 
         53   T   34 S    in 34S 
         54   E   61 S Jump to 61 
    
   63   55   T   48 S   
         56   A   47 S  
         57   T   65 S   
         58   A   33 S   To control printing 
         59   A   40 S   
         60   T   33 S   
   54   61   A   48 S  
         62   S   34 S   
         63   E   55 S   
         64   A   34 S   
         65   P      S   
         66   T   48 S   
         67   T   33 S   Print contents 
         68   A   52 S     of 48S 
         69   A    4 S   
         70   U   52 S   
         71   S   42 S   
         72   G   51 S   
         73   A  117 S   
         74   T   52 S      
         75   (P    S)  End print [link] 
   
 

 

 

         76 5P      S Becomes x 
         77 5P      S Becomes x2 
         78 5P      S Becomes x2 
         79 5P      S Becomes x2 
         80 5E  110 S   
         81 5E  118 S   
         82 5P  100 S   
         83 5E   95 S  
   
   32   84   O   41 S Set on print figures 
  120   85   T  129 S Clear 129S 
         86   O   44 S  
         87   O   45 S  
         88   A   76 S   
         89   A    4 S   x+1 to 76S and 48S 
         90   U   76 S   
         91   T   48 S   
         92   A   83 S   Set switch Z 
         93   T   75 S   
         94   E   49 S  
    
1: 75   95   O   43 S   Double space 
         96   O   43 S   
         97   H   76 S   
         98   V   76 S   
         99   L   64 S   x2.215 to 77S 
        100   L   32 S   
        101   U   77 S   
        102   S   78 S   x

2 to 79S 

        103   T   79 S   
        104   A   77 S   
        105   U   78 S   x2 to 48S and print 
        106   T   48 S   
        107   A   80 S  
        108   T    5 S  
        109   E   49 S  
    
 2: 75 110   O   43 S   Double space 
        111   O   43 S   
        112   A   79 S   
        113   T   48 S   
        114   A   81 S   x2 to 48S and print 
        115   T   75 S   
        116   E   49 S   
     
        117 5A   35 S   
 3: 75 118   A   76 S   
        119   S   82 S     
        120   G   85 S   Test for finish: 
        121   O   41 S   
        122   Z      S   
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Documentation for the Edsac simulator is supplied as two pdf files: the Tutorial 

Guide (EdsacTG.pdf) and Program Documentation (EdsacDoc.pdf). The pdf files can 

be accessed directly, from the Help menu, or from the toolbar. 

 

The Tutorial Guide is designed as a doubled-sided printed document that opens flat, 

for study at or away from your computer. If you prefer, you can access the guide on-

line - hyperlinks in green text have been added for easy navigation. Pages in the 

Tutorial Guide use a mixture of paper sizes and orientations, so don’t forget to select 

the “Shrink oversized pages” print option. The pages in the Program Documentation 

pdf file are, for the most part, exact transcriptions of the original “programme sheets” 

now preserved in the Cambridge University archives.  

 

 

Exercises 

 

1 Edit the Squares program so that it prints out the squares of 1 to 10 instead of 1 to 

100. (Hint: Change the constant P 100 S in location 82 to P 10 S.)  

 

2 Load the Primes program. Run the program and note how the output slows down 

as successively larger integers are tested for primality.  
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2  EDSAC ARCHITECTURE AND ARITHMETIC 

 

The demonstration programs used in this section, and in the rest of the Tutorial Guide, 

make use of the second form of the initial orders which were introduced in September 

1949. These replaced the much less sophisticated Initial Orders 1 which were only in 

service for about three months. Choose “Initial Orders 2” from the Edsac menu and 

close any text windows that are open. 

 

2.1  Architecture and Instruction Set 
 

One of the nicer features of the EDSAC is that it is conceptually a very simple 

machine. The reason for this simplicity is that when Wilkes and his team were 

designing the machine, they chose to keep things as simple as possible: this was partly 

to minimize the engineering difficulty, but also so that they could start developing 

programs for a real computer as soon as possible, instead of just dreaming them up for 

an imaginary machine. Besides the EDSAC’s historical importance, its simple design 

makes the machine a worthwhile one to study today as a particularly clean example of 

what has come to be called the “von Neumann architecture”. (Although, of course, 

like all real machines, the EDSAC does have some annoying features that one wishes 

were not there.) 

 

The original design of the EDSAC was based on that of the EDVAC, the computer 

designed during 1944-45 at the Moore School of Electrical Engineering, University of 

Pennsylvania, by a group that included John von Neumann, J. Presper Eckert and 

John W. Mauchly. The design of the EDVAC was described in von Neumann’s 

classic First Draft of a Report on the EDVAC in June 1945. This is the foundation on 

which almost all computers have been based for the last seventy years. The EDSAC 

consisted of the classical arrangement of five functional parts: a control unit, an 

arithmetic-logic unit (ALU), a memory (or store), input, and output (Fig. 4). The 

combined control unit and ALU is now usually known as the processor. In the 

EDSAC processor there were five principal registers: the Sequence Control Tank, the 

Order Tank, the Multiplicand and Multiplier registers, and the Accumulator. The 

 

 
 

Fig. 4  EDSAC architecture 

OUTPUT

S T O R E

1024 words of 18 bits

CONTROL A L U

Multiplier

Multiplicand
Order Tank

INPUT

 Acc

Sequence Control
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Sequence Control Tank contains the address of the current instruction and the Order 

Tank stores the current instruction.  

 

The EDSAC used a single-address instruction format, shown in Fig. 5. Although the 

EDSAC was based on an 18-bit word, only 17 bits were used, the leading bit being 

unusable for reasons connected with circuit set-up time. The opcode (or “function”) 

was specified in 5 bits, and the address in 10 bits. A further bit specified the operand 

length: most instructions could operate on either a 17-bit short word, or a 35-bit long 

word; the length indicator specified which. (If you look carefully at the register panel 

on the Edsac display, you will notice some black dots beneath the Order Tank: these 

indicate the different fields of the instruction.) 

 

 
 

Fig. 5  Instruction format 

 

Table 1 (Appendix, p. 41) shows the EDSAC instruction set as it existed in 1949. 

Operations were represented by letters of the alphabet, some of which suggested the 

function they denoted (eg. A for Add, S for Subtract, etc). The binary representation 

of the opcode was in fact the same as the character code of the corresponding 

character - see Table 2; this simplified the translation of the symbolic program 

considerably. Average instruction times were 1.5 ms, although multiplication was 

longer and took 6 ms; input-output times were determined by the speeds of the 

peripheral equipment. 

 

Instructions were always written in a symbolic form such as A 56 F, or S 128 D; these 

meant respectively, “Add the short number in location 56 into the accumulator”, and 

“Subtract the long number in location 128 from the accumulator”. Note the use of the 

length indicators F or D to specify a short or long operand in the instruction. Also, 

when an address was zero it was omitted altogether; for example, T F meant “Store 

the short number in the accumulator in location 0”. 

 

2.2  Numbers and Arithmetic 
 

In this section we will examine the details of number storage and arithmetic on the 

EDSAC.  It is not important that you follow everything in the description that follows 

- you can always come back later if you need to. 

 

Modern software systems tend to shield the user from the arithmetic instructions of a 

computer, and often from the format in which numbers are stored - other than the 

basic word length and the type of data (integer, floating-point, etc). However, on the 

EDSAC it was necessary to have an understanding of the formats of numbers, and the 

instructions which operated on them. An additional complication was that floating 

point numbers were not used; instead, real numbers were stored as fractions in the 

range -1 < x < 1. (If a real number of modulus greater than unity was needed, then 

scaling had to be used - more on this later.)  

 5  1 10  1

Opcode Spare Address Length
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Fig. 6 shows the four number formats used in the EDSAC: short and long integers, 

and short and long fractions. Short numbers were 17-bits in length and long numbers 

were 35-bits. (Remember that the basic word length of the EDSAC was 18 bits, but 

the first bit was never used.) Within the processor, the multiplication registers each 

had a capacity of 35 bits; and the accumulator had a capacity of 71 bits - sufficient to 

develop the full product of a pair of long numbers. When using short numbers only 

the leftmost half of the registers would be used. (The black dots beneath the 

arithmetic register displays indicate the boundaries of short and long numbers and 

their signs.) 

 

The Arithmetic program (Fig. 7) does not do anything useful, but it is designed to 

illustrate EDSAC number storage and arithmetic. Open... the program from the 

Tutorial Guide Examples folder; press Clear and then Start to load the program into 

the store. The first instruction of the program (in location 64) is a stop-order, so that 

when the program has been loaded, you can turn on the registers display, and then 

work through it by single stepping using the Single E.P. button. (If the program failed 

to load, check that you selected Initial Orders 2.) Points to note in the program are as 

follows. 

 

Integers were normally stored in a 17-bit word, in twos-complement form, with the 

leftmost bit for the sign, and the implied binary point at the rightmost end. Thus: 

 

  33 = 00000000000100001 

 -17 = 11111111111101111 

 

Although it was possible to have long integers, these will not be used here. 

 
 

Fig. 6  Number formats 

(c) short fraction

(d) long fraction

(b) long integer

(a) short integer

16

16 17

16

16 17
•

•

•

•

=  sign =  sandwich digit

  •    =  implied binary point

KEY:



- 16 - 

Short fractions were stored in a 17-bit word, in twos-complement form, with the 

leftmost bit for the sign, and the implied binary point between the sign bit and the 

most significant numerical bit. Thus: 

 

  0.1875 = 3/16 = 00011000000000000 

                  -0.5 =  -1/2 = 11000000000000000 

 

Easy constants like the above were set up in programs by symbolic orders which 

caused the appropriate bit pattern to be assembled (there were no constant defining 

operations). For example: P 16 D for the integer 33, and E F for the fraction 3/16. 

 
Addition and subtraction work exactly as you would expect, except for overflow. 
Overflow in the accumulator is not detected, and the program will just go on running, 
working with whatever number the accumulator happens to contain. Multiplication is 
more complicated. The multiplier was designed to give the correct product with 
fractions. Thus the product of two short 17-bit fractions is a long 35-bit fraction. 
Depending on the precision required, either the top 17 bits or the top 35 bits of the 
accumulator are stored (using a T n F or a T n D order respectively). When integers 
are multiplied, the multiplier behaves in the same way it would with fractions. For 
example, since the integer 5 (say) is equivalent to the fraction 5 x 2-16, the product of 
5 x 5 would be 25 x 2-32. Hence to obtain the result in the correct place in the 
accumulator, it would have to be left-shifted 16 places. 
 
In the memory, long numbers are stored in an adjacent pair of odd-even locations. The 
word length is 35 bits, not 34 bits: the extra bit between the two half-words is the so-
called “sandwich digit”, which caused some confusion with EDSAC users, but the 
existence of the subroutine library meant that most of the time people did not need to 
trouble about it. Long constants are set up by a pair of orders, such as H 682 D, 
T 682 D for 1/3. These constants were messy to work out, and useful ones were 
published from time to time in the EDSAC Programming Bulletins. A selection of 
useful constants is given in Table 4 of the Appendix. When referring to a storage 
location, the notation 24D (say) means the long number in locations 25 and 24. 
Similarly the notation nF means the short number in location n. 
 

Exercise 

 

1 Reload the Arithmetic program by pressing Clear and then Start. Display long 

tank 3 (locations 96-127) and turn on the Hints control. Verify the values of the 

constants stored in locations 96 upwards. 

 

2 Single step through the Arithmetic program, observing the contents of the 

accumulator as each instruction is obeyed and comparing it with the program 

listing in Fig. 7. This will familiarise you with the various number formats used in 

the EDSAC.  
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   T   64 K Set load point 
         64   Z      F Stop 
         65   A   96 F acc = 33  
         66   A   97 F acc = acc + 46 = 79  Short integer  
         67   S   98 F acc = acc - 96 = -17   arithmetic 
         68   T      F   
         69   H  100 F   acc = 

3/16 x 
7/8 = 

21/128  Short fractions 
         70   V  101 F    
         71   T      F  
         72   H  104 D   acc = 

1/3 x 
1/3 = 

1/9  
         73   V  104 D    Long fractions 
         74   Y      F Round acc to 34 binary places  
         75   A  106 D acc = acc - 1/9 = 0 to 34 b.p.  
         76   T      F  
         77   H   99 F   acc = (5 x 2

-16)2 = 25 x 2-32  
         78   V   99 F     Integer 
         79   L   64 F   acc = acc x 2

-16 = 25 x 2-16    multiplication 
         80   L   64 F    
   82   81   L      D   Left shift till acc -ve  Shift loop 
         82   E   81 F    
         83   T      D    
         84   H  104 D  Collate 1/3 and -1/9  Collate 
         85   C  106 D    acc = 0.01000001000001000001...  
         86   Z      F    
                    
   T   96 K Set load point 
         96 ║P   16 D = 33  
         97 ║P   23 F = 46  Integer constants 
         98 ║P   48 F = 96  
         99 ║P    2 D = 5  
        100 ║E      F 0.00112 = 3/16  
        101 ║K      F 0.11102 = 7/8  Short fractions 
        102 ║      F 1.10002 = -1/2  
        103 ║I      F 0.10002 = 1/2  
        104 ║H  682 D   0.0101... = 

1/3  
        105 ║T  682 D    Long fractions 
        106 ║K  455 F   1.111000... = -

1/9  
        107 ║C  455 F    
   E   64 K   Enter at location 64 
   P      F   
 

 

 

 

 

Fig. 7  Arithmetic program 
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2.3  Miscellaneous 

 

The EDSAC instruction set in Table 1 (p. 41) is fairly self-evident to anyone with a 

reasonable computer understanding, but a few pointers may be in order.  

 

One of the compromises made to keep the EDSAC simple was to have only two 

branch instructions, the E- and G-orders. There was no unconditional branch 

instruction, so that it was always necessary to know the sign of the accumulator when 

taking a branch (or else to use both an E-order and a G-order). The same limitation 

meant that it took 8 instructions (!) to determine the equality of two numbers - so this 

was avoided if at all possible. In 1952, an unconditional branch order was added to 

overcome these problems. (Unfortunately this change also meant that many programs 

and library subroutines had to be rewritten - this happened whenever the instruction 

set was significantly changed. This is why it was earlier stated that the simulator 

models the EDSAC as it existed in 1949-51.) 

 

Another economy in the EDSAC was that it had no hardware divider. Hence division 

had to be done by a subroutine (see the Reciprocals program in Section 3.3, for an 

example). The logic operations on the EDSAC were particularly sparse. Only logical 

AND (the Collate order) was provided. Likewise, there were no instructions for 

character handling. This is really a reflection of the fact that machines of the 

EDSAC’s era were designed as “mathematical instruments”. It was only in the late 

1950s that powerful logic and character-handling instructions became available on 

most computers. 

 

The shift instructions probably gave more trouble to users than any others. This was 

because, to simplify the engineering, the number of shift positions was given not by 

the value of the address field of the instruction but by the position of the rightmost bit 

in the instruction word. Thus the instruction L 8 F caused the contents of the 

accumulator to be shifted 5 places left, and not 8 places, as you might expect. 

 

Finally, an interesting feature of the EDSAC and many of its contemporaries was that 

they had no index registers - not least because the index register was not invented 

until 1950, and then the idea took a little time to catch on. To perform arithmetic on 

the elements of an array on the EDSAC it was necessary for a program to modify the 

addresses in its own instructions, so that in an instruction loop successive elements of 

the array would be accessed. The ability of an electronic computer to modify its own 

instructions was one of the key features of the stored-program concept, although we 

now tend to frown on such “impure” code. 

 

Exercises 

 

1 The instructions R D and L D shift the accumulator one place right and one place 

left respectively. The instructions R F and L F cause a right shift of 15 places and 

a left shift of 13 places, respectively. Why? 
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3  PROGRAMMING THE EDSAC 
 

In this section we will examine three programs which will progressively illustrate the 

important features of programming for the EDSAC. It is recommended that you 

“punch” and run the first two programs so that you get familiar with using the system 

before attempting to write the programs in Section 5. Working copies of the programs 

are provided in the Demonstration Programs folder in case you get stuck. 

 

3.1  Hello World 

 

This is not exactly an original idea, but as a confidence builder, our first example is a 

tiny program to print a message. However, as printing “Hello World” would make the 

program rather longer than necessary, the program will just type “HI”. The complete 

program is shown in Fig. 8. 

 

Fig. 8a shows the program text. In the program, there are two types of entity: actual 

machine instructions, which are numbered 0 to 7; and “control combinations” at the 

beginning and end of the program. Control combinations correspond to what we 

would now call “assembly directives”: they are pseudo-instructions for the Initial 

Orders so that they can load the program and enter it. 

 

This is the place to say a little more about Initial Orders 2. Once the Cambridge group 

began programming using the first form of the initial orders in the spring of 1949, 

their limitations soon became apparent. The worst feature by far was that addresses in 

instructions had to be coded in absolute form: this meant, for example, that if an extra 

instruction had to be inserted in a program then the addresses in many of the branch 

instructions would need to be altered. This made program debugging very tedious. 

Another problem was that the lack of a relocation facility meant it was difficult to 

organize a subroutine library effectively. 

 

The task of devising a new set of initial orders was given by Wilkes to David 

Wheeler, then a research student and later Professor of Computer Science at 

Cambridge. What he produced was the forerunner of the modern assembler. The new 

programming system was later described in the classic textbook The Preparation of 

Programs for an Electronic Digital Computer  (Wilkes, Wheeler and Gill, 1951). This 

famous book - usually known as Wilkes, Wheeler and Gill, often abbreviated as 

“WWG” - established the programming culture of the early 1950s, which is still to 

some extent embodied in the assembly systems and subroutine libraries of today’s 

computers. When designing the new initial orders, one of the constraints that Wheeler 

had was that, for engineering reasons, the initial orders were limited to being just 42 

instructions long. But even so, their power was quite astonishing and at the time they 

were justly celebrated as “the leading example of programming virtuosity”. (If you 

are interested, you can find copies of the program manuscripts for both Initial Orders 

1 and Initial Orders 2 in the Program Documentation.)  

 

In the Tutorial Guide we will by no means exhaust the possibilities of Initial Orders 2, 

which are fully described in Wilkes, Wheeler and Gill; we will just use the basic 

control combinations below: 

 

  



- 20 - 

T m K  Set the load point to m 

 G K  Set the -parameter to the current load point 

 T Z  Restore the -parameter 

 E m K P F Enter the program at location m 

 E Z P F Enter the program at location   

 P Z or P K See later 

 

The Hello World program in Fig. 8a uses three of these control combination. The 

program begins with T 64 K, which causes instructions to be loaded into location 64 

upwards. (This would correspond to something like “ORG 64” in a modern 

assembler. It is true that the latter is a more helpful notation than T 64 K, but this 

shortcoming was entirely due to the space constraints of the initial orders.) On the 

next line, G K sets the -parameter - which is used for relocation - to the current load 

point of 64. From this point on, the address in any instruction with the code-letter  

will have the value of the -parameter (ie. 64) added to it. This is how relocation is 

achieved. Finally, the last control combination E Z P F causes the program to be 

entered at location  (ie. 64). Note how the program is completely relocatable: just 

changing the number 64 in the first line of the program will allow it to be placed 

anywhere in the store. 

 

Let’s now turn to the instructions themselves. Notice that the first instruction is a 

stop-order; and that the program has been located from word 64 onwards, ie. at the 

edge of a memory tank boundary. This was a common practice when developing 

programs so that it was possible to check visually in the monitor tube that the program 

had loaded correctly before running it; locating the program on a page boundary made 

it easy to find (by comparison, word 56, say, was quite difficult to locate on the 

monitor, other than by counting up the rows of the display). 

 

Fig. 8b shows the program “tape” exactly as it should be typed - no comments or 

extraneous characters other than white space characters. The EDSAC tape punch used 

four Greek characters: theta, phi, delta, and pi. These characters are typed as below: 

 

EDSAC Character Type As 

Theta  @ 

Phi  ! 

Delta  & 

Pi  # 

 

We will now type the Hello World program. First, select New from the File menu or 

the toolbar to create a new text window. Type the program, exactly as in Fig. 8b. If 

you wish, you can save the program with a name such as “My_Hello”. You can now 

run the program. Turn on the Short Tanks display, and press Clear followed by Start. 

After a second or two the simulator will stop - ringing the warning bell as it does so. 

Examine Long Tank 2 to verify that the program has loaded correctly. It should look 

exactly as in Fig. 8c. Press Reset. The program should print “HI”, and then stop - 

again ringing the warning bell. 
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   T   64 K Load from location 64 
   
   G      K Set  parameter 
   
Start   0   Z      F Stop 
   
         1   O    5  Letter shift  
   
         2   O    6  Print "H" 
   
         3   O    7  Print "I" 
   
         4   Z      F Stop 
   
         5 ║*      F Letters 
 ║  
         6 ║H      F "H" 
 ║  
         7 ║I      F "I" 
   
   E      Z    
    Enter at location 0 
   P      F   
 

 

 

 

 

 

 

 

 

T64K 

GK 

ZF 

O5@ 

O6@ 

O7@ 

ZF 

*F 

HF 

IF 

EZPF 

 

         (a) Program text                     (b) Program tape 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

loc’n  order     loc’n  order 

 

71     I    F    70     H    F  

69     *    F    68     Z    F 

67     O 71 F    66     O 71 F 

65     O 69 F    64     Z    F 

 

 

 

 

(c) Long Tank 2  
 
 

 

 
 

   = 00010.0102  

     = tank2.word2 = 6610 

 

 
 

   = 01001.00001000110.0 

     = O 70 F 

 

 

 (d) Sequence Control Tank and Order Tank 
 

 

Fig. 8  Hello World program 
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If your program fails to load correctly, and you get the alert "End of input tape 

encountered", check that you have selected Initial Orders 2 on the Edsac menu. If 

your program fails to run, it is probably because you mis-typed something. EDSAC 

was very unforgiving of typos - particularly Ohs punched as Zeroes, so check very 

carefully. If you still can’t get the program to run, there is a working version in the 

Demonstration Programs folder. 

 

Press Clear and Start to reload the program. Now, instead of clicking Reset, press 

Single E.P. repeatedly to step through the program one instruction at a time. Notice 

(Fig. 8d) how the Sequence Control Tank (SCT) steps through 64, 65, 66, ... The last 

instruction of the program is in 68. Of course if you carry on pressing Single E.P. the 

machine will execute nonsense instructions - but since the EDSAC was designed so 

that non-existent opcodes behaved as stop instructions, nothing very exciting usually 

happens. Note that only legal stop instructions (using the Z-order) ring the bell. 

 

Exercises 

 

1 Modify the Hello World program so that it is loaded into location 56 upwards, and 

verify on the monitor tube. If you try to load the program from 32 upwards, 

strange things happen. Why is this? 

 

2 Modify the Hello World program so that it does indeed print “HELLO WORLD”. 

 

3.2  Cubes 

 

The next program is one that calculates and prints the cubes of the integers using the 

well known formula of Nichomachus: 

 

 13 = 1 

 23 = 3 + 5 

 33 = 7 + 9 + 11 

 43 = 13 + 15 + 17 + 19 

 etc. 

 

The coding to compute the cubes themselves is fairly trivial; the difficulty lies in 

actually printing them out. The easy way to do this is to use the library subroutine P6, 

which prints a short positive integer (Fig. 9). 

  

The EDSAC subroutine library began to take shape from autumn 1949 onwards. 

Subroutines were classified by a letter indicating the group to which they belonged 

(eg. D for division, P for printing, etc.) Within a group, subroutines were given a 

serial number (eg. P1, P2, P3, etc.), which mainly indicated the chronological order in 

which routines had been placed in the library. Eventually the library grew to contain 

nearly a hundred subroutines. However, only about two dozen are provided for the 

Edsac simulator - they are kept in the Subroutine Library folder, and brief 

specifications for the more popular ones are given in Table 3 of the Appendix.  
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P6 Print short positive integer. 

        Closed; 32 storage locations; working positions 1, 4, and 5; time = 

        about 900 msecs. 

 

Prints 2-16.C(0) with suppression of nonsignificant zeros but without layout. 

 

   G      K   
          0   A    3 F   Plant link  
          1   T   25     
          2   H   29     
          3   V      F   Multiply by 216/105 
          4   T    4 D    
          5   A    3    V F = -1/16 to S(0) 
          6   T      F   
          7   H   30  Set multiplier 
          8   S    6  Set digit count 
    24   9   T    1 F Digit count  
         10   V    4 D   Multiply   
         11   U    4 D    
         12   A      F   Test for first   
         13   G   26    non-zero digit   
         14   T      F   Clear Acc. and S(0)*   
         15   T      F    
         16   O    5 F Print  Digit cycle  
         17   A    4 D    
         18   F    4 F   Check and remove  
         19   S    4 F     
   28   20   L    4 F Shift  
         21   T    4 D     
         22   A    1 F    
         23   S    3    Count digits  
         24   G    9     
         25  (E     F) Link 
     
   13   26   S      F Add 1/16   
         27   O   31  Space  Suppress zero 
         28   E   20     
    
         29 5J  995 F = 216/105 
         30 5J      F = 10/16  
         31 5      F Space  
 

* S(0) becomes cleared when the first non-zero digit is encountered, thus 

preventing the suppression of later zeros. 

 

 

 

 

 
 

 
 

 

 

    (a)  Program text, above 

 

    (b)  Program tape, left 

 

Fig. 9  Library subroutine P6 
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Original documentation for all the subroutines is reproduced in the Program 

Documentation pdf file. These subroutines will suffice for all the examples given in 

the Tutorial Guide, and for most of the programs you are likely to think of. If you 

decide to explore the EDSAC in more depth, you may need more subroutines; many 

of these are readily accessible in Part III of Wilkes, Wheeler and Gill (1951). 

 

Calling a subroutine on the EDSAC used the technique of the “Wheeler jump”, shown 

below. Here, the instruction A m F loads itself into the accumulator (this will be used 

to form the return link); and then the instruction G n F transfers control to the first 

instruction of the subroutine in location n. In the subroutine, the instructions A 3 F 

and T p F manufacture the return link and plant it as the last instruction of the 

subroutine in location p. (The instruction A 3 F actually uses a constant permanently 

kept in location 3 to produce the return link.) If all this went over your head on a first 

reading, don’t worry; it is only really important when you want to write subroutines. 

If you are just going to use library subroutines, all you need to remember is the 

A m F, G n F calling sequence. 

 
 
          m    A  m  F  pick up self   
                   
        m+1    G  n  F  jump to subroutine  master routine 
                    
        m+2       .  control returns here   
                         
                  .     
                      
              .    
                  
          n    A  3  F  form return link   
               
        n+1    T  p  F   plant return link  
                       
              .      subroutine 
                          
                  .       
                    
          p  (    .   )  return link planted here  
 
 

Fig. 10 shows the Cubes program. It consists of two routines: the master routine 

written by the programmer (Fig. 10a), and the library subroutine P6. The first job is to 

allocate storage for the program; this is done in Fig. 10b. The convention was to load 

the program into location 56 upwards, placing all the subroutines and the master 

routine end-to-end without leaving any gaps. The lengths of subroutines are given in 

their specifications. Fig. 10c shows the make-up of the complete program tape. 

 

On the original EDSAC, the procedure for punching a program was as follows (Fig. 

11). First, the key-punch operator (who was usually the same person as the 

programmer) would punch the master routine. Then the subroutine library tapes - 

which were kept in small cardboard boxes in a steel filing cabinet - would be copied 

onto the program tape, together with the master routine, and interspersed with control 

combinations. When the subroutine tapes had been copied, they were rewound and 

returned to the library cabinet.  



   G      K Set -parameter 
 Enter  0   Z      F Stop 
         1   O   34  Figure shift 
   22   2   O   35    New line 
         3   O   36   

         4   T      F   
         5   A   27    k to 0F 
         6   T      F   
         7   A    7    Print 0F using P6 
         8   G   56 F   
    
   P6   9   T   27  Zero to k 
        10   A   28    
        11   A   31    n+1 to n 
        12   T   28    
        13   S   28    -n to count 
  21   14   T   30    
        15   A   29    
        16   A   32    m+2 to m 
        17   U   29    
        18   A   27    k+m to k 
        19   T   27    
        20   A   30    Increment count 
        21   A   31    
        22   G   14  Jump to 13 if count ≤ 0 
   
        23   A   33    Repeat main cycle 
        24   S   28     while n ≤ 10 
        25   E    2    
   
        26   Z      F Stop 
        27 ║P      D k (n3; =1 initially) 
        28 ║P      D n (=1 initially) 
        29 ║P      D m (=1 initially) 
        30 ║P      F count 
        31 ║P      D =1 
        32 ║P    1 F =2 
        33 ║P    5 F =10 
        34 ║      F figs 
        35 ║      F cr 
        36 ║      F lf 

 
(a) Master routine 

 

Routine      Location of   Number of storage 

             first order   locations occupied 

 

P6 (print)        56               32 

Master            88                - 





(b) Table of routines 
 
                 space P K 

 

                 T 56 K 

 

 

     P6 

 

 

                 space P Z 

 

 

    Master 

 

 

                 E Z P F 

 
(c) Make-up of program tape 

 
                    

                       1 

                       8 

                      27 

                      64 

                     125 

                     216 

                     343 

                     512 

                       . 

                       . 

                       . 

                           (e) Printout 

 

 

      Fig. 10  Cubes program 

   [Cubes] 
..PK 

T56K 

[P6] 

GKA3FT25@H29@VFT4DA3@TFH30@S6@T1F 

V4DU4DAFG26@TFTFO5FA4DF4FS4F 

L4FT4DA1FS3@G9@EFSFO31@E20@J995FJF!F 

..PZ 

[Cubes Master] 

GK 

ZF 

O34@ 

O35@ 

O36@ 

TF 

A27@ 

TF 

A7@ 

G56F 

T27@ 

A28@ 

A31@ 

T28@ 

S28@ 

T30@ 

A29@ 

A32@ 

U29@ 

A27@ 

T27@ 

A30@ 

A31@ 

G14@ 

A33@ 

S28@ 

E2@ 

ZF 

PD 

PD 

PD 

PF 

PD 

P1F 

P5F 

#F 

@F 

&F 

EZPF 

                     (d) Program tape 
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On the program tape the individual routines were normally separated by a few rows of 

blank tape; this was useful in spotting how far the program had got if it suddenly 

stopped loading - the machine operator would mark the tape with a pencil where it 

had stopped in the paper-tape reader. This blank tape is indicated by “space” in the 

notation for the make-up of program tapes (Fig. 10c). The blank tape has to be 

terminated with the control combination P K or P Z. 

 

Much the same logic is used for preparing programs for the simulator. On the Edsac 

simulator, because an application program such as Cubes is composed from two or 

more files, and will likely exist in a number of versions, it is advisable to create a new 

folder for it. A folder for Cubes has already been set up in the Tutorial Guide 

Examples folder. Normally the first job would be to punch the master routine, but this 

has also been done for you; it is in the file “Cubes Master” in the Cubes folder. 

 

We now have to create the complete program from the library subroutine and the 

master routine. First, create a New text window in which to prepare the program. 

Now, referring to Fig. 10c, we first need to type the control combinations: 

 

 space PK 

 T 56 K 

 

Program tapes for the EDSAC were blind punched using a keyboard perforator. Library subroutines were 

kept in the steel cabinet (left) and were copied mechanically onto the program tape using the tape-reader in 

the centre of the photograph. 

 

Fig. 11  EDSAC tape preparation facilities 
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We require at least two rows of blank tape for the “space”; on the Edsac simulator a 

row of blank tape is represented by a period, so we can represent “space” by “..”. The 

rest of the characters (PKT56K) are typed as written. We then need to copy 

subroutine P6. Click the “Print” tab on the toolbar, which shows the available print 

subroutines. Click the button for P6. P6 will now be copied into your program at the 

current insertion point. Now type the control combination “space P Z”. Next, use 

File|Insert… to locate Cubes Master and copy it at the current insertion point. Finally 

type the control combination E Z P F. Save the program as “Cubes”. (If you prefer 

you can construct your program by opening windows for the various components and 

cutting and pasting from one to another. This is messier but the end result will be the 

same.) 

  

Your program should look exactly as in Fig. 10d - except possibly for white space 

characters and comments. A few points to note. First, the simulator allows you to put 

comments in the program between square brackets. The convention adopted is to label 

all program tapes and library subroutines with their name at the beginning, eg. [P6]. 

This roughly corresponds to the practice adopted on the original EDSAC of labelling 

a tape by writing the name of the program on it in pencil. Secondly, notice that the 

master routine is typed one instruction per line, while the subroutines have been 

previously typed with ten instructions per line. This convention is adopted in the 

simulator to keep program listings short - when the program is actually run there is no 

difference so far as the simulator is concerned. The master routine is typed one order 

per line to make it easy to correct while it is being debugged; but library subroutines 

can be assumed to be correct and you should never need to modify them, so they are 

typed ten orders per line. 

 

You should now be able to run the program. Again, if it fails to run, it may be because 

you mis-typed something, or perhaps you composed the program incorrectly.  

Alternatively, perhaps you forgot that the first instruction of the master routine was a 

stop order and you need to press Reset to make it continue. If you still have problems, 

there is a working version of the program in the Demonstration Programs folder. 

 

Exercise 

 

1 Modify the Cubes program so that it prints out n followed by n3 on each line. 

 

 

3.3  Reciprocals 

 

This section illustrates the remaining important concepts in EDSAC programming: 

code-letters, subroutine parameters, and scaling. To illustrate these ideas, we will 

refer to the Reciprocals program which prints the reciprocals of the numbers 2-10 

(Fig. 12). 

 

Code-letters 
 
If you did the last exercise, which involved modifying the Cubes program, you will 
have discovered an awkward problem: Namely that inserting extra instructions in the 
master routine required you not only to change the addresses in some branch 
instructions (which you might have expected), but also because the locations of the 
data and constants changed, the addresses in many of the arithmetic instructions had 
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to be altered too. This problem can be overcome by the use of code-letters. We have 
already encountered three code-letters (F, D, and ), but there are 15 altogether as 
shown below.  
 
 Code-letter   Location  Value 

 F    41   0 

     42   Origin of current routine 

 D    43   1 

 , H, N, M … V  44, 45, 46 … 55 For use by programmer 

 
As the initial orders load each instruction, the value corresponding to its code-letter is 
added to the instruction before it is placed in the memory. Because the code-letters F 
and D contain the integers 0 and 1 respectively, this has the effect of setting the length 
indicator bit. Similarly, the code-letter  has the effect of adding the origin of the 
current routine to the address of the instruction - this is how relocation is achieved. 
You should not normally change F,  or D directly, for obvious reasons. All the 
remaining code-letters can be used by the programmer. They occupy locations 41 to 
55, and that is why the normal place to begin loading a program is location 56. (The 
15 code-letters also correspond to characters 17-31 in the collating sequence - see 
Table 2 in the Appendix.) 
 
In the master routine of the Reciprocals program, the code-letters  and M have been 
used so that there are two separate regions in store: one region for the instructions and 
another for the data. Now, if it subsequently proved necessary to remove or add an 
instruction in the master routine it would only be necessary to adjust the value of the 
M-parameter. Regionalizing the instructions and data in this way also makes 
programming easier because it is not necessary to know the length of the program 
before allocating storage for the data. 
 
Subroutine Parameters 

 

Library subroutines had a number of ways of specifying their parameters or 

arguments. The easiest way was to use a dedicated storage location. This is used, for 

example, in the print subroutine P6, which prints the integer placed in location 0F 

before the subroutine is entered; similarly, the division subroutine D6 sets 0D to the 

value of 0D/4D. A more flexible, though more complicated, arrangement was what 

the Cambridge group called program parameters. Here one or more parameters were 

specified in the calling sequence itself. For example, in the Reciprocals program the 

library subroutine P1 prints the long fraction in 0D to n decimal places, where n is 

specified as a program parameter (see lines 11 to 13 of the master routine in Fig. 12a). 

 

Program parameters are the way that most software systems still parameterize library 

subroutines. Incidentally, in Wilkes, Wheeler and Gill, there is another technique 

known as “preset parameters” - this method has since fallen into disuse and we will 

not discuss it here. But it is one of several now-forgotten ideas in EDSAC 

programming awaiting rediscovery. (Just to add a little more confusion, note that 

subroutine M3 used in Reciprocals does not conform to any of the types discussed 

above. It prints out the text that follows it, and is then overwritten by the program 

proper, so as not to take up any memory at run time. It was very useful for printing 

out table headings and the like.) 

 



 

   G      K  
   T   47 K    Set M parameter 
   p   21 K    
   T      Z  
         0   S      M   Set count to -9 
   19   1   T    6 M   
         2   A    2 M   1

.2-4 to 0D 

         3   T      D   
         4   A    7 M   n

.2-4 to 0F 

         5   T    4 D   
         6   A    6    Set 0D to 0D/4D(ie. 1/n) 
         7   G   56 F    using subroutine D6 
    
   D6   8   O    3 M   Output new line 
         9   O    4 M    
        10   O    5 M   Output decimal point 
        11   A   11     Print 0D  

        12   G   92 F    using subroutine P1 
    
        13   P   10 F   Parameter for P1  
  P1   14   A    7 M   
        15   A    2 M   Increment n 
        16   T    7 M   
        17   A    6 M   Increment 
        18   A      M      and test counter 
        19   G    1     
    
        20   Z      F Stop  
              
      M  O ║P      D = 1 
         1 ║P      D = 9 
         2 ║Q      D = 1.2-4 
         3 ║      F carriage return 
         4 ║      F line feed 
         5 ║M    1 F decimal point 
         6 ║P      F count 
         7 ║W    1 F = n (=2.2-4 initially) 
 

 

(a)  Master routine 
 

 

space P K 

 

T 56 K 

 

 

     M3 

 

 

*RECIPROCALS   Table heading 

 

space P Z 

 

T 56 K 

 

 

     D6 

 

 

space P Z 

 

 

     P1 

 

 

space P Z 

 

 

   Master 

 

 

E Z P F 

 

 

(c)  Make-up of program tape 

 

 

 

 

 

 

                  Fig. 12 Reciprocals program 

 

 

Routine      Location of   Number of storage 

             first order   locations occupied 

 

D6 (divide)       56               36 

P1 (print)        92               21 

Master           113                - 

 

 

 

 

 

(b) Table of routines 

 

 

 

 
 

 

RECIPROCALS 

 

.4999999999 

.3333333333 

.2499999999 

.2000000000 

.1666666666 

.1428571428 

.1249999999 

.1111111111 

.0999999999 

 

 

(d)  Printout 
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Scaling and Rounding 

 

The problem of scaling arises because the EDSAC could only store fractions in the 

range -1 < x < 1. This was a problem with most early computers, although the advent 

of hardware or software floating-point in the mid-1950s meant that most users were 

soon able to forget about it. 

 
In the case of the Reciprocals program, the reciprocals 1/2, 1/3, ... 1/10 are all in the 
range -1 < x < 1, so there will be no need to scale the results. The denominators 2, 3, 
... 10, however, would be out of range for fractions. We therefore scale them by 2-4, 
so that they are all of modulus less than unity. Now, when we calculate the reciprocal 
1/n using: 
 

 
1 x 2-4

n x 2-4  

 

the scale factors cancel and the result is correct. Life was not always so easy and often 

scaling was the hardest part of solving a problem. (For a fuller discussion of scaling 

see  example program “TPK” in the Program Documentation pdf file.)  

 
There is a copy of the Reciprocals program in the Reciprocals Folder, in the Tutorial 
Guide Examples folder. Note that subroutine P1, like most of the EDSAC print 
routines, did not perform rounding. Thus in the output of Reciprocals shown in Fig. 
12c, ½ is printed as 0.4999999999 rather than as 0.5000000000. Here, this is mainly 
an aesthetic point, but normally a fraction would be rounded to n decimal places by 
adding the constant ½ x 10-n. A number of useful rounding constants are given in the 
Appendix, Table 4. 
 
Exercise 

 

1 Modify the Reciprocals program so that it prints the results to a precision of 6 

decimal places, unrounded. (Hint: Change the parameter for P6 in line 13). 

 
2 Print the results of the Reciprocals program rounded to 6 decimal places. (NB. 

The constant ½ x 10-6 is “W 199 F, P F”; this should be placed in an adjacent 
even-odd word pair (eg. words 8M and 9M). To add a long constant into the 
accumulator, use A 8 M (say); the  forces the length bit in the instruction to be 
1. 
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4  DEBUGGING: GETTING PROGRAMS RIGHT 

 
By June 1949 ... I was trying to get working my first non-trivial program, which was for the 

numerical integration of Airy’s differential equation. It was on one on my journeys between 

the EDSAC room and the punching equipment that “hesitating at the angles of stairs” the 

realization came over me that a good part of the remainder of my life was going to be spent in 

finding the errors in my own programs. 

M.V. Wilkes, Memoirs, 1985, p. 145 

 

Like Wilkes, everyone who begins to program soon discovers that the difficulty lies 

not in writing programs, but in getting them to work. On the EDSAC there were 

essentially three ways of finding the mistakes in a program: peeping, the post-mortem 

technique, and checking routines. We will look at each of these in turn. 

 

First, however, let us consider the two common types of bug (or “pitfalls” or 

“blunders” as they were called in Wilkes, Wheeler and Gill, which was published long 

before the term “debugging” gained currency).  

 

1 Control errors. Control or sequence errors occur when the program logic is in 

someway faulty. Typically a control error causes a program to have unpredictable 

behaviour and eventually come to a halt in an apparently random location. The 

most common cause of a control error is a wrong address in a branch order, or 

faulty subroutine linkage. 

 

2 Numerical errors. These are errors in the numerical computation of a program, 

which do not immediately affect the sequence in which the orders are obeyed. 

That is to say, the program apparently behaves well, but the answers are wrong. 

The most common causes of arithmetic errors were due to scaling errors, 

undetected overflow, and faulty numerical methods. 

 

These two types of errors benefit from different debugging approaches. 

 

4.1  Peeping 

 

In Sections 2 and 3, we single-stepped through a couple of small programs, which 

demonstrated most of the salient features of peeping. However, real programs with 

subroutines soon show the limitations of the technique.  

 

First, it is quite difficult to navigate around the monitor tube - which is why it makes 

sense to locate the origin of the master routine of a program on a tube boundary. 

Second, interpreting addresses and instructions rapidly and accurately in the Sequence 

Control Tank and the Order Tank takes a lot of practice; likewise, recognizing binary 

numbers takes experience. Third, when the program goes into a subroutine, it gets 

very tedious manually stepping through a hundred or more instructions until you can 

get back to the main program - one way round this is to plant additional stop orders in 

the program, so that subroutines can run at full speed. Finally, when you have located 

the error, the program text has to be corrected before it can be re-tested. On some 

early computers, it was possible to use hand-switches to “patch” in corrections, but 

this was deliberately made impossible on the EDSAC because it took up so much 

machine time. The general philosophy at Cambridge was to use post-mortem and 

checking routines so that debugging could be done away from the computer, leaving it 
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free for more productive work. This was further encouraged in 1950 when a computer 

operator was employed to run users’ programs (Fig. 13). Program tapes were placed 

on a “job queue” with instructions as to what action should be taken in the event of a 

program failure. 

 

4.2  Post-mortems 

 

A post-mortem - more commonly known in the United States as a terminal dump - 

was the process of printing out a region of the memory after the execution of a 

program had been terminated. On the EDSAC a post-mortem routine was loaded by 

the initial orders in the usual way. (So unless you are pressed for memory space, you 

should avoid using locations 0-55 for data storage other than for temporary variables.) 

The post-mortem routines themselves were automatically loaded as high up in the 

memory as possible, where they were least likely to overwrite the information to be 

dumped. 

 

When programs were run on the EDSAC by an operator, the programmer would leave 

instructions as to which post-mortem tape to be used in the event of an abnormal 

program termination, and the address where the post-mortem was to start - which was 

dialled in by the operator. 

 

There were six post-mortem routines in the original EDSAC program library, with the 

following specifications: 

 

PM0 Starting at location n, print the order-code letter contained in the top five 

binary digits of each location; continue until stopped by the operator. 

 

  

Fig. 13  EDSAC Operator 
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PM1-4 Starting at location n, print the contents of each location as a decimal 

number in the following form: 

  PM1: short fractions 

  PM2: long fractions 

  PM3: short integers 

  PM4: long integers 

 Continue until stopped by the operator. 

 

PM5 Starting at location n, interpret each word of store as an order and print 

the appropriate order; continue until stopped by the operator. 

 

All the post-mortem routines except PM0 have been written afresh for the Edsac 

simulator; unfortunately all the original tapes have long since vanished and there are 

no extant listings. They are slightly more user-friendly than the original routines, but 

otherwise conform closely to the original specifications. These are the only items in 

the Edsac library that are not original artefacts. (Incidentally, the PM0 routine, which 

is an original artefact, is a very clever piece of coding that shows what was possible 

with the initial orders. It occupies exactly four words of memory.) 

 

To use PM5 (say) proceed as follows. First, run Recprocals so there is a user program 

in the store. Next, click the “Postmortem Routines” tab in the toolbar, and select 

PM5. Confirm that the simulator title bar reads  “Output from: PM5”. Press Start - 

without pressing Clear, otherwise you will lose everything. When the program stops, 

dial the 3-digit location where you want the post-mortem to start (eg. 113). The store 

will now be printed out from word 113 onwards. Press Stop when you have enough 

output. If you wish, the output can be saved and printed for study away from the 

machine. 

 
  113  S  135 F 

  114  T  140 F 

  115  A  136 F 

  116  T      D 

  117  A  141 F 

  118  T    4 D 

  119  A  119 F 

  120  G   56 F 

  121  O  137 F 

  122  O  138 F 

  123  O  139 F 

  124  A  124 F 

  125  G   92 F 

  126  P   10 F 

  127  A  141 F 

  128  A  136 F 

  129  T  141 F 

       . 

       . 

       etc. 

 

Fig. 14 Post-mortem using PM5 
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Fig. 14 shows part of the P5 post-mortem printout of Reciprocals. Notice how all the 

addresses are in absolute form - this quite often makes errors in code-letter usage 

immediately obvious. Note also that zero words are not printed, and that order codes 

which correspond to a “stunt” character (shift, line feed, return, etc.) temporarily 

upset the alignment of the printout. You will find that PM5 is by far the most helpful 

debugging aid you are likely to use. This was not the case on the original EDSAC 

because printing on a 62/3 character per second teleprinter meant it took several 

minutes to print a substantial region of store; PM0 was much faster, though not so 

useful.  

 

Exercise 

 
1 Try using PM0. The version of PM0 provided prints the function letter of each 

instruction from location 56 upward. It is easy to modify the program for another 
starting point (see the program text). Modify the program to print from 113 
upward - and compare the output (STATATAGO...) with Fig. 14. 

 

4.3  Checking Routines 

 

The EDSAC pioneered the technique of interpretive trace routines - although the term 

“trace” was not then in use, and they were called “checking” routines. Checking 

routines were invented by Stanley Gill - the third author of Wilkes, Wheeler and Gill; 

he was then a research student and was later Professor of Computing Science at 

Imperial College, University of London, and one-time president of the British 

Computer Society.  

 

The idea of a trace routine is that, instead of obeying the orders of a program directly 

by the control circuits of the computer, they are obeyed by an interpretive program or 

simulator. It is then possible to print out diagnostic information - ie. a trace - while 

the program is being executed. There were several checking subroutines in the 

EDSAC library, although just the two provided with the simulator will suit most 

purposes. These are subroutines C7 and C10. C7 is useful for checking control errors, 

while C10 is most useful for checking numerical errors. Using checking routines 

needs a little planning and forethought, but they are very powerful, and once the 

technique has been mastered it can be more effective than peeping. 

 

C7: Sequence Checking 

 

C7 prints out the order-code letter of each instruction as it is obeyed. This enables the 

flow of the program to be checked against the program manuscript: where control 

departs from the expected sequence, then that is where the error lies. A particularly 

attractive feature of C7 is that it only interprets code from sections of the memory 

designated by the programmer. This enables the tracing of subroutines - which can be 

assumed to be correct - to be suppressed, so that the amount of print-out produced is 

minimized.  

 

To use C7 on an existing program, we simply replace the final control combination 

(typically E Z P F) with C7 preceded by its control combinations. The control 

combinations are a bit messy, but the scheme shown in Fig. 15a works for simple 

cases. 
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       As in Fig 12c

       .
       .
       .
       space P Z

   Master

       space P Z

       G K T 45 K P F

       P 113 F

       PN ∆θPN

     C7

(a)  Make-up of program tape

RECIPROCALS

STATATAG

OO
OMAG
4999999999
AATAAG
TATATAG

OO
OMAG
3333333333
AATAAG
TATATAG

OO
OMAG
2499999999
AATAAG
TATATAG
.
.
etc.

                      (b)  Printout

Fig. 15  Use of checking subroutine C7

       As in Fig 12c

       .
       .
       .
       space P Z

   Master

       space P Z

       GKT45KP37 θP10F

       P 113 F

       PN ∆θPN

     C10

       E 113 K P F

         (a)  Make-up of program tape

RECIPROCALS

+7541198730-0001373291+0625000000
+1250000000

.
4999999999+1875000000
-0001220703+0625000000+1875000000

.
3333333333+2500000000
-0001068115+0625000000+2500000000

.
2499999999+3125000000
-0000915527+0625000000+3125000000

.
2000000000+3750000000
-0000762939+0625000000+3750000000
.
.
.
etc.

(b)  Printout

Fig. 16  Use of Checking Subroutine C10



- 36 - 

 There is a copy of Reciprocals with C7 appended in the Reciprocals Folder (in the 

file Reciprocals+C7). Fig. 15b shows the print out produced by Reciprocals+C7. The 

full specification for C7 is given in the Program Documentation. 

 

Note how effectively this trace enables you to navigate around the master routine and 

to follow its control logic. Note that the subroutine prints a new line after a branch 

order, and that a clear line is left whenever instructions are obeyed “silently” (unless 

the silent instructions themselves cause printing to occur).  

 

C10: Numerical Checking 

 

The C10 subroutine helps to trace numerical errors by printing the contents of the 

accumulator (as a long fraction) every time the user program executes a T-order. Thus 

the printout will contain all the intermediate results computed in the program.  

 

The C10 subroutine, like C7, is appended to the end of the program, replacing the 

final control combination (usually E Z P F). Again, the control combinations are 

rather messy. Fig. 16 shows the make-up of the program tape and printout produced 

by Reciprocals+C10. Note that the first word is always junk, and that the next three 

numbers printed represent the integer  -9 (which looks strange when printed as a long 

fraction.), 1 x 2-4, and 2 x 2-4 respectively. A new line is printed after every branch 

statement, and a line feed is output whenever a subroutine is obeyed silently. 

 

Frankly, the C10 subroutine is quite painful to use, and it was used very much as a 

last resort when a numerical calculation would not give exactly the right results. 

Numerical errors on the EDSAC could be extraordinarily stubborn. Probably you will 

never have occasion to use this subroutine in anger, but it is there should you need it, 

and full documentation is given in the Program Documentation pdf file. 
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5  PROBLEMS FROM THE SUMMER SCHOOL AND ELSEWHERE 

 

If you understood all or most of the material in the Tutorial Guide, you might now 

like to try developing an EDSAC program yourself. 

 

Beginning in 1950, the Mathematical Laboratory at Cambridge organized Summer 

Schools in programming for people inside the University and for other universities 

and industry. The course was of a fortnight’s duration and during that period students 

were expected to write and get running some simple programs on the EDSAC. 

Programs 1 to 5 below were all Summer School problems. They were all small, 

though not trivial, problems; for example they generally need to make use of the 

subroutine library, and sometimes scaling is required. The remaining problems are 

more challenging. 

1 Print the value of the function 
n

n+1
   for n = 1, 2, ... 10. 

 

2 Read a sequence of 20 long fractions from the input tape and print the sum of their 

squares. (Note: Use subroutine R1.) 

 

3 Print the inverse factorials 
1

n!
  , and their sum, of the numbers n = 2, 3, ... 10. 

 

4 Print the sum of 
1

n
  and the sum of 

1

n2   for n = 1, 2, ... 100. (Note. The results will 

need to be scaled.) 

 

5 A traffic census is to be taken using a tape punched as follows. Whenever a 

bicycle passes a B is punched, and whenever a motor vehicle passes a V is 

punched. Every minute an M is punched, except at every tenth minute when a T is 

punched. At the end of the tape an E is punched. Rows of blank tape, and erase, 

carriage return and line feed symbols may appear anywhere. Prepare a program to 

process this tape as follows: 

 

(a) Check that, apart from rows of blank tape and erase, carriage return and line 

feed symbols, only the symbols B, V, M, T and E appear on the tape; 

 

(b) Check that exactly nine M’s intervene between consecutive T’s; 

 

(c) Print the greatest number of bicycles that pass within any consecutive 15 

minutes, and the greatest number of motor vehicles that pass within any 15 

consecutive minutes. 

[Author: D. J. Wheeler, c.1950] 

 

Note  The above problems are roughly in ascending order of difficulty It is possible to 

solve all of them using only the subroutines D6, P1, P6, R1, and S2, whose 

specifications are given in Table 3 of the Appendix. 

 

Here are some more substantial problems, not from the Summer School. 

 

6 Library Square-Root Subroutine  Write a subroutine S99 for the EDSAC library 
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which calculates the square root, x, of the argument, a, stored in 0D. Use the 

Newton-Raphson iterative formula: 

 

  xn+1 = 
1

2
 








xn + 
a

xn
  

 

 Incorporate the subroutine in a driver program which tests it for a variety of 

arguments. Note that to keep subroutines in the EDSAC library short, arguments 

were not normally validated - bad arguments simply produced bad results. 

 

7 Programmed Multiplication Test  Write a program which will test if the Edsac 

multiplier is functioning correctly (assuming all other machine functions are OK). 

On the original EDSAC this test was used to ensure the hardware was serviceable, 

but on the simulator it would verify the correct implementation of the multiplier. 

 

8 Big Letters  Write a program that prints the contents of a paper  tape in big letters: 
 

BBBB   I   GGGG       L      EEEEE  TTTTT TTTTT EEEEE  RRRR    SSS 

B   B  I  G           L      E        T     T   E      R   R  S 

BBBB   I  G   GG      L      EEE      T     T   EEE    RRRR    SSS 

B   B  I  G    G      L      E        T     T   E      R  R       S 

BBBB   I   GGGG       LLLLL  EEEEE    T     T   EEEEE  R   R   SSS 

 

9 Pretty Printing  A program (now lost) was developed in 1953 that would take an 

EDSAC tape, and list it in formatted form, one instruction per line. Since the 

Greek letters phi, theta, delta and pi could not be printed, they were substituted 

with /, $, +, and . (period).  

 
10 Highland Dancer  A demonstration program, now lost, displayed an animation of 

a highland dancer on the main-memory monitor tube. Write a program to produce 
an entertaining animation. 

 
11 Sieve of Eratosthenes   The sieve of Eratosthenes is used to determine the prime 

numbers between 2 and n as follows: 
 

Write down the numbers 2 to n; starting at 4 (ie. 2 squared) cross out all the multiples of 2; 

from 9 ( ie. 3 squared) cross out all the multiples of 3; ignore 4 because it has already been 

crossed out; from 52 cross out all the multiples of 5; and so on. At the finish only the primes 

remain.  

 

In about 1950 Wheeler used this idea to calculate primes on the EDSAC at high 
speed by avoiding the operation of division:  

 
[On the monitor tube] it was possible to show 16 35-bit words at a time, that is 560 bits 

altogether. In Wheeler’s program the ... numbers were represented in order by binary digits. 

To begin with all these digits were present. As the sieve operated and numbers were 

eliminated the ones were replaced by zeroes. The speed of the machine was such that it was 

possible to watch this happening on the screen.” (Wilkes, Nature, October 1975, p. 544).  

 
Write a Sieve of Eratosthenes program to determine the primes between 2 and 
about 500. 

 



- 39 - 

12 EDSAC’s First Achievement  The first program run on the EDSAC on 6 May 1949 
printed a table of squares of the integers 0 to 99. Unfortunately, the original 
program is lost, although several copies of the printout have survived (Fig. 17) 
Recreate the program, using Initial Orders 1. 

 
If you are in London with time on your hands, you might like to visit the Science 
Museum, where this historic printout is on permanent display. 
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Appendix of Tables

Table 1  The EDSAC Instruction Set (1949)

A n Add the number in storage location n into the accumulator

S n Subtract the number in storage location n from the accumulator

H n Copy the number in storage location n into the multiplier register

V n Multiply the number in storage location n by the number in the multiplier
register and add the product into the accumulator

N n Multiply the number in storage location n by the number in the multiplier
register and subtract the product from the accumulator

T n Transfer the contents of the accumulator to storage location n and clear the
accumulator

U n Transfer the contents of the accumulator to storage location n and do not
clear the accumulator

C n Collate [logical and]  the number in storage location n with the number in
the multiplier register and add the result into the accumulator

R 2n-2 Shift the number in the accumulator n places to the right

L 2n-2 Shift the number in the accumulator n places to the left

E n If the sign of the accumulator is positive, jump to location n; otherwise
proceed serially

G n If the sign of the accumulator is negative, jump to location n; otherwise
proceed serially

I n Read the next character from paper tape, and store it as the least significant
5 bits of location n

O n Print the character represented by the most significant 5 bits of storage
location n

F n Read the last character output for verification

X No operation

Y Round the number in the accumulator to 34 bits

Z Stop the machine and ring the warning bell
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Table 2  Edsac Character Codes

Perforator Teleprinter Binary Decimal

Letter Figure Letter Figure
shift shift shift shift

P 0 P 0 00000 0
Q 1 Q 1 00001 1
W 2 W 2 00010 2
E 3 E 3 00011 3
R 4 R 4 00100 4
T 5 T 5 00101 5
Y 6 Y 6 00110 6
U 7 U 7 00111 7
I 8 I 8 01000 8
O 9 O 9 01001 9
J J 01010 10
π    Figure Shift 01011 11
S S " 01100 12
Z Z + 01101 13
K K ( 01110 14
Erase1     Letter Shift 01111 15
Blank tape2      (no effect) 10000 16
F F $ 10001 17
θ  Carriage Return 10010 18
D D ; 10011 19
φ         Space 10100 20
H + H £ 10101 21
N  - N , 10110 22
M M . 10111 23
∆      Line Feed 11000 24
L L ) 11001 25
X X / 11010 26
G G # 11011 27
A A - 11100 28
B B ? 11101 29
C C : 11110 30
V V = 11111 31

Notes
1 Erase is represented by an asterisk (“*”) in the simulator. When this character is output, it sets the

teleprinter into letter shift.
2 Blank tape is represented by a period (“.”). This character has no effect on output.
3 The personal computer text environment has only a “newline” character. On the Edsac simulator,

the line-feed character is interpreted as a newline character, and carriage returns are thrown away.
4 The symbols θ, φ, ∆ or π are typed as @, !, & and #, respectively.
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Table 3  Specifications of Basic Library Subroutines

Subroutine Length Description and Notes

Input-output

P1 21 Print positive long fraction in 0D to n decimals.
Program parameter is P n F. See Reciprocals program
for example of use.

P6 32 Print short positive integer in 0F. See Cubes program
for example of use.

P7 35 Print long positive integer in 0D. Must start in an even
location.

P14 46 Print signed decimal fraction in preset layout. See
specification in the Program Documentation pdf file,
and example of use in TPK program.

R1 55 Input a sequence of signed, long decimal fractions. See
documentation in the Edsac Texts folder, and example
of use in TPK program.

R3 41 Input a signed long-decimal fraction. Reads a fraction
punched in decimal form followed by sign into 0D.

R4 22 Input a signed integer. Reads an integer punched in
decimal form followed by sign. Short integers placed in
0F; long integers placed in OD.

Mathematical

D6 36 Division. Divides 0D by 4D; result in 0D.

E2 19 Exponential. See specification in Program Document-
ation pdf file.

S2 22 Square root. Forms square root of 4D; result in 4D.

S3 25 Cube root. Forms cube root of 6D; result in 0D.

T1 44 Cosine. See specification in Program Documentation
pdf file.

Miscellaneous

M3 - Print a heading. Copies information from the tape to the
teleprinter. Occupies 10 locations (temporarily). See
Reciprocals program for example of use.

M20 - Read in a three-digit decimal number from the dial. See
specification in Program Documentation pdf file.

Continued ....
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Table 3  continued

Checking

C7 61 Checking routine - trace of function code letters.

C10 88 Checking routine - trace of accumulator contents.

Post-mortem routines

PM0 Starting at location n, print the order-code letter
contained in the top five binary digits of each location;
continue until stopped by the operator. Occupies
locations 41-44.

PM1-PM4 Starting at location n, print the contents of each
location as a decimal number in the following form:

  PM1:   short fractions
  PM2:   long fractions
  PM3:   short integers
  PM4:   long integer

Continue until stopped by the operator. All routines
occupy locations 955-1023.

PM5 Starting at location n, interpret each word of store as an
order and print the appropriate order; continue until
stopped by the operator. Occupies locations 940-1023.

Table 4  Some Useful Constants

-0.1 L 1229 F +1/3 H 682 D 1/2 x 10-4 F 1464 D
C 819 F T 682 D P 1 D

+0.2 S 1638 D +1/7 θ 585 F 1/2 x 10-6 W 199 F
E 409 D W 585 F P F

-0.3 S 1638 D 1/9 K 455 F 1/2 x 10-10 P D
G 409 D C 455 F P F

+0.4 L 1229 F -1/11 ? 1303 D +10-2 x 26 W1147 F
Y 819 F C 1117 F J 419 D

-0.6 L 1229 F - π/4 O 699 D +10-3 x 29 G 1327 F
N 819 F D 888 F I 393 F

+0.7 S 1638 D - π/6 G 1149 F +10-4 x 213 T 1714 F
π 409 D M1274 D Z 219 D

-0.8 S 1638 D -2/π V 291 D +102 x 2-7 S 1024 F
D 409 D H 1667 F

+103 x 2-10 K 3328 F
+0.9 L 1229 F +e/4 H 177 D

K 819 F J 1788 F +104 x 2-14 O 1568 F
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