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Dynamic programming
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Outline

• What is dynamic programming ?
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• Recurrence relations: ascending versus descendent

• Applications
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What is dynamic programming ?

• An  algorithm design technique for solving  problems  that can be 
decomposed  in overlapping subproblems  – can be applied to 
optimization problems with optimal  substructure property. 

• Main feature: each suproblem solved once. Its solution is  stored 
in a table  and then used to solve initial problem. 

Obs.
• Developed in the 1950's by Richard Bellman as a general 

optimization method.  
• “Programming” in DP refers to planning and not coding on a 

computer.   
• Dynamic = manner that one constructs tables holding partial 

solutions  
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Main steps in applying dynamic programming

Analyze problem structure: establish the way in which the solution of 
the problem depends on solutions of subproblems . 

Identify/develop recurrence relation  connecting problem and 
subproblem solutions. Usually the recurrence relation involves 
the optimum criterion. 

Developing solution 
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Recurrence relations

Two main approaches:

• bottom up:   start from base case and generate new values. 

• top down:  value to compute is expressed by  previous values 
that have to be,in turn, computed. Usually implemented 
recursively, inefficient unless we use memoization. 
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Recurrence relations
Exemplu 1. m-th element of   Fibonacci seq.
   f1=f2=1;   fn=fn-1+fn-2 for n>2

Top down (recursive):

fib(m)

IF (m=1) OR (m=2)  THEN 
RETURN 1

ELSE

    RETURN fib(m-1)+fib(m-2)

ENDIF

Complexity:

              0       if m<=2

T(m) = 

              T(m-1)+T(m-2)+1   if 
m>2

T:

0 0 1 2 4 7 12 20 33 54 …

Fibonacci:

1 1 2 3 5 8 13 21 34 55 …

fn  =O(phin), 

phi=(1+sqrt(5))/2  

exponential complexity!
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Recurrence relation

Exemplu 1.  m-lea element of Fibonacci sequence

   f1=f2=1;   fn=fn-1+fn-2 for n>2

Bottom up:

fib(m)

f[1]←1; f[2] ← 1;

FOR i ← 3,m DO

     f[i] ← f[i-1]+f[i-2]

ENDFOR

RETURN f[m]

Complexity:

T(m)=m-2 => linear complexity 

Obs:  time efficienccy 
compensated by using more 
space

              
fib(m)

f1 ← 1; f2 ← 1;

FOR i ← 3,m DO

     f2 ← f1+f2; f1 ← f2-f1;

ENDFOR 

RETURN f2
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Recurrence relations

Example 2. binomial coefficients C(n,k) (combinari de n luate cate k)

                0    if n<k

C(n,k)=    1    if k=0  or n=k
                  C(n-1,k)+C(n-1,k-1)   otherwise

Top down:

comb(n,k)

   IF (k=0) OR (n=k) THEN 

       RETURN 1

  ELSE

       RETURN comb(n-1,k)+comb(n-1,k-1)

  ENDIF

Complexity:

Dim pb: (n,k)

Dominant op: addition

T(n,k)=0   if k=0 or k=n

            T(n-1,k)+T(n-1,k-1) 

Nr additions = nr nodes in 
recursive call tree. 

T(n,k) >= 2 min{k,n-k}

T(n,k) Ω(2 min{k,n-k} )
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Recurrence relations

Exemplu 2. Computing binomial coefficients C(n,k)

                0    if n<k

C(n,k)=    1    if k=0  sau n=k
                  C(n-1,k)+C(n-1,k-1)   otherwise

Bottom up: Pascal's triangle

                0    1    2      …    k-1               k

        0      1

        1      1     1

        2      1     2   1

        …

        k       1                …                          1 

        …

        n-1    1                    C(n-1,k-1)         C(n-1,k)

        n        1                                             C(n,k)
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 Recurrence relations
Algorithm:
Comb(n,k)
FOR i←0,n DO
  FOR j ← 0,min{i,k} DO
     IF (j=0) OR (j=i) THEN     

C[i,j] ← 1
    ELSE
       C[i,j] ← C[i-1,j]+C[i-1,j-1]
    ENDIF
  ENDFOR 
ENDFOR
RETURN C[n,k]

Complexity:

Dimension of the pb: (n,k)

Dominant operation: addition

T(n,k)=(1+2+…+k-1) +(k+…+k)

         =k(k-1)/2+k(n-k+1)

T(n,k)(nk)

Obs.  If we only have to compute C(n,k) it is enough to use a table 
with k elements as a additional space. 
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Outline
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Applications of dynamic programming

Longest (strictly) increasing sequence

Let a1,a2,…,an be a sequence. Find the longest subsequence such that  
aj1<aj2<…<ajk  

Example:  

          a = (2,5,1,3,6,8,2,10,4)

Increasing subsequences of length  5 (maximum length):  

                (2,5,6,8,10)

                (2,3,6,8,10)

                (1,3,6,8,10)
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Longest increasing subsequene

1. Analysis.

Let s=(aj1, aj2,…,aj(k-1) ,ajk ) be the optimal solution. Then none of the 
elements  in  a[1..n] after  ajk    is greater than ajk . Moreover, no 
element with  index between  j(k-1) and jk has a  value between 
corresponding elements of subsequence s (or s would no longer 
be  optimal). 

Show that s’=(aj1, aj2,…,aj(k-1) ) is an optimal soln for LIS ending  in aj(k-1) .  
Assume s’  not optimal. Then there is a longer subsequence  s”. 
Adding to s” element ajk   we obtain a solution better than s, 
contradicting the fact that  s is optimal. 

In conclusion: the  problem has the optimal substructure property. 
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Longest increasing subsequence

1. Building a recurrence relation 

Let Bi be the number of elements of a LIS ending in ai 

                 1          if  i=1

Bi  = 

                  1+  max{Bj |  1<=j<=i-1, aj<ai}

Exemplu:

            a = (2,5,1,3,6,8,2,10,4)

            B = (1,2,1,2,3,4,2,5,3)



16

Longest increasing subsequence

3.  Recurrence relation

           1          if  i=1

Bi  = 

                  1+max{Bj |  1<=j<=i-1, aj<ai}

Complexity:   θ(n2)

calculB(a[1..n])

B[1]←1

FOR i ← 2,n DO

   max ← 0

   FOR j ← 1,i-1 DO

      IF a[j]<a[i] AND max<B[j]

           THEN max ← B[j]

      ENDIF

   ENDFOR

   B[i] ← max+1

ENDFOR

RETURN B[1..n]  
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Longest increasing subsequene

1. Constructing the 
solution

Determine the maximum of 
B

Construct s succesively 
starting from last 
element

Complexity: θ(n)

           

construire(a[1..n],B[1..n])

m ← 1

FOR i ← 2,n DO

   IF B[i]>B[m] THEN m ← i ENDIF

ENDFOR

k ← B[m]

s[k] ← a[m]

WHILE B[m]>1 DO

    i ← m-1

   WHILE a[i]>=a[m] OR B[i]<>B[m]-1 DO

         i ← i-1

   ENDWHILE

   m ← i;  k ← k-1;  s[k] ← a[m]

ENDWHILE

RETURN s[1..k]
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Longest increasing subsequence
construire(a[1..n],B[1..n],P[1..n])

m:=1

FOR i:=2,n DO

   IF B[i]>B[m] THEN m:=i ENDIF

ENDFOR

k:=B[m]

s[k]:=a[m]

WHILE P[m]>0 DO

     m:=P[m]

     k:=k-1

     s[k]:=a[m]

ENDWHILE

RETURN s[1..k]

calculB(a[1..n])

B[1]:=1;  P[1]:=0

FOR i:=2,n DO

   max:=0

   P[i]:=0

   FOR j:=1,i-1 DO

      IF a[j]<a[i] AND max<B[j]

      THEN max:=B[j]

                 P[i]:=j

      ENDIF

   ENDFOR

   B[i]:=max+1

ENDFOR

RETURN B[1..n]  

P[i]  is the  index of the element preceding a[i] in optimal subsequence. 
Using P[1..n]  simplifies  constructing the solution
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Longest common subsequence

Example:

a:   2   1   4   3   2

b:   1   3   4   2  

Common subsequences:

1,   3

1,   2

4,   2

1,   3,   2

1,   4,   2

Variant:   determine LCS consisting of  
consecutive elements

Example:

a:   2   1   3   4   5

b:   1   3   4   2  

Common subsequences:

1,   3

3,   4

1,   3,   4
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Longest common subsequence

1. Structure of optimal solutions

Let P(i,j) be the problem determining LCS of sequences  a[1..i]  and 
b[1..j].  If a[i]=b[j] then the optimal solution  contains this common 
element; the rest is represented by optimal solution of P(i-1,j-1) 
(i.e. determining LCS of a[1..i-1] and b[1..j-1]). If a[i]<>b[j] then  
optimal solution  coincides to the best of the solutions of  
subproblems P(i-1,j) and P(i,j-1).

1. Recurrence relation.  Let L(i,j) the  length of the optimal solution 
of P(i,j). Then:

               0                                 if  i=0   or   j=0

L[i,j]=      1+L[i-1,j-1]                  if a[i]=b[j]

               max{L[i-1,j],L[i,j-1]}     othereise
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Longest common subsequence

Example:

a:   2   1   4   3   2

b:   1   3   4   2  

           0                 if  i=0   or   j=0

L[i,j]=  1+L[i-1,j-1]        if a[i]=b[j]

           max{L[i-1,j],L[i,j-1]}     otherwise

   

       0      1      2      3      4

0     0      0      0      0      0

1     0      0      0      0      1

2     0      1      1      1      1 

3     0      1      1       2      2 

4     0      1      2       2      2 

5     0      1      2       2      3
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Longest common sequence

Recurrence relation: 

           0            daca  i=0   sau   j=0

L[i,j]=  1+L[i-1,j-1]        daca a[i]=b[j]

           max{L[i-1,j],L[i,j-1]}     altfel 

calcul(a[1..n],b[1..m])

FOR i:=0,n DO L[i,0]:=0 ENDFOR

FOR j:=1,m DO L[0,j]:=0 ENDFOR

FOR i:=1,n DO

  FOR j:=1,m DO

   IF a[i]=b[j] 

   THEN  L[i,j]:=L[i-1,j-1]+1 

   ELSE 

     L[i,j]:=max(L[i-1,j],L[i,j-1])

   ENDIF

ENDFOR ENDFOR

RETURN L[0..n,0..m]
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Longest increasing subsequence
Constructing the  solution 

(recursively):

Construction(i,j)

IF i>=1 AND j>=1 THEN

    IF a[i]=b[j] 

   THEN 

        construction(I-1,j-1)

        k:=k+1

        c[k]:=a[I]

   ELSE

        IF L[i-1,j]>L[i,j-1]

        THEN  construction(i-1,j)

        ELSE  construction(i,j-1)

ENDIF ENDIF ENDIF                  
  

Observations:

• a, b, c si k are global vars
• Before calling the function 

we initialize  k (k:=0) 
• Main call: 

 

construction(n,m)
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Application:  discrete knapsack

The knapsack problem

Let us consider a set of n objects. Each object is characterized by its 
weight (or dimension - d) and its value (or profit - p). We want to 
fill in a knapsack of capacity C such that the total value of the 
selected objects is maximal.

Variants:

(i) Continuous variant:  entire objects or part of objects can be 
selected. The components of the solution are from [0,1].

(ii) Discrete variant (0-1):  an object either is entirely transferred into 
the knapsack or is not transferred. The solution components are 
from {0,1}
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Application:  discrete knapsack

Assumption:  

         the capacity C and the dimensions d1,…,dn are natural numbers

The problem can be reformulated as:

find (s1,s2,…,sn)  with si in {0,1} such that:

     s1d1 +…+ sndn <= C (constraint)

                  s1p1 +…+ snpn  is maximal                   (optimization criterion)

Remark

the greedy technique can be applied but it does not guarantee the 
optimality                     
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Application:  discrete knapsack

Example:  n=3, 

C=5,  

d1=1, d2=2, d3=3

p1=6, p2=10, p3=12

Relative profit:

pr1=6, pr2=5, pr3=4

Greedy idea:
• Sort decreasingly the set of 

objects on the relative profit (pi/di)

• Select the elements until the 
knapsack is filled

Greedy solution:  (1,1,0)

Total value:   V=16

Remark:  this is not the optimal solution;  

               the solution (0,1,1) is better since V=22

Assumption: the object sizes and the knapsack capacity are natural 
numbers
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Application:  discrete knapsack

1. Analyzing the structure of an optimal solution

Let P(i,j) be the generic problem of selecting from the set of objects 
{o1,…,oi} in order to fill in a knapsack of capacity j.

Remarks:
• P(n,C) is the initial problem
• If i<n, j<C then P(i,j) is a subproblem of P(n,C)
• Let s(i,j) be an optimal solution of P(i,j). There are two situations:

– si=1  (the object oi is selected) => this lead us to the subproblem 
P(i-1,j-di) and if s(i,j) is optimal then s(i-1,j-di) should be optimal

– si=0 (the object oi is not selected) => this lead us to the subproblem 
P(i-1,j) and if s(i,j) is optimal then s(i-1,j) should be optimal

         Thus the solution s has the optimal substructure property
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Application:  discrete knapsack

2. Find a recurrence relation

Let V(i,j) be the total value corresponding to an optimal solution of P(i,j)

               0           if i=0  or j=0      (the set is empty or the                  
              knapsack has not capacity at all)

V(i,j) =    V(i-1,j)             if di>j  or V(i-1,j)>V(i-1,j-di)+ pi 

                          (either the object i doesn’t fit the knapsack or by              
    selecting it we obtain a worse solution than by not                
selecting it)           

                

              V(i-1,j-di)+pi     otherwise
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Application:  discrete knapsack

The recurrence relation can be written also as:

               0                                               if i=0  or j=0

V(i,j) =    V(i-1,j)                                      if di>j

               max{V(i-1,j), V(i-1,j-di)+ pi }     if di<=j

Remarks:  
• for the problem P(n,C) the table V has (n+1) rows and (C+1) 

columns 
• V(n,C) gives us the value corresponding to the optimal solution        
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Application:  discrete knapsack

Example:

               0                      if i=0  or j=0

V(i,j) =    V(i-1,j)                         if di>j

               max{V(i-1,j), 

                       V(i-1,j-di)+ pi }     if di<=j

d:   1   2   3

p:   6  10  12

V

      0      1      2      3      4      5

0    0      0      0      0      0      0

1    0      6      6      6      6      6

2    0      6     10     16    16    16

3    0      6     10     16    18    22
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Application:  discrete knapsack

3.  Developing the recurrence 
relation

               0                      if i=0  or j=0

V(i,j) =    V(i-1,j)                         if di>j

               max{V(i-1,j), 

                       V(i-1,j-di)+ pi }     if di<=j

Algorithm:

computeV (p[1..n],d[1..n],C)

   FOR i:=0,n DO V[i,0]:=0 ENDFOR

   FOR j:=1,n DO V[0,j]:=0 ENDFOR

   FOR i:=1,n DO

        FOR j:=1,C  DO

           IF j<d[i] THEN V[i,j]:=V[i-1,j]

           ELSE

                V[i,j]:=max(V[i-1,j],V[i-1,j-d[i]]+p[i])

           ENDIF

        ENDFOR

   ENDFOR

   RETURN V[0..n,0..C]
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Application:  discrete knapsack

1. Constructing the solution

Example:

      0      1      2      3      4      5

0    0      0      0      0      0      0

1    0      6      6      6      6      6

2    0      6     10     16    16    16

3    0      6     10     16    18    22       
        

Steps:

• Compare V[3,5] with V[2,5]. Since 
they are different it means that the 
object o3 is selected

• Go to V[2,5-d3]=V[2,2]=10 and 
compare it  with V[1,2]=6. Since 
they are different it means that also 
o2 is selected

• Go to V[1,2-d2]=V[1,0]=0. Since the 
current capacity is 0 we cannot 
select another object

Thus the solution is {o2,o3} or s=(0,1,1)
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Application:  discrete knapsack

1. Constructing the solution

Example:

      0      1      2      3      4      5

0    0      0      0      0      0      0

1    0      6      6      6      6      6

2    0      6     10     16    16    16

3    0      6     10     16    18    22       
        

Algorithm:

Construct(V[0..n,0..C],d[1..n])

  FOR i:=1,n DO s[i]:=0 ENDFOR

  i:=n;   j:=C

  WHILE i>0 and j>0 DO

     WHILE (i>1) AND (V[i,j]=V[i-1,j]) 

            DO i:=i-1

     ENDWHILE

     s[i]:=1

     j:=j-d[i]

     i:=i-1

  ENDWHILE

  RETURN s[1..n]
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Application:  discrete knapsack

Remark

      0      1      2      3      4      5

0    0      0      0      0      0      0

1    0      6      6      6      6      6

2    0      6     10     16    16    16

3    0      6     10     16    18    22       
        

To compute V[3,5] and to construct the 
solution only the marked values  
are needed

Thus  the number of computations could 
be reduced by computing only the 
values which are necessary

We can do this by combining the 
top-down approach with the idea 
of storing the computed values in a 
table

This is the so-called memoization 
technique                
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Memory functions (memoization)

Goal: solve only the subproblems that are necessary and  solve 
them only once

Basic idea:  combine the top-down approach with the bottom-up 
approach 

Motivation:
– The classic top-down approach solves only the necessary 

subproblems but common subproblems are solved more than 
once (this leads to an inefficient algorithm)

– The classic bottom-up approach solves all subproblems but even 
the common ones are solved only once
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Memory functions (memoization)

Steps in applying the memoization:

• Initialize the table with a virtual 
value (this value should be 
different from any value which 
could be obtained during the 
computations)

• Compute the value we are 
searching for (e.g. V[n,C]) in a 
recursive manner by storing in 
the same time the computed 
values in the table and using 
these values any time it is 
possible

Virtual initialization:
  FOR i:=0,n DO
    FOR j:=0,C DO  V[i,j]:=-1 ENDFOR
 ENDFOR

Recursive function:
comp(i,j)
IF V[i,j]<>-1 THEN RETURN V[i,j]
ELSE
  IF i=0 OR j=0 THEN V[i,j]:=0
  ELSE
     IF j<d[i] THEN V[i,j]:=comp(i-1,j)
     ELSE
        V[i,j] :=
              max(comp(i-1,j),comp(i-1,j-d[i])+p[i])
     ENDIF  ENDIF
  RETURN V[i,j]
ENDIF

Remark:  p[1..n], d[1..n] and 
V[0..n,0..C] are global variables
Call: comp(n,C)
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Application: optimal multiplication of matrices

Given n matrices  A1, A2, …,  An   to be multiplied in this order 
determine how to group the matrices such that the number of 
scalar multiplications is minimized

Remarks

1. The dimensions of matrices are compatible. Let us suppose that 
they are denoted by  p0,p1,….pn and the matrix Ai has pi-1 rows 
and pi columns

1. Different groupings of factors lead to the same result (since 
matrices multiplication is associative) but they can lead to 
different values for the number of scalar multiplications
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Application: optimal multiplication of matrices

Example:   Let A1, A2 and A3 be three matrices having the dimensions: 
 (2,20),  (20,5) and (5,10)  

                   p0=2   p1=20   p2=5   p3=10      

We consider the following groupings:

• (A1*A2)*A3  - this needs (2*20*5)+2*5*10=300 scalar 
multiplications

• A1*(A2*A3) – this needs (20*5*10)+2*20*10=1400 scalar 
multiplications            

Remark:  for large values of n the number of possible groupings can 
be very large
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Application: optimal multiplication of matrices

In the general case the grouping process is a hierarchical one:

• The upper level define the grouping corresponding to the last 
multiplication

• The other levels correspond to groupings of  the remaining 
factors

We identify a grouping by the position of the last multiplication. For 
instance the grouping 

                          (A1*…*Ak)*(Ak+1*…*An) 

         is specified by the value k
There are (n-1) possible groupings at the upper level (1<=k<n-1) but 

to each upper level grouping correspond a lot of groupings of 
the two factors A1*…*Ak   and Ak+1*…*An
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Application: optimal multiplication of matrices

The numbers of groupings for  a product of n factors is:

             1          n<=2
K(n)=
             K(1)*K(n-1)+…+ K(i)*K(n-i)+…+K(n-1)*K(1)        n>2

Remark:
K(n)=C(n-1) where C(0),C(1) … are the Catalan’s numbers  which 

satisfy:

                        C(n)=Comb(2n, n)/(n+1)

The order of K(n) is almost 4n-1/(n-1)3/2

                                   Thus an exhaustive search is not at all efficient !
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Application: optimal multiplication of matrices

1. Analyzing the structure of an optimal solution

Let us denote by A(i..j) the product Ai*Ai+1*…*Aj   (i<=j)

If the optimal multiplication corresponds to a grouping at position k 
(i<=k<j) then the computation of A(i..k) and A(k+1..j) should also 
be optimal (otherwise the computation of A(i..j) wouldn’t be 
optimal)

Thus the property of optimal substructure is satisfied 
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Application: optimal multiplication of matrices

2.  Constructing a recurrence relation

Let us denote by c(i,j) the number of scalar multiplications necessary 
to compute A(i..j).  

             0     if i=j
c(i,j)=
             min{c(i,k)+c(k+1,j)+pi-1pkpj | i<=k<j}         if i<j

Cost of computing
A(i..k)

Cost of computing
A(k+1..j)

Cost of multiplying
A(i..j) with A(k+1..j)

All values of k are tried and the best one is chosen
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Application: optimal multiplication of matrices

3. Developing the recurrence 
relation

             0     if i=j
c(i,j)=
             min{c(i,k)+c(k+1,j)
                            +pi-1pkpj | i<=k<j},

                                             if i<j

Example

p0=2
p1=20
p2=5
p3=10

Only the upper triangular part of the 
table will be used

             
      1        2        3

1    0       200    300

2     -        0       1000

1 -        -         0

The elements are computed starting with 
the diagonal (j-i=0), followed by the 
computation of elements which 
satisfy j-i=1 and so on …
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Application: optimal multiplication of matrices

3. Developing the recurrence 
relation

             0     if i=j
c(i,j)=
             min{c(i,k)+c(k+1,j)
                            +pi-1pkpj | i<=k<j},

                                             if i<j

Let q=j-i. The table will be filled in 
for q varying from 1 to n-1

During the computation of c the 
index of grouping is also 
stored in a table s.

s(i,j) = k of the optimal grouping of 
A(i..j)

Algorithm
Compute(p[0..n])
 FOR i:=1,n DO c[i,i]:=0 ENDFOR
 FOR q:=1,n-1 DO
    FOR i:=1,n-q DO
       j:=i+q
       c[i,j]:=c[i,i]+c[i+1,j]+p[i-1]*p[i]*p[j]
       s[i,j]:=i
       FOR k:=i+1,j-1 DO
          r:=c[i,k]+c[k+1,j]+p[i-1]*p[k]*p[j] 
          IF c[i,j]>r THEN  c[i,j]:=r
                                     s[i,j]:=k
          ENDIF
      ENDFOR
    ENDFOR   ENDFOR

 RETURN c[1..n,1..n],s[1..n,1..n] 
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Application: optimal multiplication of matrices

Complexity analysis:

Problem size:  n

Dominant operation:  
multiplication

Efficiency class: θ(n3)

Algorithm
Compute(p[0..n])
 FOR i:=1,n DO c[i,i]:=0 ENDFOR
 FOR q:=1,n-1 DO
    FOR i:=1,n-q DO
       j:=i+q
       c[i,j]:=c[i,i]+c[i+1,j]+p[i-1]*p[i]*p[j]
       s[i,j]:=i
       FOR k:=i+1,j-1 DO
          r:=c[i,k]+c[k+1,j]+p[i-1]*p[k]*p[j] 
          IF c[i,j]>r THEN  c[i,j]:=r
                                     s[i,j]:=k
          ENDIF
      ENDFOR
    ENDFOR   ENDFOR
 RETURN c[1..n,1..n],s[1..n,1..n]
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Application: optimal multiplication of matrices

1. Constructing the solution

Variants of the problem:

• Find out the minimal number of scalar multiplications
          Solution:   this is given by c(1,n)

• Compute A(1..n) in a optimal manner
Solution:   recursive algorithm (opt_mul)

• Identify the optimal groupings (placement of parentheses)
Solution:   recursive algorithm (opt_group)
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Application: optimal multiplication of matrices

Computation of  A(1..n) in a optimal manner

Hypothesis: Let us suppose that
• A[1..n] is a global  array of matrices (A[i] is Ai)

•  s[1..n,1..n] is a global variable and classic_mul is a function for 
computing the product of two matrices.

opt_mul(i,j)
  IF i=j THEN RETURN A[i]
  ELSE
       X:= opt_mul(i,s[i,j]) 
       Y:= opt_mul(s[i,j]+1,j)
       Z:= classic_mul(X,Y)
       RETURN Z
ENDIF
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Application: optimal multiplication of matrices

Printing the optimal grouping (the positions where the product is split)

opt_group(i,j)
  IF i<>j THEN
              opt_group(i,s[i,j])
              WRITE s[i,j]
              opt_group(s[i,j]+1,j)
  ENDIF
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Application: transitive closure of a binary relation

Let   R⊆ {1,2,…,n}x{1,2,…,n}  be a binary relation.  Its transitive closure 
is the smallest (in the sense of set inclusion) relation R* which is 
transitive and includes R

R* has the following property:

“ if i and j are from {1,…,n} and there exists i1,i2,….im such that 

• i1Ri2, …., im-1Rim
• i1=i and im=j

then i R j”

Examples:  R={(1,2),(2,3)}      R*={(1,2),(2,3),(1,3)}
                   
                   R={(1,2),(2,3),(3,1)}     
                   R*={(1,2),(2,3),(3,1),(1,3),(1,1), (2,1),(2,2),(3,2),(3,3)}
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Application: transitive closure of a binary relation

Even if this is not an optimization problem it can be solved by using the 
idea of dynamic programming of deriving a recurrence relation.

R* is successively constructed starting from R0=R and using R1, R2,…
Rn=R*

The intermediate relations Rk (k=1..n) are defined as follows:

                     i Rk j   < = >   i Rk-1 j  or i Rk-1 k and k Rk-1 j

Example:
R={(1,2),(2,3)}                        R1=R
R2={(1,2),(2,3),(1,3)}              R*=R3 ={(1,2),(2,3),(1,3)} 
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Application: transitive closure of a binary relation

Representation of binary relations:

Let us consider that a binary relation is represented using a n*n matrix 
whose elements are defined as follows

             1        if  iRj
r(i,j) = 
             0        if not iRj

Example:   R ={(1,2),(2,3)} 
        0  1  0
r=     0   0  1
        0   0  0
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Application: transitive closure of a binary relation

Recurrence relation for the matrices:

                    1    if  rk-1(i,j)=1 OR  (rk-1(i,k)=1 AND rk-1(k,j)=1)
rk(i,j)    =    
                    0    otherwise

Example:
        0  1  0                 0  1  0              0  1  1             0  1  1
r=    0   0  1         r1=  0  0  1       r2=  0  0  1      r3=  0  0  1
       0   0  0                 0  0  0              0  0  0             0  0  0
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Application: transitive closure of a binary relation

Warshall’s algorithm

It develops the 
recurrence 
relationship on 
matrices by using 
two matrices r1 
and r2

                      

Closure(r[1..n,1..n])
r2[1..n,1..n]:=r[1..n,1..n]
FOR k:=1,n DO
   r1[1..n,1..n]:=r2[1..n,1..n]
   FOR i:=1,n DO
     FOR j:=1,n DO
       IF r1[i,j]=0 OR r1[i,k]=1 AND r1[k,j]=1
           THEN r2[i,j]=1
            ELSE r2[i,j]=0 
       ENDIF
     ENDFOR
   ENDFOR
 ENDFOR
 RETURN r2[1..n,1..n]                      


