
The EDSAC Replica Project

Tutorial Guide to the EDSAC Simulator

for

Windows, Macintosh, and Linux

January 2016

- 2 -

© The EDSAC Replica Project, The National Museum of Computing,

Bletchley Park, Milton Keynes MK3 6EB, United Kingdom

The Cover

The cover shows an interactive

computer game of Noughts and

Crosses (Tic-Tac-Toe) developed

by a PhD student, Sandy Douglas,

about 1952.

To play the game, open OXO from

the folder of Demonstration

Programs and press the Start

button. Enter your moves using the

telephone dial.

- 3 -

A Tutorial Guide to the EDSAC Simulator

for

Windows, Macintosh, and Linux

Abstract

The EDSAC was the world’s first stored-program computer to operate a regular

computing service. Designed and built at Cambridge University, the EDSAC

performed its first fully automatic calculation on 6 May 1949. The simulator is a

faithful emulation of the EDSAC designed to run on a personal computer. The user

interface has all the controls and displays of the original machine, and the system

includes a library of original programs, subroutines, debugging software, and program

documentation. The Tutorial Guide includes a description of the EDSAC and an

account of the programming techniques developed for it during 1949-51. Several

demonstration programs and programming problems are supplied, so that users can

gain first-hand experience of what it was like to develop and run a program on a first-

generation computer.

Contents

 Before You Begin: What the Papers Said 4

1 Getting Started 5

2 EDSAC Architecture and Arithmetic 13

3 Programming the EDSAC 19

4 Debugging: Getting Programs Right 31

5 Problems from the Summer School and Elsewhere 37

 Bibliography 40

 Appendix of Tables 41

- 4 -

Before You Begin: What the Papers Said

In the late 1940s the EDSAC - and “electronic brains” in general - captured the public

imagination and were widely reported in the press. Before you begin using the

simulator you might like to read the newspaper headlines and extracts below; while

not always accurate or temperate, they do capture the excitement of the period.

A Don Builds a Memory

Short, dapper Dr. M.V. Wilkes, director of the Cambridge mathematical laboratory

and ex-wartime radar backroom boy, is in charge of the calculator ... He told me

yesterday: “The brain will carry out mathematical research. It may make sensational

discoveries in engineering, astronomy, and atomic physics. It may even solve

economic and philosophic problems too complicated for the human mind. There are

millions of vital questions we wish to put to it.”

- Daily Mail, October 1947

New Brain Stores Orders

The world’s most advanced electronic calculator, one of the so-called mechanical

minds, was recently completed at Cambridge University mathematical laboratory.

Yesterday the joint designers, Mr. M.V. Wilkes and Mr. W. Renwick, gave me a

preview of “Edsac” (electronic delay storage automatic calculator). It has a 3,500-

valve “brain” weighing about a ton. ... A team of 10 have been assembling “Edsac’s”

120 racks of valves, covering a floor area of about 500 square feet, since early in

1946.

- Daily Telegraph, June 1949

Mechanical Brain

On the top floor of a rather drab building in a narrow Cambridge back street is an

apparatus which seems to consist chiefly of a vast number of valves set in grey

painted racks. ... this weird array of wires and valves is a “mechanical brain.” It has

just been completed and it is the most advanced in the world. It is probably the major

scientific marvel of 1949 and although until now we have lagged behind America in

mechanical brains this one puts us streets ahead ...

 This is how it works. First Mr Wilkes fed a strip of paper punched with holes

into a “ticker-tape” machine. As the paper ticked through ... miniature television

screens showed a row of green blobs ... then almost instantaneously a teleprinter

nearby began to print rows of figures. That was all. There were no dramatic sparks, no

dramatic flashes ...

 There are not enough “brains” to go around at the moment, but a dozen would

probably be sufficient for the whole country ... The future? The “brain” may one day

come down to our level and help with our income-tax and book-keeping calculations.

But this is speculation and there is no sign of it so far.

- The Star, June 1949

- 5 -

1 GETTING STARTED

The purpose of the EDSAC simulator is to provide an understanding of what

programming was like on a first-generation computer. The material in this guide is

accessible at several levels. This section, Getting Started, gives a broad overview of

the technology of the EDSAC, and enables the first demonstration programs that were

designed to put the machine through its paces to be run; this material should be

accessible to any computer literate person. Section 2, Architecture and Arithmetic,

describes the EDSAC’s architecture, the instruction set, data storage, and arithmetic;

this material should be accessible to anyone who is familiar with twos-complement

arithmetic and basic computer structure. Sections 3 and 4, which cover programming

and debugging, should be accessible to anyone familiar with programming. Finally, in

Section 5 a number of programming problems are given, which range from

elementary to quite difficult.

This Tutorial Guide assumes that you are familiar with your personal computer user

interface and text-editing conventions, but assumes no familiarity with the EDSAC

itself. So that you can explore the EDSAC without recourse to other materials, this

guide is designed as a self-contained document; however, you should note that this

still leaves quite a lot more you can learn about the EDSAC. Details of the literature

on the EDSAC are given in the Bibliography.

You will find the Tutorial Guide is of most value if you work through it

systematically, run each demonstration program as it is encountered, and attempt at

least some of the exercises. This is advisable, not least, because the EDSAC simulator

is an accurate representation of a very primitive computer system - there are,

deliberately, almost no facilities provided for trouble-shooting, other than those which

were originally provided on the EDSAC.

1.1 Display and Controls

The EDSAC simulator runs in a simple Interactive Development Environment (IDE)

in which you can either edit program texts or run programs (Fig. 1). However, before

examining the simulator in detail it will be useful to see what the original EDSAC

environment looked like (Fig. 2). 1

Fig. 2a shows a general view of the EDSAC taken shortly after its completion in May
1949. Like all stored-program computers, the EDSAC had a processor, a memory, and
input-output devices. The processor occupied most of the bulk of the EDSAC - some
3500 electronic tubes in all. The memory cannot be seen in the general view, but Fig.
2b shows a battery of the mercury delay lines from which it was constructed,
photographed shortly before the machine was put together. Input-output was achieved
on the EDSAC by means of a 5-track paper-tape reader operating at 50 characters per
second, and a Creed teleprinter operating at 62/3 characters per second. This equipment
can be seen on the wooden table at the right of the general view.

A little more about the memory. The main memory was designed to have a total of 32

delay-lines (or “tanks”), each of which stored 32 words of 18 bits. Hence the total

1 In this manual “Edsac” applies specifically to the simulator; “EDSAC” is used to refer to the original

computer.

- 6 -

memory capacity of the EDSAC was the equivalent of about 2 kilobytes. The same

technology of mercury delay lines was also used for the processor registers - although

the delay lines were much shorter as they stored only a few bits of information. The

two types of delay line were therefore known as long and short tanks. A useful feature

of this early serial memory technology was that it was possible to display the contents

of the store on Cathode Ray Tube (CRT) monitors. Three of the EDSAC’s monitor

tubes can be seen in the general view at the back of the photograph, and towards the

right; a much better photograph is shown in Fig. 2c. The left monitor tube in this

photograph shows the contents of the counter (a kind of internal clock). The right

monitor shows the Sequence Control Tank (which contains the address of the current

instruction). The centre monitor shows the 32 words in a long tank - just one of the

main memory tanks could be displayed at any time, as determined by a rotary switch.

Three further monitor tubes, which are not shown here, displayed the other processor

registers - the Order Tank (which held the current instruction), the Accumulator, and

two multiplication registers. The monitor tubes were a very important way of

observing the progress of a program and debugging it - although this was time

consuming, so that software debugging aids were soon invented (of which more in

Section 4).

The EDSAC was controlled by five push buttons: Start, Stop, Clear, Reset, and Single

E.P., whose purpose is self-evident except for the last. The Single E.P. button caused

a single instruction to be obeyed, which enabled a program to be executed one

instruction at a time.

The EDSAC was a research machine rather than a production model, so it tended to

be enhanced from time to time. For example, initially only 512 words of memory

were provided; this gradually built up to 1024 words as all 32 long tanks were got

working. The Clear button was another early addition - at first, the memory had to be

cleared by earthing the electrical terminals with a wet finger! Another improvement

was the addition of a rotary dial which enabled a single decimal digit to be input by

the machine operator. The version of EDSAC provided by the simulator corresponds

to the machine which existed during 1949-1951, and it is compatible with all the

software developed during that period.

Now we can get back to the Edsac simulator, shown as the main window in Fig. 1.

The top-left of the simulator display represents the main-memory monitor tube. In this

display, a binary “one” is represented by a bright spot and a “zero” by a single pixel -

the appearance of this display conforms quite closely to that of the original machine.

The panel at the bottom left of the display shows in a slightly stylized form the five

registers, or short tanks, that were useful to programmers: the Sequence Control Tank,

the Order Tank, the Multiplier and Multiplicand registers, and the Accumulator. In the

register panel a control labelled Long Tank is used to select the memory tank

displayed on the monitor tube.

At the bottom right is the telephone dial input. Immediately above this is a clock

which shows the time in minutes and seconds that Edsac has been running - not

necessarily in real time, but the time that the original EDSAC would have taken to do

the identical computation. The clock can be used to time programs; and the speed that

the hands sweep around the face gives a good feel for the degree to which time has

been speeded up or slowed down by the simulator.

Fig 1. The Edsac Simulator

(a) Toolbar, above
(b) Program text, below
(c) Simulator display,

right

(a) A photograph of the EDSAC taken shortly after its completion in May 1949. The left three-quarters
of the picture shows the main racks of the arithmetic unit, control and memory. The input-output
equipment (a paper-tape reader and teleprinter) can be seen on the table towards the right. Three of
the monitor tubes can be seen to the rear and right of the picture. The EDSAC operated at a speed
of approximately 600 operations per second.

(b) Mercury delay lines or “long tanks” for the
main memory, with M.V. Wilkes looking
on. The battery of 16 tanks shown here had
a capacity of 512 words - the equivalent of
a little over 1 Kilobyte.

(c) EDSAC monitor tubes showing: left, the Counter; centre,
the 32 words in a long tank; right, the Sequence Control
Register.

Fig. 2 The EDSAC environment

- 9 -

On a personal computer the simulator will normally run significantly faster than the

original EDSAC. To run the simulator at the original speed, the Real Time option on

the Edsac menu or toolbar should be checked. If this item is left unchecked, the

simulator will run as fast as the hardware permits. Generating the bit-by-bit display

produces a massive computational overhead, so Edsac can be made to run faster by

turning off the register displays by unchecking the Short Tanks checkbox on the

toolbar. (Note that the Long Tank display is updated relatively infrequently compared

with the registers, so that it will not normally significantly affect the performance of

the simulator.)

The teleprinter output produced during the running of a program is shown in the text

window at the top right of the display. Although only the last few lines printed are

visible in the window, when the simulator is not running the scroll bar can be used to

examine the full output produced. The FEED button on the toolbar can be used to

advance paper manually, a line at a time.

Finally, in the very centre of the display are the five main control buttons of the

EDSAC: Start, Stop, Clear, Reset, and Single E.P.

1.2 The June 1949 Programs

In June 1949, the EDSAC was demonstrated in public for the first time to the

delegates of a conference on High-Speed Automatic Calculating Machines organized

by the Cambridge University Mathematical Laboratory. For the purpose of this

demonstration two programs were run: one printed a table of squares and first

differences, and the other printed a table of prime numbers. We will run the Squares

program now, and you can explore the Primes program later. It should be emphasized

that these programs - like most of the routines supplied with the Edsac simulator -

have not been rewritten, but are historical artifacts. They have been sitting in the

original conference proceedings since 1949, only awaiting a simulator to bring them

back to life.

The Squares and Primes programs used a loading program known as Initial Orders 1 -

this was a short routine that read the user’s program from paper tape and placed it in

the main memory. To select these initial orders, chose “Initial Orders 1” from the

Edsac menu, or directly from the toolbar. Next, ensure that RealTime is checked on

the Edsac menu. Open the Squares program, either by selecting Open... from the File

menu, or directly from the toolbar. You will find the Squares program in the

Demonstration Programs folder in the Edsac Tapes folder. Note that when the

program has been selected, its name is displayed in the title bar of the output window

of the simulator confirming your choice.

Press Clear. Ensure Long Tank number 0 is selected. Press the Start button. You will

now see the Initial Orders occupying words 0-31. The display will come to life as the

instructions of the Squares program are read in.

Now, use the Long Tank control to display memory tank number 1. You will see the

instructions of the Squares program being loaded one-by-one into locations 32

upwards. When tank 1 is full, look at tank 2 filling, and so on. Also, have a look at

tank 1 again, and observe the data words in the main memory being changed.

- 10 -

Eventually, the Squares program will have been completely loaded and will start

printing out a table of squares and come to a stop (or you can press the Stop button

when you have seen enough).

We will now examine the Squares program. Bring the program text window to the

front by clicking on the window, or selecting it from the Window menu. It should

look the same as Fig. 3b. You can have as many text windows open as you like, each

one of which will correspond to a program “tape”. Of course only one tape can be

mounted on the Edsac tape-reader at any time, as indicated by the program name in

the title bar of the Edsac output window; this will normally be the front-most text

window - if you want to change tapes you can do this by bringing the appropriate

window to the front.

Fig. 3a shows the manuscript for the Squares program, which includes comments and

layout characters. (You will find manuscripts corresponding to most of the

demonstration programs and library subroutines in the Program Documentation - see

below.) On the program tape comments were omitted, and no layout characters

whatever were used. This meant that tapes were physically very short; for example,

the Squares program would have been only about a metre long, with a few inches of

leader tape at either end. On the simulator, new lines and spaces are ignored and can

be used freely to layout programs - this is advisable even though it is not quite

authentic. In addition comments, which are completely ignored by the simulator, can

be inserted in square brackets. Comments are highlighted in red.

1.3 The Simulator Environment

The simulator environment includes an integral text editor so that you can create,

amend, and print program files. You can edit programs using the usual cut-and-paste

conventions and there is also a search facility.

You can print the teleprinter output by choosing “Print Edsac Output” from the Edsac

menu, or you can save it permanently by selecting “Save Edsac Output As...”. (There

is also a “Literal Output” choice on the File menu. This produces Edsac output as if it

had been punched onto paper tape rather than printed on the teleprinter. This is useful

if you want the output from one program to become the input of another.)

There are additional controls for the simulator on the Edsac menu and toolbar. You

can clear the output window with the Discard Edsac Output command, zeroize the

clock, and select the Initial Orders you wish to use. You can turn the sound on or off

according to taste. If you wish to set any of these options by default, choose the

Edsac|Options menu item. Finally, the Hints option enables you to display the

contents of a store word or a register as a symbolic instruction or decimal number by

pointing at it on the simulator display. (Obviously there was no such feature on the

original EDSAC, but this facility will put you on a par with contemporary

programmers who developed over time the skill of reading binary numbers straight

from the monitors.)

The Library menu and the tabbed control at the right of the toolbar give access to the

subroutine library – this will be covered in full in sections 4 and 5

(a) Program manuscript, right (b) Program tape, above top

(c) Printout, above middle (d) Flow-diagram, above

PRINT SQUARES

 31 T 123 S As required by
 initial input
enter 32 E 84 S Jump to 84

 33 5P S Used to keep count

 of subtractions
 34 5P S Power of 10 being
 subtracted
 35 5P10000 S
 36 5P 1000 S For use in the decimal
 37 5P 100 S binary conversion
 38 5P 10 S
 39 5P 1 S
 40 5Q S
 41 5 S Figures
 42 5A 40 S
 43 5 S Space
 44 5 S Line feed
 45 5 S Carriage return
 46 5O 43 S
 47 5O 33 S
 48 5P S Becomes number to be
 printed
 94 49 A 46 S Put O 43 S in 65S
 50 T 65 S
 72 51 T 129 S Clear 129S
 52 (A 35 S) Put power of 10
 53 T 34 S in 34S
 54 E 61 S Jump to 61

 63 55 T 48 S
 56 A 47 S
 57 T 65 S
 58 A 33 S To control printing
 59 A 40 S
 60 T 33 S
 54 61 A 48 S
 62 S 34 S
 63 E 55 S
 64 A 34 S
 65 P S
 66 T 48 S
 67 T 33 S Print contents
 68 A 52 S of 48S
 69 A 4 S
 70 U 52 S
 71 S 42 S
 72 G 51 S
 73 A 117 S
 74 T 52 S
 75 (P S) End print [link]

 76 5P S Becomes x
 77 5P S Becomes x2
 78 5P S Becomes x2
 79 5P S Becomes x2
 80 5E 110 S
 81 5E 118 S
 82 5P 100 S
 83 5E 95 S

 32 84 O 41 S Set on print figures
 120 85 T 129 S Clear 129S
 86 O 44 S
 87 O 45 S
 88 A 76 S
 89 A 4 S x+1 to 76S and 48S
 90 U 76 S
 91 T 48 S
 92 A 83 S Set switch Z
 93 T 75 S
 94 E 49 S

1: 75 95 O 43 S Double space
 96 O 43 S
 97 H 76 S
 98 V 76 S
 99 L 64 S x2.215 to 77S
 100 L 32 S
 101 U 77 S
 102 S 78 S x

2 to 79S

 103 T 79 S
 104 A 77 S
 105 U 78 S x2 to 48S and print
 106 T 48 S
 107 A 80 S
 108 T 5 S
 109 E 49 S

 2: 75 110 O 43 S Double space
 111 O 43 S
 112 A 79 S
 113 T 48 S
 114 A 81 S x2 to 48S and print
 115 T 75 S
 116 E 49 S

 117 5A 35 S
 3: 75 118 A 76 S
 119 S 82 S
 120 G 85 S Test for finish:
 121 O 41 S
 122 Z S

- 12 -

Documentation for the Edsac simulator is supplied as two pdf files: the Tutorial

Guide (EdsacTG.pdf) and Program Documentation (EdsacDoc.pdf). The pdf files can

be accessed directly, from the Help menu, or from the toolbar.

The Tutorial Guide is designed as a doubled-sided printed document that opens flat,

for study at or away from your computer. If you prefer, you can access the guide on-

line - hyperlinks in green text have been added for easy navigation. Pages in the

Tutorial Guide use a mixture of paper sizes and orientations, so don’t forget to select

the “Shrink oversized pages” print option. The pages in the Program Documentation

pdf file are, for the most part, exact transcriptions of the original “programme sheets”

now preserved in the Cambridge University archives.

Exercises

1 Edit the Squares program so that it prints out the squares of 1 to 10 instead of 1 to

100. (Hint: Change the constant P 100 S in location 82 to P 10 S.)

2 Load the Primes program. Run the program and note how the output slows down

as successively larger integers are tested for primality.

- 13 -

2 EDSAC ARCHITECTURE AND ARITHMETIC

The demonstration programs used in this section, and in the rest of the Tutorial Guide,

make use of the second form of the initial orders which were introduced in September

1949. These replaced the much less sophisticated Initial Orders 1 which were only in

service for about three months. Choose “Initial Orders 2” from the Edsac menu and

close any text windows that are open.

2.1 Architecture and Instruction Set

One of the nicer features of the EDSAC is that it is conceptually a very simple

machine. The reason for this simplicity is that when Wilkes and his team were

designing the machine, they chose to keep things as simple as possible: this was partly

to minimize the engineering difficulty, but also so that they could start developing

programs for a real computer as soon as possible, instead of just dreaming them up for

an imaginary machine. Besides the EDSAC’s historical importance, its simple design

makes the machine a worthwhile one to study today as a particularly clean example of

what has come to be called the “von Neumann architecture”. (Although, of course,

like all real machines, the EDSAC does have some annoying features that one wishes

were not there.)

The original design of the EDSAC was based on that of the EDVAC, the computer

designed during 1944-45 at the Moore School of Electrical Engineering, University of

Pennsylvania, by a group that included John von Neumann, J. Presper Eckert and

John W. Mauchly. The design of the EDVAC was described in von Neumann’s

classic First Draft of a Report on the EDVAC in June 1945. This is the foundation on

which almost all computers have been based for the last seventy years. The EDSAC

consisted of the classical arrangement of five functional parts: a control unit, an

arithmetic-logic unit (ALU), a memory (or store), input, and output (Fig. 4). The

combined control unit and ALU is now usually known as the processor. In the

EDSAC processor there were five principal registers: the Sequence Control Tank, the

Order Tank, the Multiplicand and Multiplier registers, and the Accumulator. The

Fig. 4 EDSAC architecture

OUTPUT

S T O R E

1024 words of 18 bits

CONTROL A L U

Multiplier

Multiplicand
Order Tank

INPUT

 Acc

Sequence Control

- 14 -

Sequence Control Tank contains the address of the current instruction and the Order

Tank stores the current instruction.

The EDSAC used a single-address instruction format, shown in Fig. 5. Although the

EDSAC was based on an 18-bit word, only 17 bits were used, the leading bit being

unusable for reasons connected with circuit set-up time. The opcode (or “function”)

was specified in 5 bits, and the address in 10 bits. A further bit specified the operand

length: most instructions could operate on either a 17-bit short word, or a 35-bit long

word; the length indicator specified which. (If you look carefully at the register panel

on the Edsac display, you will notice some black dots beneath the Order Tank: these

indicate the different fields of the instruction.)

Fig. 5 Instruction format

Table 1 (Appendix, p. 41) shows the EDSAC instruction set as it existed in 1949.

Operations were represented by letters of the alphabet, some of which suggested the

function they denoted (eg. A for Add, S for Subtract, etc). The binary representation

of the opcode was in fact the same as the character code of the corresponding

character - see Table 2; this simplified the translation of the symbolic program

considerably. Average instruction times were 1.5 ms, although multiplication was

longer and took 6 ms; input-output times were determined by the speeds of the

peripheral equipment.

Instructions were always written in a symbolic form such as A 56 F, or S 128 D; these

meant respectively, “Add the short number in location 56 into the accumulator”, and

“Subtract the long number in location 128 from the accumulator”. Note the use of the

length indicators F or D to specify a short or long operand in the instruction. Also,

when an address was zero it was omitted altogether; for example, T F meant “Store

the short number in the accumulator in location 0”.

2.2 Numbers and Arithmetic

In this section we will examine the details of number storage and arithmetic on the

EDSAC. It is not important that you follow everything in the description that follows

- you can always come back later if you need to.

Modern software systems tend to shield the user from the arithmetic instructions of a

computer, and often from the format in which numbers are stored - other than the

basic word length and the type of data (integer, floating-point, etc). However, on the

EDSAC it was necessary to have an understanding of the formats of numbers, and the

instructions which operated on them. An additional complication was that floating

point numbers were not used; instead, real numbers were stored as fractions in the

range -1 < x < 1. (If a real number of modulus greater than unity was needed, then

scaling had to be used - more on this later.)

 5 1 10 1

Opcode Spare Address Length

- 15 -

Fig. 6 shows the four number formats used in the EDSAC: short and long integers,

and short and long fractions. Short numbers were 17-bits in length and long numbers

were 35-bits. (Remember that the basic word length of the EDSAC was 18 bits, but

the first bit was never used.) Within the processor, the multiplication registers each

had a capacity of 35 bits; and the accumulator had a capacity of 71 bits - sufficient to

develop the full product of a pair of long numbers. When using short numbers only

the leftmost half of the registers would be used. (The black dots beneath the

arithmetic register displays indicate the boundaries of short and long numbers and

their signs.)

The Arithmetic program (Fig. 7) does not do anything useful, but it is designed to

illustrate EDSAC number storage and arithmetic. Open... the program from the

Tutorial Guide Examples folder; press Clear and then Start to load the program into

the store. The first instruction of the program (in location 64) is a stop-order, so that

when the program has been loaded, you can turn on the registers display, and then

work through it by single stepping using the Single E.P. button. (If the program failed

to load, check that you selected Initial Orders 2.) Points to note in the program are as

follows.

Integers were normally stored in a 17-bit word, in twos-complement form, with the

leftmost bit for the sign, and the implied binary point at the rightmost end. Thus:

 33 = 00000000000100001

 -17 = 11111111111101111

Although it was possible to have long integers, these will not be used here.

Fig. 6 Number formats

(c) short fraction

(d) long fraction

(b) long integer

(a) short integer

16

16 17

16

16 17
•

•

•

•

= sign = sandwich digit

 • = implied binary point

KEY:

- 16 -

Short fractions were stored in a 17-bit word, in twos-complement form, with the

leftmost bit for the sign, and the implied binary point between the sign bit and the

most significant numerical bit. Thus:

 0.1875 = 3/16 = 00011000000000000

 -0.5 = -1/2 = 11000000000000000

Easy constants like the above were set up in programs by symbolic orders which

caused the appropriate bit pattern to be assembled (there were no constant defining

operations). For example: P 16 D for the integer 33, and E F for the fraction 3/16.

Addition and subtraction work exactly as you would expect, except for overflow.
Overflow in the accumulator is not detected, and the program will just go on running,
working with whatever number the accumulator happens to contain. Multiplication is
more complicated. The multiplier was designed to give the correct product with
fractions. Thus the product of two short 17-bit fractions is a long 35-bit fraction.
Depending on the precision required, either the top 17 bits or the top 35 bits of the
accumulator are stored (using a T n F or a T n D order respectively). When integers
are multiplied, the multiplier behaves in the same way it would with fractions. For
example, since the integer 5 (say) is equivalent to the fraction 5 x 2-16, the product of
5 x 5 would be 25 x 2-32. Hence to obtain the result in the correct place in the
accumulator, it would have to be left-shifted 16 places.

In the memory, long numbers are stored in an adjacent pair of odd-even locations. The
word length is 35 bits, not 34 bits: the extra bit between the two half-words is the so-
called “sandwich digit”, which caused some confusion with EDSAC users, but the
existence of the subroutine library meant that most of the time people did not need to
trouble about it. Long constants are set up by a pair of orders, such as H 682 D,
T 682 D for 1/3. These constants were messy to work out, and useful ones were
published from time to time in the EDSAC Programming Bulletins. A selection of
useful constants is given in Table 4 of the Appendix. When referring to a storage
location, the notation 24D (say) means the long number in locations 25 and 24.
Similarly the notation nF means the short number in location n.

Exercise

1 Reload the Arithmetic program by pressing Clear and then Start. Display long

tank 3 (locations 96-127) and turn on the Hints control. Verify the values of the

constants stored in locations 96 upwards.

2 Single step through the Arithmetic program, observing the contents of the

accumulator as each instruction is obeyed and comparing it with the program

listing in Fig. 7. This will familiarise you with the various number formats used in

the EDSAC.

- 17 -

 T 64 K Set load point
 64 Z F Stop
 65 A 96 F acc = 33
 66 A 97 F acc = acc + 46 = 79 Short integer
 67 S 98 F acc = acc - 96 = -17 arithmetic
 68 T F
 69 H 100 F acc =

3/16 x
7/8 =

21/128 Short fractions
 70 V 101 F
 71 T F
 72 H 104 D acc =

1/3 x
1/3 =

1/9
 73 V 104 D Long fractions
 74 Y F Round acc to 34 binary places
 75 A 106 D acc = acc - 1/9 = 0 to 34 b.p.
 76 T F
 77 H 99 F acc = (5 x 2

-16)2 = 25 x 2-32
 78 V 99 F Integer
 79 L 64 F acc = acc x 2

-16 = 25 x 2-16 multiplication
 80 L 64 F
 82 81 L D Left shift till acc -ve Shift loop
 82 E 81 F
 83 T D
 84 H 104 D Collate 1/3 and -1/9 Collate
 85 C 106 D acc = 0.01000001000001000001...
 86 Z F

 T 96 K Set load point
 96 ║P 16 D = 33
 97 ║P 23 F = 46 Integer constants
 98 ║P 48 F = 96
 99 ║P 2 D = 5
 100 ║E F 0.00112 = 3/16
 101 ║K F 0.11102 = 7/8 Short fractions
 102 ║ F 1.10002 = -1/2
 103 ║I F 0.10002 = 1/2
 104 ║H 682 D 0.0101... =

1/3
 105 ║T 682 D Long fractions
 106 ║K 455 F 1.111000... = -

1/9
 107 ║C 455 F
 E 64 K Enter at location 64
 P F

Fig. 7 Arithmetic program

- 18 -

2.3 Miscellaneous

The EDSAC instruction set in Table 1 (p. 41) is fairly self-evident to anyone with a

reasonable computer understanding, but a few pointers may be in order.

One of the compromises made to keep the EDSAC simple was to have only two

branch instructions, the E- and G-orders. There was no unconditional branch

instruction, so that it was always necessary to know the sign of the accumulator when

taking a branch (or else to use both an E-order and a G-order). The same limitation

meant that it took 8 instructions (!) to determine the equality of two numbers - so this

was avoided if at all possible. In 1952, an unconditional branch order was added to

overcome these problems. (Unfortunately this change also meant that many programs

and library subroutines had to be rewritten - this happened whenever the instruction

set was significantly changed. This is why it was earlier stated that the simulator

models the EDSAC as it existed in 1949-51.)

Another economy in the EDSAC was that it had no hardware divider. Hence division

had to be done by a subroutine (see the Reciprocals program in Section 3.3, for an

example). The logic operations on the EDSAC were particularly sparse. Only logical

AND (the Collate order) was provided. Likewise, there were no instructions for

character handling. This is really a reflection of the fact that machines of the

EDSAC’s era were designed as “mathematical instruments”. It was only in the late

1950s that powerful logic and character-handling instructions became available on

most computers.

The shift instructions probably gave more trouble to users than any others. This was

because, to simplify the engineering, the number of shift positions was given not by

the value of the address field of the instruction but by the position of the rightmost bit

in the instruction word. Thus the instruction L 8 F caused the contents of the

accumulator to be shifted 5 places left, and not 8 places, as you might expect.

Finally, an interesting feature of the EDSAC and many of its contemporaries was that

they had no index registers - not least because the index register was not invented

until 1950, and then the idea took a little time to catch on. To perform arithmetic on

the elements of an array on the EDSAC it was necessary for a program to modify the

addresses in its own instructions, so that in an instruction loop successive elements of

the array would be accessed. The ability of an electronic computer to modify its own

instructions was one of the key features of the stored-program concept, although we

now tend to frown on such “impure” code.

Exercises

1 The instructions R D and L D shift the accumulator one place right and one place

left respectively. The instructions R F and L F cause a right shift of 15 places and

a left shift of 13 places, respectively. Why?

- 19 -

3 PROGRAMMING THE EDSAC

In this section we will examine three programs which will progressively illustrate the

important features of programming for the EDSAC. It is recommended that you

“punch” and run the first two programs so that you get familiar with using the system

before attempting to write the programs in Section 5. Working copies of the programs

are provided in the Demonstration Programs folder in case you get stuck.

3.1 Hello World

This is not exactly an original idea, but as a confidence builder, our first example is a

tiny program to print a message. However, as printing “Hello World” would make the

program rather longer than necessary, the program will just type “HI”. The complete

program is shown in Fig. 8.

Fig. 8a shows the program text. In the program, there are two types of entity: actual

machine instructions, which are numbered 0 to 7; and “control combinations” at the

beginning and end of the program. Control combinations correspond to what we

would now call “assembly directives”: they are pseudo-instructions for the Initial

Orders so that they can load the program and enter it.

This is the place to say a little more about Initial Orders 2. Once the Cambridge group

began programming using the first form of the initial orders in the spring of 1949,

their limitations soon became apparent. The worst feature by far was that addresses in

instructions had to be coded in absolute form: this meant, for example, that if an extra

instruction had to be inserted in a program then the addresses in many of the branch

instructions would need to be altered. This made program debugging very tedious.

Another problem was that the lack of a relocation facility meant it was difficult to

organize a subroutine library effectively.

The task of devising a new set of initial orders was given by Wilkes to David

Wheeler, then a research student and later Professor of Computer Science at

Cambridge. What he produced was the forerunner of the modern assembler. The new

programming system was later described in the classic textbook The Preparation of

Programs for an Electronic Digital Computer (Wilkes, Wheeler and Gill, 1951). This

famous book - usually known as Wilkes, Wheeler and Gill, often abbreviated as

“WWG” - established the programming culture of the early 1950s, which is still to

some extent embodied in the assembly systems and subroutine libraries of today’s

computers. When designing the new initial orders, one of the constraints that Wheeler

had was that, for engineering reasons, the initial orders were limited to being just 42

instructions long. But even so, their power was quite astonishing and at the time they

were justly celebrated as “the leading example of programming virtuosity”. (If you

are interested, you can find copies of the program manuscripts for both Initial Orders

1 and Initial Orders 2 in the Program Documentation.)

In the Tutorial Guide we will by no means exhaust the possibilities of Initial Orders 2,

which are fully described in Wilkes, Wheeler and Gill; we will just use the basic

control combinations below:

- 20 -

T m K Set the load point to m

 G K Set the -parameter to the current load point

 T Z Restore the -parameter

 E m K P F Enter the program at location m

 E Z P F Enter the program at location

 P Z or P K See later

The Hello World program in Fig. 8a uses three of these control combination. The

program begins with T 64 K, which causes instructions to be loaded into location 64

upwards. (This would correspond to something like “ORG 64” in a modern

assembler. It is true that the latter is a more helpful notation than T 64 K, but this

shortcoming was entirely due to the space constraints of the initial orders.) On the

next line, G K sets the -parameter - which is used for relocation - to the current load

point of 64. From this point on, the address in any instruction with the code-letter

will have the value of the -parameter (ie. 64) added to it. This is how relocation is

achieved. Finally, the last control combination E Z P F causes the program to be

entered at location (ie. 64). Note how the program is completely relocatable: just

changing the number 64 in the first line of the program will allow it to be placed

anywhere in the store.

Let’s now turn to the instructions themselves. Notice that the first instruction is a

stop-order; and that the program has been located from word 64 onwards, ie. at the

edge of a memory tank boundary. This was a common practice when developing

programs so that it was possible to check visually in the monitor tube that the program

had loaded correctly before running it; locating the program on a page boundary made

it easy to find (by comparison, word 56, say, was quite difficult to locate on the

monitor, other than by counting up the rows of the display).

Fig. 8b shows the program “tape” exactly as it should be typed - no comments or

extraneous characters other than white space characters. The EDSAC tape punch used

four Greek characters: theta, phi, delta, and pi. These characters are typed as below:

EDSAC Character Type As

Theta @

Phi !

Delta &

Pi #

We will now type the Hello World program. First, select New from the File menu or

the toolbar to create a new text window. Type the program, exactly as in Fig. 8b. If

you wish, you can save the program with a name such as “My_Hello”. You can now

run the program. Turn on the Short Tanks display, and press Clear followed by Start.

After a second or two the simulator will stop - ringing the warning bell as it does so.

Examine Long Tank 2 to verify that the program has loaded correctly. It should look

exactly as in Fig. 8c. Press Reset. The program should print “HI”, and then stop -

again ringing the warning bell.

- 21 -

 T 64 K Load from location 64

 G K Set parameter

Start 0 Z F Stop

 1 O 5 Letter shift

 2 O 6 Print "H"

 3 O 7 Print "I"

 4 Z F Stop

 5 ║* F Letters
 ║
 6 ║H F "H"
 ║
 7 ║I F "I"

 E Z
 Enter at location 0
 P F

T64K

GK

ZF

O5@

O6@

O7@

ZF

*F

HF

IF

EZPF

 (a) Program text (b) Program tape

loc’n order loc’n order

71 I F 70 H F

69 * F 68 Z F

67 O 71 F 66 O 71 F

65 O 69 F 64 Z F

(c) Long Tank 2

 = 00010.0102

 = tank2.word2 = 6610

 = 01001.00001000110.0

 = O 70 F

 (d) Sequence Control Tank and Order Tank

Fig. 8 Hello World program

- 22 -

If your program fails to load correctly, and you get the alert "End of input tape

encountered", check that you have selected Initial Orders 2 on the Edsac menu. If

your program fails to run, it is probably because you mis-typed something. EDSAC

was very unforgiving of typos - particularly Ohs punched as Zeroes, so check very

carefully. If you still can’t get the program to run, there is a working version in the

Demonstration Programs folder.

Press Clear and Start to reload the program. Now, instead of clicking Reset, press

Single E.P. repeatedly to step through the program one instruction at a time. Notice

(Fig. 8d) how the Sequence Control Tank (SCT) steps through 64, 65, 66, ... The last

instruction of the program is in 68. Of course if you carry on pressing Single E.P. the

machine will execute nonsense instructions - but since the EDSAC was designed so

that non-existent opcodes behaved as stop instructions, nothing very exciting usually

happens. Note that only legal stop instructions (using the Z-order) ring the bell.

Exercises

1 Modify the Hello World program so that it is loaded into location 56 upwards, and

verify on the monitor tube. If you try to load the program from 32 upwards,

strange things happen. Why is this?

2 Modify the Hello World program so that it does indeed print “HELLO WORLD”.

3.2 Cubes

The next program is one that calculates and prints the cubes of the integers using the

well known formula of Nichomachus:

 13 = 1

 23 = 3 + 5

 33 = 7 + 9 + 11

 43 = 13 + 15 + 17 + 19

 etc.

The coding to compute the cubes themselves is fairly trivial; the difficulty lies in

actually printing them out. The easy way to do this is to use the library subroutine P6,

which prints a short positive integer (Fig. 9).

The EDSAC subroutine library began to take shape from autumn 1949 onwards.

Subroutines were classified by a letter indicating the group to which they belonged

(eg. D for division, P for printing, etc.) Within a group, subroutines were given a

serial number (eg. P1, P2, P3, etc.), which mainly indicated the chronological order in

which routines had been placed in the library. Eventually the library grew to contain

nearly a hundred subroutines. However, only about two dozen are provided for the

Edsac simulator - they are kept in the Subroutine Library folder, and brief

specifications for the more popular ones are given in Table 3 of the Appendix.

- 23 -

P6 Print short positive integer.

 Closed; 32 storage locations; working positions 1, 4, and 5; time =

 about 900 msecs.

Prints 2-16.C(0) with suppression of nonsignificant zeros but without layout.

 G K
 0 A 3 F Plant link
 1 T 25
 2 H 29
 3 V F Multiply by 216/105
 4 T 4 D
 5 A 3 V F = -1/16 to S(0)
 6 T F
 7 H 30 Set multiplier
 8 S 6 Set digit count
 24 9 T 1 F Digit count
 10 V 4 D Multiply
 11 U 4 D
 12 A F Test for first
 13 G 26 non-zero digit
 14 T F Clear Acc. and S(0)*
 15 T F
 16 O 5 F Print Digit cycle
 17 A 4 D
 18 F 4 F Check and remove
 19 S 4 F
 28 20 L 4 F Shift
 21 T 4 D
 22 A 1 F
 23 S 3 Count digits
 24 G 9
 25 (E F) Link

 13 26 S F Add 1/16
 27 O 31 Space Suppress zero
 28 E 20

 29 5J 995 F = 216/105
 30 5J F = 10/16
 31 5 F Space

* S(0) becomes cleared when the first non-zero digit is encountered, thus

preventing the suppression of later zeros.

 (a) Program text, above

 (b) Program tape, left

Fig. 9 Library subroutine P6

- 24 -

Original documentation for all the subroutines is reproduced in the Program

Documentation pdf file. These subroutines will suffice for all the examples given in

the Tutorial Guide, and for most of the programs you are likely to think of. If you

decide to explore the EDSAC in more depth, you may need more subroutines; many

of these are readily accessible in Part III of Wilkes, Wheeler and Gill (1951).

Calling a subroutine on the EDSAC used the technique of the “Wheeler jump”, shown

below. Here, the instruction A m F loads itself into the accumulator (this will be used

to form the return link); and then the instruction G n F transfers control to the first

instruction of the subroutine in location n. In the subroutine, the instructions A 3 F

and T p F manufacture the return link and plant it as the last instruction of the

subroutine in location p. (The instruction A 3 F actually uses a constant permanently

kept in location 3 to produce the return link.) If all this went over your head on a first

reading, don’t worry; it is only really important when you want to write subroutines.

If you are just going to use library subroutines, all you need to remember is the

A m F, G n F calling sequence.

 m A m F pick up self

 m+1 G n F jump to subroutine master routine

 m+2 . control returns here

 .

 .

 n A 3 F form return link

 n+1 T p F plant return link

 . subroutine

 .

 p (.) return link planted here

Fig. 10 shows the Cubes program. It consists of two routines: the master routine

written by the programmer (Fig. 10a), and the library subroutine P6. The first job is to

allocate storage for the program; this is done in Fig. 10b. The convention was to load

the program into location 56 upwards, placing all the subroutines and the master

routine end-to-end without leaving any gaps. The lengths of subroutines are given in

their specifications. Fig. 10c shows the make-up of the complete program tape.

On the original EDSAC, the procedure for punching a program was as follows (Fig.

11). First, the key-punch operator (who was usually the same person as the

programmer) would punch the master routine. Then the subroutine library tapes -

which were kept in small cardboard boxes in a steel filing cabinet - would be copied

onto the program tape, together with the master routine, and interspersed with control

combinations. When the subroutine tapes had been copied, they were rewound and

returned to the library cabinet.

 G K Set -parameter
 Enter 0 Z F Stop
 1 O 34 Figure shift
 22 2 O 35 New line
 3 O 36

 4 T F
 5 A 27 k to 0F
 6 T F
 7 A 7 Print 0F using P6
 8 G 56 F

 P6 9 T 27 Zero to k
 10 A 28
 11 A 31 n+1 to n
 12 T 28
 13 S 28 -n to count
 21 14 T 30
 15 A 29
 16 A 32 m+2 to m
 17 U 29
 18 A 27 k+m to k
 19 T 27
 20 A 30 Increment count
 21 A 31
 22 G 14 Jump to 13 if count ≤ 0

 23 A 33 Repeat main cycle
 24 S 28 while n ≤ 10
 25 E 2

 26 Z F Stop
 27 ║P D k (n3; =1 initially)
 28 ║P D n (=1 initially)
 29 ║P D m (=1 initially)
 30 ║P F count
 31 ║P D =1
 32 ║P 1 F =2
 33 ║P 5 F =10
 34 ║ F figs
 35 ║ F cr
 36 ║ F lf

(a) Master routine

Routine Location of Number of storage

 first order locations occupied

P6 (print) 56 32

Master 88 -

(b) Table of routines

 space P K

 T 56 K

 P6

 space P Z

 Master

 E Z P F

(c) Make-up of program tape

 1

 8

 27

 64

 125

 216

 343

 512

 .

 .

 .

 (e) Printout

 Fig. 10 Cubes program

 [Cubes]
..PK

T56K

[P6]

GKA3FT25@H29@VFT4DA3@TFH30@S6@T1F

V4DU4DAFG26@TFTFO5FA4DF4FS4F

L4FT4DA1FS3@G9@EFSFO31@E20@J995FJF!F

..PZ

[Cubes Master]

GK

ZF

O34@

O35@

O36@

TF

A27@

TF

A7@

G56F

T27@

A28@

A31@

T28@

S28@

T30@

A29@

A32@

U29@

A27@

T27@

A30@

A31@

G14@

A33@

S28@

E2@

ZF

PD

PD

PD

PF

PD

P1F

P5F

#F

@F

&F

EZPF

 (d) Program tape

- 26 -

On the program tape the individual routines were normally separated by a few rows of

blank tape; this was useful in spotting how far the program had got if it suddenly

stopped loading - the machine operator would mark the tape with a pencil where it

had stopped in the paper-tape reader. This blank tape is indicated by “space” in the

notation for the make-up of program tapes (Fig. 10c). The blank tape has to be

terminated with the control combination P K or P Z.

Much the same logic is used for preparing programs for the simulator. On the Edsac

simulator, because an application program such as Cubes is composed from two or

more files, and will likely exist in a number of versions, it is advisable to create a new

folder for it. A folder for Cubes has already been set up in the Tutorial Guide

Examples folder. Normally the first job would be to punch the master routine, but this

has also been done for you; it is in the file “Cubes Master” in the Cubes folder.

We now have to create the complete program from the library subroutine and the

master routine. First, create a New text window in which to prepare the program.

Now, referring to Fig. 10c, we first need to type the control combinations:

 space PK

 T 56 K

Program tapes for the EDSAC were blind punched using a keyboard perforator. Library subroutines were

kept in the steel cabinet (left) and were copied mechanically onto the program tape using the tape-reader in

the centre of the photograph.

Fig. 11 EDSAC tape preparation facilities

- 27 -

We require at least two rows of blank tape for the “space”; on the Edsac simulator a

row of blank tape is represented by a period, so we can represent “space” by “..”. The

rest of the characters (PKT56K) are typed as written. We then need to copy

subroutine P6. Click the “Print” tab on the toolbar, which shows the available print

subroutines. Click the button for P6. P6 will now be copied into your program at the

current insertion point. Now type the control combination “space P Z”. Next, use

File|Insert… to locate Cubes Master and copy it at the current insertion point. Finally

type the control combination E Z P F. Save the program as “Cubes”. (If you prefer

you can construct your program by opening windows for the various components and

cutting and pasting from one to another. This is messier but the end result will be the

same.)

Your program should look exactly as in Fig. 10d - except possibly for white space

characters and comments. A few points to note. First, the simulator allows you to put

comments in the program between square brackets. The convention adopted is to label

all program tapes and library subroutines with their name at the beginning, eg. [P6].

This roughly corresponds to the practice adopted on the original EDSAC of labelling

a tape by writing the name of the program on it in pencil. Secondly, notice that the

master routine is typed one instruction per line, while the subroutines have been

previously typed with ten instructions per line. This convention is adopted in the

simulator to keep program listings short - when the program is actually run there is no

difference so far as the simulator is concerned. The master routine is typed one order

per line to make it easy to correct while it is being debugged; but library subroutines

can be assumed to be correct and you should never need to modify them, so they are

typed ten orders per line.

You should now be able to run the program. Again, if it fails to run, it may be because

you mis-typed something, or perhaps you composed the program incorrectly.

Alternatively, perhaps you forgot that the first instruction of the master routine was a

stop order and you need to press Reset to make it continue. If you still have problems,

there is a working version of the program in the Demonstration Programs folder.

Exercise

1 Modify the Cubes program so that it prints out n followed by n3 on each line.

3.3 Reciprocals

This section illustrates the remaining important concepts in EDSAC programming:

code-letters, subroutine parameters, and scaling. To illustrate these ideas, we will

refer to the Reciprocals program which prints the reciprocals of the numbers 2-10

(Fig. 12).

Code-letters

If you did the last exercise, which involved modifying the Cubes program, you will
have discovered an awkward problem: Namely that inserting extra instructions in the
master routine required you not only to change the addresses in some branch
instructions (which you might have expected), but also because the locations of the
data and constants changed, the addresses in many of the arithmetic instructions had

- 28 -

to be altered too. This problem can be overcome by the use of code-letters. We have
already encountered three code-letters (F, D, and), but there are 15 altogether as
shown below.

 Code-letter Location Value

 F 41 0

 42 Origin of current routine

 D 43 1

 , H, N, M … V 44, 45, 46 … 55 For use by programmer

As the initial orders load each instruction, the value corresponding to its code-letter is
added to the instruction before it is placed in the memory. Because the code-letters F
and D contain the integers 0 and 1 respectively, this has the effect of setting the length
indicator bit. Similarly, the code-letter has the effect of adding the origin of the
current routine to the address of the instruction - this is how relocation is achieved.
You should not normally change F, or D directly, for obvious reasons. All the
remaining code-letters can be used by the programmer. They occupy locations 41 to
55, and that is why the normal place to begin loading a program is location 56. (The
15 code-letters also correspond to characters 17-31 in the collating sequence - see
Table 2 in the Appendix.)

In the master routine of the Reciprocals program, the code-letters and M have been
used so that there are two separate regions in store: one region for the instructions and
another for the data. Now, if it subsequently proved necessary to remove or add an
instruction in the master routine it would only be necessary to adjust the value of the
M-parameter. Regionalizing the instructions and data in this way also makes
programming easier because it is not necessary to know the length of the program
before allocating storage for the data.

Subroutine Parameters

Library subroutines had a number of ways of specifying their parameters or

arguments. The easiest way was to use a dedicated storage location. This is used, for

example, in the print subroutine P6, which prints the integer placed in location 0F

before the subroutine is entered; similarly, the division subroutine D6 sets 0D to the

value of 0D/4D. A more flexible, though more complicated, arrangement was what

the Cambridge group called program parameters. Here one or more parameters were

specified in the calling sequence itself. For example, in the Reciprocals program the

library subroutine P1 prints the long fraction in 0D to n decimal places, where n is

specified as a program parameter (see lines 11 to 13 of the master routine in Fig. 12a).

Program parameters are the way that most software systems still parameterize library

subroutines. Incidentally, in Wilkes, Wheeler and Gill, there is another technique

known as “preset parameters” - this method has since fallen into disuse and we will

not discuss it here. But it is one of several now-forgotten ideas in EDSAC

programming awaiting rediscovery. (Just to add a little more confusion, note that

subroutine M3 used in Reciprocals does not conform to any of the types discussed

above. It prints out the text that follows it, and is then overwritten by the program

proper, so as not to take up any memory at run time. It was very useful for printing

out table headings and the like.)

 G K
 T 47 K Set M parameter
 p 21 K
 T Z
 0 S M Set count to -9
 19 1 T 6 M
 2 A 2 M 1

.2-4 to 0D

 3 T D
 4 A 7 M n

.2-4 to 0F

 5 T 4 D
 6 A 6 Set 0D to 0D/4D(ie. 1/n)
 7 G 56 F using subroutine D6

 D6 8 O 3 M Output new line
 9 O 4 M
 10 O 5 M Output decimal point
 11 A 11 Print 0D

 12 G 92 F using subroutine P1

 13 P 10 F Parameter for P1
 P1 14 A 7 M
 15 A 2 M Increment n
 16 T 7 M
 17 A 6 M Increment
 18 A M and test counter
 19 G 1

 20 Z F Stop

 M O ║P D = 1
 1 ║P D = 9
 2 ║Q D = 1.2-4
 3 ║ F carriage return
 4 ║ F line feed
 5 ║M 1 F decimal point
 6 ║P F count
 7 ║W 1 F = n (=2.2-4 initially)

(a) Master routine

space P K

T 56 K

 M3

*RECIPROCALS Table heading

space P Z

T 56 K

 D6

space P Z

 P1

space P Z

 Master

E Z P F

(c) Make-up of program tape

 Fig. 12 Reciprocals program

Routine Location of Number of storage

 first order locations occupied

D6 (divide) 56 36

P1 (print) 92 21

Master 113 -

(b) Table of routines

RECIPROCALS

.4999999999

.3333333333

.2499999999

.2000000000

.1666666666

.1428571428

.1249999999

.1111111111

.0999999999

(d) Printout

- 30 -

Scaling and Rounding

The problem of scaling arises because the EDSAC could only store fractions in the

range -1 < x < 1. This was a problem with most early computers, although the advent

of hardware or software floating-point in the mid-1950s meant that most users were

soon able to forget about it.

In the case of the Reciprocals program, the reciprocals 1/2, 1/3, ... 1/10 are all in the
range -1 < x < 1, so there will be no need to scale the results. The denominators 2, 3,
... 10, however, would be out of range for fractions. We therefore scale them by 2-4,
so that they are all of modulus less than unity. Now, when we calculate the reciprocal
1/n using:

1 x 2-4

n x 2-4

the scale factors cancel and the result is correct. Life was not always so easy and often

scaling was the hardest part of solving a problem. (For a fuller discussion of scaling

see example program “TPK” in the Program Documentation pdf file.)

There is a copy of the Reciprocals program in the Reciprocals Folder, in the Tutorial
Guide Examples folder. Note that subroutine P1, like most of the EDSAC print
routines, did not perform rounding. Thus in the output of Reciprocals shown in Fig.
12c, ½ is printed as 0.4999999999 rather than as 0.5000000000. Here, this is mainly
an aesthetic point, but normally a fraction would be rounded to n decimal places by
adding the constant ½ x 10-n. A number of useful rounding constants are given in the
Appendix, Table 4.

Exercise

1 Modify the Reciprocals program so that it prints the results to a precision of 6

decimal places, unrounded. (Hint: Change the parameter for P6 in line 13).

2 Print the results of the Reciprocals program rounded to 6 decimal places. (NB.

The constant ½ x 10-6 is “W 199 F, P F”; this should be placed in an adjacent
even-odd word pair (eg. words 8M and 9M). To add a long constant into the
accumulator, use A 8 M (say); the forces the length bit in the instruction to be
1.

- 31 -

4 DEBUGGING: GETTING PROGRAMS RIGHT

By June 1949 ... I was trying to get working my first non-trivial program, which was for the

numerical integration of Airy’s differential equation. It was on one on my journeys between

the EDSAC room and the punching equipment that “hesitating at the angles of stairs” the

realization came over me that a good part of the remainder of my life was going to be spent in

finding the errors in my own programs.

M.V. Wilkes, Memoirs, 1985, p. 145

Like Wilkes, everyone who begins to program soon discovers that the difficulty lies

not in writing programs, but in getting them to work. On the EDSAC there were

essentially three ways of finding the mistakes in a program: peeping, the post-mortem

technique, and checking routines. We will look at each of these in turn.

First, however, let us consider the two common types of bug (or “pitfalls” or

“blunders” as they were called in Wilkes, Wheeler and Gill, which was published long

before the term “debugging” gained currency).

1 Control errors. Control or sequence errors occur when the program logic is in

someway faulty. Typically a control error causes a program to have unpredictable

behaviour and eventually come to a halt in an apparently random location. The

most common cause of a control error is a wrong address in a branch order, or

faulty subroutine linkage.

2 Numerical errors. These are errors in the numerical computation of a program,

which do not immediately affect the sequence in which the orders are obeyed.

That is to say, the program apparently behaves well, but the answers are wrong.

The most common causes of arithmetic errors were due to scaling errors,

undetected overflow, and faulty numerical methods.

These two types of errors benefit from different debugging approaches.

4.1 Peeping

In Sections 2 and 3, we single-stepped through a couple of small programs, which

demonstrated most of the salient features of peeping. However, real programs with

subroutines soon show the limitations of the technique.

First, it is quite difficult to navigate around the monitor tube - which is why it makes

sense to locate the origin of the master routine of a program on a tube boundary.

Second, interpreting addresses and instructions rapidly and accurately in the Sequence

Control Tank and the Order Tank takes a lot of practice; likewise, recognizing binary

numbers takes experience. Third, when the program goes into a subroutine, it gets

very tedious manually stepping through a hundred or more instructions until you can

get back to the main program - one way round this is to plant additional stop orders in

the program, so that subroutines can run at full speed. Finally, when you have located

the error, the program text has to be corrected before it can be re-tested. On some

early computers, it was possible to use hand-switches to “patch” in corrections, but

this was deliberately made impossible on the EDSAC because it took up so much

machine time. The general philosophy at Cambridge was to use post-mortem and

checking routines so that debugging could be done away from the computer, leaving it

- 32 -

free for more productive work. This was further encouraged in 1950 when a computer

operator was employed to run users’ programs (Fig. 13). Program tapes were placed

on a “job queue” with instructions as to what action should be taken in the event of a

program failure.

4.2 Post-mortems

A post-mortem - more commonly known in the United States as a terminal dump -

was the process of printing out a region of the memory after the execution of a

program had been terminated. On the EDSAC a post-mortem routine was loaded by

the initial orders in the usual way. (So unless you are pressed for memory space, you

should avoid using locations 0-55 for data storage other than for temporary variables.)

The post-mortem routines themselves were automatically loaded as high up in the

memory as possible, where they were least likely to overwrite the information to be

dumped.

When programs were run on the EDSAC by an operator, the programmer would leave

instructions as to which post-mortem tape to be used in the event of an abnormal

program termination, and the address where the post-mortem was to start - which was

dialled in by the operator.

There were six post-mortem routines in the original EDSAC program library, with the

following specifications:

PM0 Starting at location n, print the order-code letter contained in the top five

binary digits of each location; continue until stopped by the operator.

Fig. 13 EDSAC Operator

- 33 -

PM1-4 Starting at location n, print the contents of each location as a decimal

number in the following form:

 PM1: short fractions

 PM2: long fractions

 PM3: short integers

 PM4: long integers

 Continue until stopped by the operator.

PM5 Starting at location n, interpret each word of store as an order and print

the appropriate order; continue until stopped by the operator.

All the post-mortem routines except PM0 have been written afresh for the Edsac

simulator; unfortunately all the original tapes have long since vanished and there are

no extant listings. They are slightly more user-friendly than the original routines, but

otherwise conform closely to the original specifications. These are the only items in

the Edsac library that are not original artefacts. (Incidentally, the PM0 routine, which

is an original artefact, is a very clever piece of coding that shows what was possible

with the initial orders. It occupies exactly four words of memory.)

To use PM5 (say) proceed as follows. First, run Recprocals so there is a user program

in the store. Next, click the “Postmortem Routines” tab in the toolbar, and select

PM5. Confirm that the simulator title bar reads “Output from: PM5”. Press Start -

without pressing Clear, otherwise you will lose everything. When the program stops,

dial the 3-digit location where you want the post-mortem to start (eg. 113). The store

will now be printed out from word 113 onwards. Press Stop when you have enough

output. If you wish, the output can be saved and printed for study away from the

machine.

 113 S 135 F

 114 T 140 F

 115 A 136 F

 116 T D

 117 A 141 F

 118 T 4 D

 119 A 119 F

 120 G 56 F

 121 O 137 F

 122 O 138 F

 123 O 139 F

 124 A 124 F

 125 G 92 F

 126 P 10 F

 127 A 141 F

 128 A 136 F

 129 T 141 F

 .

 .

 etc.

Fig. 14 Post-mortem using PM5

- 34 -

Fig. 14 shows part of the P5 post-mortem printout of Reciprocals. Notice how all the

addresses are in absolute form - this quite often makes errors in code-letter usage

immediately obvious. Note also that zero words are not printed, and that order codes

which correspond to a “stunt” character (shift, line feed, return, etc.) temporarily

upset the alignment of the printout. You will find that PM5 is by far the most helpful

debugging aid you are likely to use. This was not the case on the original EDSAC

because printing on a 62/3 character per second teleprinter meant it took several

minutes to print a substantial region of store; PM0 was much faster, though not so

useful.

Exercise

1 Try using PM0. The version of PM0 provided prints the function letter of each

instruction from location 56 upward. It is easy to modify the program for another
starting point (see the program text). Modify the program to print from 113
upward - and compare the output (STATATAGO...) with Fig. 14.

4.3 Checking Routines

The EDSAC pioneered the technique of interpretive trace routines - although the term

“trace” was not then in use, and they were called “checking” routines. Checking

routines were invented by Stanley Gill - the third author of Wilkes, Wheeler and Gill;

he was then a research student and was later Professor of Computing Science at

Imperial College, University of London, and one-time president of the British

Computer Society.

The idea of a trace routine is that, instead of obeying the orders of a program directly

by the control circuits of the computer, they are obeyed by an interpretive program or

simulator. It is then possible to print out diagnostic information - ie. a trace - while

the program is being executed. There were several checking subroutines in the

EDSAC library, although just the two provided with the simulator will suit most

purposes. These are subroutines C7 and C10. C7 is useful for checking control errors,

while C10 is most useful for checking numerical errors. Using checking routines

needs a little planning and forethought, but they are very powerful, and once the

technique has been mastered it can be more effective than peeping.

C7: Sequence Checking

C7 prints out the order-code letter of each instruction as it is obeyed. This enables the

flow of the program to be checked against the program manuscript: where control

departs from the expected sequence, then that is where the error lies. A particularly

attractive feature of C7 is that it only interprets code from sections of the memory

designated by the programmer. This enables the tracing of subroutines - which can be

assumed to be correct - to be suppressed, so that the amount of print-out produced is

minimized.

To use C7 on an existing program, we simply replace the final control combination

(typically E Z P F) with C7 preceded by its control combinations. The control

combinations are a bit messy, but the scheme shown in Fig. 15a works for simple

cases.

- 35 -

 As in Fig 12c

 .
 .
 .
 space P Z

 Master

 space P Z

 G K T 45 K P F

 P 113 F

 PN ∆θPN

 C7

(a) Make-up of program tape

RECIPROCALS

STATATAG

OO
OMAG
4999999999
AATAAG
TATATAG

OO
OMAG
3333333333
AATAAG
TATATAG

OO
OMAG
2499999999
AATAAG
TATATAG
.
.
etc.

 (b) Printout

Fig. 15 Use of checking subroutine C7

 As in Fig 12c

 .
 .
 .
 space P Z

 Master

 space P Z

 GKT45KP37 θP10F

 P 113 F

 PN ∆θPN

 C10

 E 113 K P F

 (a) Make-up of program tape

RECIPROCALS

+7541198730-0001373291+0625000000
+1250000000

.
4999999999+1875000000
-0001220703+0625000000+1875000000

.
3333333333+2500000000
-0001068115+0625000000+2500000000

.
2499999999+3125000000
-0000915527+0625000000+3125000000

.
2000000000+3750000000
-0000762939+0625000000+3750000000
.
.
.
etc.

(b) Printout

Fig. 16 Use of Checking Subroutine C10

- 36 -

 There is a copy of Reciprocals with C7 appended in the Reciprocals Folder (in the

file Reciprocals+C7). Fig. 15b shows the print out produced by Reciprocals+C7. The

full specification for C7 is given in the Program Documentation.

Note how effectively this trace enables you to navigate around the master routine and

to follow its control logic. Note that the subroutine prints a new line after a branch

order, and that a clear line is left whenever instructions are obeyed “silently” (unless

the silent instructions themselves cause printing to occur).

C10: Numerical Checking

The C10 subroutine helps to trace numerical errors by printing the contents of the

accumulator (as a long fraction) every time the user program executes a T-order. Thus

the printout will contain all the intermediate results computed in the program.

The C10 subroutine, like C7, is appended to the end of the program, replacing the

final control combination (usually E Z P F). Again, the control combinations are

rather messy. Fig. 16 shows the make-up of the program tape and printout produced

by Reciprocals+C10. Note that the first word is always junk, and that the next three

numbers printed represent the integer -9 (which looks strange when printed as a long

fraction.), 1 x 2-4, and 2 x 2-4 respectively. A new line is printed after every branch

statement, and a line feed is output whenever a subroutine is obeyed silently.

Frankly, the C10 subroutine is quite painful to use, and it was used very much as a

last resort when a numerical calculation would not give exactly the right results.

Numerical errors on the EDSAC could be extraordinarily stubborn. Probably you will

never have occasion to use this subroutine in anger, but it is there should you need it,

and full documentation is given in the Program Documentation pdf file.

- 37 -

5 PROBLEMS FROM THE SUMMER SCHOOL AND ELSEWHERE

If you understood all or most of the material in the Tutorial Guide, you might now

like to try developing an EDSAC program yourself.

Beginning in 1950, the Mathematical Laboratory at Cambridge organized Summer

Schools in programming for people inside the University and for other universities

and industry. The course was of a fortnight’s duration and during that period students

were expected to write and get running some simple programs on the EDSAC.

Programs 1 to 5 below were all Summer School problems. They were all small,

though not trivial, problems; for example they generally need to make use of the

subroutine library, and sometimes scaling is required. The remaining problems are

more challenging.

1 Print the value of the function
n

n+1
 for n = 1, 2, ... 10.

2 Read a sequence of 20 long fractions from the input tape and print the sum of their

squares. (Note: Use subroutine R1.)

3 Print the inverse factorials
1

n!
 , and their sum, of the numbers n = 2, 3, ... 10.

4 Print the sum of
1

n
 and the sum of

1

n2 for n = 1, 2, ... 100. (Note. The results will

need to be scaled.)

5 A traffic census is to be taken using a tape punched as follows. Whenever a

bicycle passes a B is punched, and whenever a motor vehicle passes a V is

punched. Every minute an M is punched, except at every tenth minute when a T is

punched. At the end of the tape an E is punched. Rows of blank tape, and erase,

carriage return and line feed symbols may appear anywhere. Prepare a program to

process this tape as follows:

(a) Check that, apart from rows of blank tape and erase, carriage return and line

feed symbols, only the symbols B, V, M, T and E appear on the tape;

(b) Check that exactly nine M’s intervene between consecutive T’s;

(c) Print the greatest number of bicycles that pass within any consecutive 15

minutes, and the greatest number of motor vehicles that pass within any 15

consecutive minutes.

[Author: D. J. Wheeler, c.1950]

Note The above problems are roughly in ascending order of difficulty It is possible to

solve all of them using only the subroutines D6, P1, P6, R1, and S2, whose

specifications are given in Table 3 of the Appendix.

Here are some more substantial problems, not from the Summer School.

6 Library Square-Root Subroutine Write a subroutine S99 for the EDSAC library

- 38 -

which calculates the square root, x, of the argument, a, stored in 0D. Use the

Newton-Raphson iterative formula:

 xn+1 =
1

2

xn +
a

xn

 Incorporate the subroutine in a driver program which tests it for a variety of

arguments. Note that to keep subroutines in the EDSAC library short, arguments

were not normally validated - bad arguments simply produced bad results.

7 Programmed Multiplication Test Write a program which will test if the Edsac

multiplier is functioning correctly (assuming all other machine functions are OK).

On the original EDSAC this test was used to ensure the hardware was serviceable,

but on the simulator it would verify the correct implementation of the multiplier.

8 Big Letters Write a program that prints the contents of a paper tape in big letters:

BBBB I GGGG L EEEEE TTTTT TTTTT EEEEE RRRR SSS

B B I G L E T T E R R S

BBBB I G GG L EEE T T EEE RRRR SSS

B B I G G L E T T E R R S

BBBB I GGGG LLLLL EEEEE T T EEEEE R R SSS

9 Pretty Printing A program (now lost) was developed in 1953 that would take an

EDSAC tape, and list it in formatted form, one instruction per line. Since the

Greek letters phi, theta, delta and pi could not be printed, they were substituted

with /, $, +, and . (period).

10 Highland Dancer A demonstration program, now lost, displayed an animation of

a highland dancer on the main-memory monitor tube. Write a program to produce
an entertaining animation.

11 Sieve of Eratosthenes The sieve of Eratosthenes is used to determine the prime

numbers between 2 and n as follows:

Write down the numbers 2 to n; starting at 4 (ie. 2 squared) cross out all the multiples of 2;

from 9 (ie. 3 squared) cross out all the multiples of 3; ignore 4 because it has already been

crossed out; from 52 cross out all the multiples of 5; and so on. At the finish only the primes

remain.

In about 1950 Wheeler used this idea to calculate primes on the EDSAC at high
speed by avoiding the operation of division:

[On the monitor tube] it was possible to show 16 35-bit words at a time, that is 560 bits

altogether. In Wheeler’s program the ... numbers were represented in order by binary digits.

To begin with all these digits were present. As the sieve operated and numbers were

eliminated the ones were replaced by zeroes. The speed of the machine was such that it was

possible to watch this happening on the screen.” (Wilkes, Nature, October 1975, p. 544).

Write a Sieve of Eratosthenes program to determine the primes between 2 and
about 500.

- 39 -

12 EDSAC’s First Achievement The first program run on the EDSAC on 6 May 1949
printed a table of squares of the integers 0 to 99. Unfortunately, the original
program is lost, although several copies of the printout have survived (Fig. 17)
Recreate the program, using Initial Orders 1.

If you are in London with time on your hands, you might like to visit the Science
Museum, where this historic printout is on permanent display.

Acknowledgements

The EDSAC simulator draws on the work of my former students Martin Smedley,

Ken Fowler, Paul Waldron, and John Martin. My thanks to John Cowan, Ross

Hamilton, Lee Wittenberg, Bill Purvis (who engineered the Linux version) and

numerous beta testers. Finally I acknowledge the help of Maurice Wilkes, David

Wheeler, and Don Hunter who supplied me with numerous unrecorded historical

details about the EDSAC and its programming techniques.

Martin Campbell-Kelly

Fig. 17 EDSAC’s First Achievement

- 40 -

Bibliography

If you enjoyed using the simulator and would like to explore EDSAC programming in

more depth, you will need to get hold of a copy of the first edition (1951) of Wilkes,

Wheeler and Gill. This was reprinted by MIT Press in 1982, but is now unfortunately

out of print again; you should, however, be able to find a copy in any major university

library or through inter-library loan. My article “Programming the EDSAC” (1980)

discusses the later development of EDSAC programming and includes a full

bibliography. Another article “The Airy Tape” (1992) describes Wilkes’s attempt to

get his first real program working - and the discovery of debugging. Something of

Wheeler’s programming philosophy can be discovered from his article “The EDSAC

Programming Systems” (1992). Finally, Maurice Wilkes’s very readable Memoirs are

invaluable for understanding the EDSAC milieu.

M. Campbell-Kelly, “Programming the EDSAC: Early Programming Activity at the

University of Cambridge”, Annals of the History of Computing 2 (1980) pp. 7-36.

M. Campbell-Kelly, “The Airy Tape: An Early Chapter on the History of

Debugging”, Annals of the History of Computing 14 (1992), pp. 18-28.

M. V. Wilkes, Memoirs of a Computer Pioneer, MIT Press, 1985.

M. V. Wilkes, D. J. Wheeler and S. Gill, The Preparation of Programs for an

Electronic Digital Computer, 1951, Addison-Wesley. Reprinted as Vol. 1 of the

Charles Babbage Institute Reprint Series for the History of Computing, MIT Press,

1982.

M. V. Wilkes, “The EDSAC”, and B.H. Worsley, “The EDSAC Demonstration”, in

Report of a Conference on High-Speed Automatic Calculating Machines, 22-25 June

1949, Cambridge University Mathematical Laboratory, 1950. Reprinted as pp. 415-

429 of B. Randell, Origins of Digital Computers, Springer-Verlag, 1983.

D. J. Wheeler, “The EDSAC Programming Systems”, Annals of the History of

Computing 14 (1992), pp. 34-40.

- 41 -

Appendix of Tables

Table 1 The EDSAC Instruction Set (1949)

A n Add the number in storage location n into the accumulator

S n Subtract the number in storage location n from the accumulator

H n Copy the number in storage location n into the multiplier register

V n Multiply the number in storage location n by the number in the multiplier
register and add the product into the accumulator

N n Multiply the number in storage location n by the number in the multiplier
register and subtract the product from the accumulator

T n Transfer the contents of the accumulator to storage location n and clear the
accumulator

U n Transfer the contents of the accumulator to storage location n and do not
clear the accumulator

C n Collate [logical and] the number in storage location n with the number in
the multiplier register and add the result into the accumulator

R 2n-2 Shift the number in the accumulator n places to the right

L 2n-2 Shift the number in the accumulator n places to the left

E n If the sign of the accumulator is positive, jump to location n; otherwise
proceed serially

G n If the sign of the accumulator is negative, jump to location n; otherwise
proceed serially

I n Read the next character from paper tape, and store it as the least significant
5 bits of location n

O n Print the character represented by the most significant 5 bits of storage
location n

F n Read the last character output for verification

X No operation

Y Round the number in the accumulator to 34 bits

Z Stop the machine and ring the warning bell

- 42 -

Table 2 Edsac Character Codes

Perforator Teleprinter Binary Decimal

Letter Figure Letter Figure
shift shift shift shift

P 0 P 0 00000 0
Q 1 Q 1 00001 1
W 2 W 2 00010 2
E 3 E 3 00011 3
R 4 R 4 00100 4
T 5 T 5 00101 5
Y 6 Y 6 00110 6
U 7 U 7 00111 7
I 8 I 8 01000 8
O 9 O 9 01001 9
J J 01010 10
π Figure Shift 01011 11
S S " 01100 12
Z Z + 01101 13
K K (01110 14
Erase1 Letter Shift 01111 15
Blank tape2 (no effect) 10000 16
F F $ 10001 17
θ Carriage Return 10010 18
D D ; 10011 19
φ Space 10100 20
H + H £ 10101 21
N - N , 10110 22
M M . 10111 23
∆ Line Feed 11000 24
L L) 11001 25
X X / 11010 26
G G # 11011 27
A A - 11100 28
B B ? 11101 29
C C : 11110 30
V V = 11111 31

Notes
1 Erase is represented by an asterisk (“*”) in the simulator. When this character is output, it sets the

teleprinter into letter shift.
2 Blank tape is represented by a period (“.”). This character has no effect on output.
3 The personal computer text environment has only a “newline” character. On the Edsac simulator,

the line-feed character is interpreted as a newline character, and carriage returns are thrown away.
4 The symbols θ, φ, ∆ or π are typed as @, !, & and #, respectively.

- 43 -

Table 3 Specifications of Basic Library Subroutines

Subroutine Length Description and Notes

Input-output

P1 21 Print positive long fraction in 0D to n decimals.
Program parameter is P n F. See Reciprocals program
for example of use.

P6 32 Print short positive integer in 0F. See Cubes program
for example of use.

P7 35 Print long positive integer in 0D. Must start in an even
location.

P14 46 Print signed decimal fraction in preset layout. See
specification in the Program Documentation pdf file,
and example of use in TPK program.

R1 55 Input a sequence of signed, long decimal fractions. See
documentation in the Edsac Texts folder, and example
of use in TPK program.

R3 41 Input a signed long-decimal fraction. Reads a fraction
punched in decimal form followed by sign into 0D.

R4 22 Input a signed integer. Reads an integer punched in
decimal form followed by sign. Short integers placed in
0F; long integers placed in OD.

Mathematical

D6 36 Division. Divides 0D by 4D; result in 0D.

E2 19 Exponential. See specification in Program Document-
ation pdf file.

S2 22 Square root. Forms square root of 4D; result in 4D.

S3 25 Cube root. Forms cube root of 6D; result in 0D.

T1 44 Cosine. See specification in Program Documentation
pdf file.

Miscellaneous

M3 - Print a heading. Copies information from the tape to the
teleprinter. Occupies 10 locations (temporarily). See
Reciprocals program for example of use.

M20 - Read in a three-digit decimal number from the dial. See
specification in Program Documentation pdf file.

Continued

- 44 -

Table 3 continued

Checking

C7 61 Checking routine - trace of function code letters.

C10 88 Checking routine - trace of accumulator contents.

Post-mortem routines

PM0 Starting at location n, print the order-code letter
contained in the top five binary digits of each location;
continue until stopped by the operator. Occupies
locations 41-44.

PM1-PM4 Starting at location n, print the contents of each
location as a decimal number in the following form:

 PM1: short fractions
 PM2: long fractions
 PM3: short integers
 PM4: long integer

Continue until stopped by the operator. All routines
occupy locations 955-1023.

PM5 Starting at location n, interpret each word of store as an
order and print the appropriate order; continue until
stopped by the operator. Occupies locations 940-1023.

Table 4 Some Useful Constants

-0.1 L 1229 F +1/3 H 682 D 1/2 x 10-4 F 1464 D
C 819 F T 682 D P 1 D

+0.2 S 1638 D +1/7 θ 585 F 1/2 x 10-6 W 199 F
E 409 D W 585 F P F

-0.3 S 1638 D 1/9 K 455 F 1/2 x 10-10 P D
G 409 D C 455 F P F

+0.4 L 1229 F -1/11 ? 1303 D +10-2 x 26 W1147 F
Y 819 F C 1117 F J 419 D

-0.6 L 1229 F - π/4 O 699 D +10-3 x 29 G 1327 F
N 819 F D 888 F I 393 F

+0.7 S 1638 D - π/6 G 1149 F +10-4 x 213 T 1714 F
π 409 D M1274 D Z 219 D

-0.8 S 1638 D -2/π V 291 D +102 x 2-7 S 1024 F
D 409 D H 1667 F

+103 x 2-10 K 3328 F
+0.9 L 1229 F +e/4 H 177 D

K 819 F J 1788 F +104 x 2-14 O 1568 F

The Edsac Replica Project • The National Museum of Computing

Bletchley Park • Milton Keynes MK3 6EB • United Kingdom

