
1

Dynamic programming

2

Outline

• What is dynamic programming ?

• Main steps in applying dyamic programming

• Recurrence relations: ascending versus descendent

• Applications

3

What is dynamic programming ?

• An algorithm design technique for solving problems that can be
decomposed in overlapping subproblems – can be applied to
optimization problems with optimal substructure property.

• Main feature: each suproblem solved once. Its solution is stored
in a table and then used to solve initial problem.

Obs.
• Developed in the 1950's by Richard Bellman as a general

optimization method.
• “Programming” in DP refers to planning and not coding on a

computer.
• Dynamic = manner that one constructs tables holding partial

solutions

4

Main steps in applying dynamic programming

Analyze problem structure: establish the way in which the solution of
the problem depends on solutions of subproblems .

Identify/develop recurrence relation connecting problem and
subproblem solutions. Usually the recurrence relation involves
the optimum criterion.

Developing solution

5

Outline

• What is dynamic programming ?

• Main steps in applying dynamic programming

• Recurrence relations: ascending versus descendent

• Applications

6

Recurrence relations

Two main approaches:

• bottom up: start from base case and generate new values.

• top down: value to compute is expressed by previous values
that have to be,in turn, computed. Usually implemented
recursively, inefficient unless we use memoization.

7

Recurrence relations
Exemplu 1. m-th element of Fibonacci seq.
 f1=f2=1; fn=fn-1+fn-2 for n>2

Top down (recursive):

fib(m)

IF (m=1) OR (m=2) THEN
RETURN 1

ELSE

 RETURN fib(m-1)+fib(m-2)

ENDIF

Complexity:

 0 if m<=2

T(m) =

 T(m-1)+T(m-2)+1 if
m>2

T:

0 0 1 2 4 7 12 20 33 54 …

Fibonacci:

1 1 2 3 5 8 13 21 34 55 …

fn =O(phin),

phi=(1+sqrt(5))/2

exponential complexity!

8

Recurrence relation

Exemplu 1. m-lea element of Fibonacci sequence

 f1=f2=1; fn=fn-1+fn-2 for n>2

Bottom up:

fib(m)

f[1]←1; f[2] ← 1;

FOR i ← 3,m DO

 f[i] ← f[i-1]+f[i-2]

ENDFOR

RETURN f[m]

Complexity:

T(m)=m-2 => linear complexity

Obs: time efficienccy
compensated by using more
space

fib(m)

f1 ← 1; f2 ← 1;

FOR i ← 3,m DO

 f2 ← f1+f2; f1 ← f2-f1;

ENDFOR

RETURN f2

9

Recurrence relations

Example 2. binomial coefficients C(n,k) (combinari de n luate cate k)

 0 if n<k

C(n,k)= 1 if k=0 or n=k
 C(n-1,k)+C(n-1,k-1) otherwise

Top down:

comb(n,k)

 IF (k=0) OR (n=k) THEN

 RETURN 1

 ELSE

 RETURN comb(n-1,k)+comb(n-1,k-1)

 ENDIF

Complexity:

Dim pb: (n,k)

Dominant op: addition

T(n,k)=0 if k=0 or k=n

 T(n-1,k)+T(n-1,k-1)

Nr additions = nr nodes in
recursive call tree.

T(n,k) >= 2 min{k,n-k}

T(n,k) Ω(2 min{k,n-k})

10

Recurrence relations

Exemplu 2. Computing binomial coefficients C(n,k)

 0 if n<k

C(n,k)= 1 if k=0 sau n=k
 C(n-1,k)+C(n-1,k-1) otherwise

Bottom up: Pascal's triangle

 0 1 2 … k-1 k

 0 1

 1 1 1

 2 1 2 1

 …

 k 1 … 1

 …

 n-1 1 C(n-1,k-1) C(n-1,k)

 n 1 C(n,k)

11

 Recurrence relations
Algorithm:
Comb(n,k)
FOR i←0,n DO
 FOR j ← 0,min{i,k} DO
 IF (j=0) OR (j=i) THEN

C[i,j] ← 1
 ELSE
 C[i,j] ← C[i-1,j]+C[i-1,j-1]
 ENDIF
 ENDFOR
ENDFOR
RETURN C[n,k]

Complexity:

Dimension of the pb: (n,k)

Dominant operation: addition

T(n,k)=(1+2+…+k-1) +(k+…+k)

 =k(k-1)/2+k(n-k+1)

T(n,k)(nk)

Obs. If we only have to compute C(n,k) it is enough to use a table
with k elements as a additional space.

12

Outline

• What is dynamic programming ?

• Main steps in applying dynamic programming

• Recurrence relations: ascending versus descendent

• Applications

Algoritmica - Curs 11 13

Applications of dynamic programming

Longest (strictly) increasing sequence

Let a1,a2,…,an be a sequence. Find the longest subsequence such that
aj1<aj2<…<ajk

Example:

 a = (2,5,1,3,6,8,2,10,4)

Increasing subsequences of length 5 (maximum length):

 (2,5,6,8,10)

 (2,3,6,8,10)

 (1,3,6,8,10)

14

Longest increasing subsequene

1. Analysis.

Let s=(aj1, aj2,…,aj(k-1) ,ajk) be the optimal solution. Then none of the
elements in a[1..n] after ajk is greater than ajk . Moreover, no
element with index between j(k-1) and jk has a value between
corresponding elements of subsequence s (or s would no longer
be optimal).

Show that s’=(aj1, aj2,…,aj(k-1)) is an optimal soln for LIS ending in aj(k-1) .
Assume s’ not optimal. Then there is a longer subsequence s”.
Adding to s” element ajk we obtain a solution better than s,
contradicting the fact that s is optimal.

In conclusion: the problem has the optimal substructure property.

15

Longest increasing subsequence

1. Building a recurrence relation

Let Bi be the number of elements of a LIS ending in ai

 1 if i=1

Bi =

 1+ max{Bj | 1<=j<=i-1, aj<ai}

Exemplu:

 a = (2,5,1,3,6,8,2,10,4)

 B = (1,2,1,2,3,4,2,5,3)

16

Longest increasing subsequence

3. Recurrence relation

 1 if i=1

Bi =

 1+max{Bj | 1<=j<=i-1, aj<ai}

Complexity: θ(n2)

calculB(a[1..n])

B[1]←1

FOR i ← 2,n DO

 max ← 0

 FOR j ← 1,i-1 DO

 IF a[j]<a[i] AND max<B[j]

 THEN max ← B[j]

 ENDIF

 ENDFOR

 B[i] ← max+1

ENDFOR

RETURN B[1..n]

Algoritmica - Curs 11 17

Longest increasing subsequene

1. Constructing the
solution

Determine the maximum of
B

Construct s succesively
starting from last
element

Complexity: θ(n)

construire(a[1..n],B[1..n])

m ← 1

FOR i ← 2,n DO

 IF B[i]>B[m] THEN m ← i ENDIF

ENDFOR

k ← B[m]

s[k] ← a[m]

WHILE B[m]>1 DO

 i ← m-1

 WHILE a[i]>=a[m] OR B[i]<>B[m]-1 DO

 i ← i-1

 ENDWHILE

 m ← i; k ← k-1; s[k] ← a[m]

ENDWHILE

RETURN s[1..k]

18

Longest increasing subsequence
construire(a[1..n],B[1..n],P[1..n])

m:=1

FOR i:=2,n DO

 IF B[i]>B[m] THEN m:=i ENDIF

ENDFOR

k:=B[m]

s[k]:=a[m]

WHILE P[m]>0 DO

 m:=P[m]

 k:=k-1

 s[k]:=a[m]

ENDWHILE

RETURN s[1..k]

calculB(a[1..n])

B[1]:=1; P[1]:=0

FOR i:=2,n DO

 max:=0

 P[i]:=0

 FOR j:=1,i-1 DO

 IF a[j]<a[i] AND max<B[j]

 THEN max:=B[j]

 P[i]:=j

 ENDIF

 ENDFOR

 B[i]:=max+1

ENDFOR

RETURN B[1..n]

P[i] is the index of the element preceding a[i] in optimal subsequence.
Using P[1..n] simplifies constructing the solution

20

Longest common subsequence

Example:

a: 2 1 4 3 2

b: 1 3 4 2

Common subsequences:

1, 3

1, 2

4, 2

1, 3, 2

1, 4, 2

Variant: determine LCS consisting of
consecutive elements

Example:

a: 2 1 3 4 5

b: 1 3 4 2

Common subsequences:

1, 3

3, 4

1, 3, 4

21

Longest common subsequence

1. Structure of optimal solutions

Let P(i,j) be the problem determining LCS of sequences a[1..i] and
b[1..j]. If a[i]=b[j] then the optimal solution contains this common
element; the rest is represented by optimal solution of P(i-1,j-1)
(i.e. determining LCS of a[1..i-1] and b[1..j-1]). If a[i]<>b[j] then
optimal solution coincides to the best of the solutions of
subproblems P(i-1,j) and P(i,j-1).

1. Recurrence relation. Let L(i,j) the length of the optimal solution
of P(i,j). Then:

 0 if i=0 or j=0

L[i,j]= 1+L[i-1,j-1] if a[i]=b[j]

 max{L[i-1,j],L[i,j-1]} othereise

Algoritmica - Curs 11 22

Longest common subsequence

Example:

a: 2 1 4 3 2

b: 1 3 4 2

 0 if i=0 or j=0

L[i,j]= 1+L[i-1,j-1] if a[i]=b[j]

 max{L[i-1,j],L[i,j-1]} otherwise

 0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 1

2 0 1 1 1 1

3 0 1 1 2 2

4 0 1 2 2 2

5 0 1 2 2 3

23

Longest common sequence

Recurrence relation:

 0 daca i=0 sau j=0

L[i,j]= 1+L[i-1,j-1] daca a[i]=b[j]

 max{L[i-1,j],L[i,j-1]} altfel

calcul(a[1..n],b[1..m])

FOR i:=0,n DO L[i,0]:=0 ENDFOR

FOR j:=1,m DO L[0,j]:=0 ENDFOR

FOR i:=1,n DO

 FOR j:=1,m DO

 IF a[i]=b[j]

 THEN L[i,j]:=L[i-1,j-1]+1

 ELSE

 L[i,j]:=max(L[i-1,j],L[i,j-1])

 ENDIF

ENDFOR ENDFOR

RETURN L[0..n,0..m]

Algoritmica - Curs 11 24

Longest increasing subsequence
Constructing the solution

(recursively):

Construction(i,j)

IF i>=1 AND j>=1 THEN

 IF a[i]=b[j]

 THEN

 construction(I-1,j-1)

 k:=k+1

 c[k]:=a[I]

 ELSE

 IF L[i-1,j]>L[i,j-1]

 THEN construction(i-1,j)

 ELSE construction(i,j-1)

ENDIF ENDIF ENDIF

Observations:

• a, b, c si k are global vars
• Before calling the function

we initialize k (k:=0)
• Main call:

construction(n,m)

25

Application: discrete knapsack

The knapsack problem

Let us consider a set of n objects. Each object is characterized by its
weight (or dimension - d) and its value (or profit - p). We want to
fill in a knapsack of capacity C such that the total value of the
selected objects is maximal.

Variants:

(i) Continuous variant: entire objects or part of objects can be
selected. The components of the solution are from [0,1].

(ii) Discrete variant (0-1): an object either is entirely transferred into
the knapsack or is not transferred. The solution components are
from {0,1}

26

Application: discrete knapsack

Assumption:

 the capacity C and the dimensions d1,…,dn are natural numbers

The problem can be reformulated as:

find (s1,s2,…,sn) with si in {0,1} such that:

 s1d1 +…+ sndn <= C (constraint)

 s1p1 +…+ snpn is maximal (optimization criterion)

Remark

the greedy technique can be applied but it does not guarantee the
optimality

27

Application: discrete knapsack

Example: n=3,

C=5,

d1=1, d2=2, d3=3

p1=6, p2=10, p3=12

Relative profit:

pr1=6, pr2=5, pr3=4

Greedy idea:
• Sort decreasingly the set of

objects on the relative profit (pi/di)

• Select the elements until the
knapsack is filled

Greedy solution: (1,1,0)

Total value: V=16

Remark: this is not the optimal solution;

 the solution (0,1,1) is better since V=22

Assumption: the object sizes and the knapsack capacity are natural
numbers

28

Application: discrete knapsack

1. Analyzing the structure of an optimal solution

Let P(i,j) be the generic problem of selecting from the set of objects
{o1,…,oi} in order to fill in a knapsack of capacity j.

Remarks:
• P(n,C) is the initial problem
• If i<n, j<C then P(i,j) is a subproblem of P(n,C)
• Let s(i,j) be an optimal solution of P(i,j). There are two situations:

– si=1 (the object oi is selected) => this lead us to the subproblem
P(i-1,j-di) and if s(i,j) is optimal then s(i-1,j-di) should be optimal

– si=0 (the object oi is not selected) => this lead us to the subproblem
P(i-1,j) and if s(i,j) is optimal then s(i-1,j) should be optimal

 Thus the solution s has the optimal substructure property

Algorithmics - Lecture 12 29

Application: discrete knapsack

2. Find a recurrence relation

Let V(i,j) be the total value corresponding to an optimal solution of P(i,j)

 0 if i=0 or j=0 (the set is empty or the
 knapsack has not capacity at all)

V(i,j) = V(i-1,j) if di>j or V(i-1,j)>V(i-1,j-di)+ pi

 (either the object i doesn’t fit the knapsack or by
 selecting it we obtain a worse solution than by not
selecting it)

 V(i-1,j-di)+pi otherwise

Algorithmics - Lecture 12 30

Application: discrete knapsack

The recurrence relation can be written also as:

 0 if i=0 or j=0

V(i,j) = V(i-1,j) if di>j

 max{V(i-1,j), V(i-1,j-di)+ pi } if di<=j

Remarks:
• for the problem P(n,C) the table V has (n+1) rows and (C+1)

columns
• V(n,C) gives us the value corresponding to the optimal solution

Algorithmics - Lecture 12 31

Application: discrete knapsack

Example:

 0 if i=0 or j=0

V(i,j) = V(i-1,j) if di>j

 max{V(i-1,j),

 V(i-1,j-di)+ pi } if di<=j

d: 1 2 3

p: 6 10 12

V

 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 6 6 6 6 6

2 0 6 10 16 16 16

3 0 6 10 16 18 22

Algorithmics - Lecture 12 32

Application: discrete knapsack

3. Developing the recurrence
relation

 0 if i=0 or j=0

V(i,j) = V(i-1,j) if di>j

 max{V(i-1,j),

 V(i-1,j-di)+ pi } if di<=j

Algorithm:

computeV (p[1..n],d[1..n],C)

 FOR i:=0,n DO V[i,0]:=0 ENDFOR

 FOR j:=1,n DO V[0,j]:=0 ENDFOR

 FOR i:=1,n DO

 FOR j:=1,C DO

 IF j<d[i] THEN V[i,j]:=V[i-1,j]

 ELSE

 V[i,j]:=max(V[i-1,j],V[i-1,j-d[i]]+p[i])

 ENDIF

 ENDFOR

 ENDFOR

 RETURN V[0..n,0..C]

Algorithmics - Lecture 12 33

Application: discrete knapsack

1. Constructing the solution

Example:

 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 6 6 6 6 6

2 0 6 10 16 16 16

3 0 6 10 16 18 22

Steps:

• Compare V[3,5] with V[2,5]. Since
they are different it means that the
object o3 is selected

• Go to V[2,5-d3]=V[2,2]=10 and
compare it with V[1,2]=6. Since
they are different it means that also
o2 is selected

• Go to V[1,2-d2]=V[1,0]=0. Since the
current capacity is 0 we cannot
select another object

Thus the solution is {o2,o3} or s=(0,1,1)

Algorithmics - Lecture 12 34

Application: discrete knapsack

1. Constructing the solution

Example:

 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 6 6 6 6 6

2 0 6 10 16 16 16

3 0 6 10 16 18 22

Algorithm:

Construct(V[0..n,0..C],d[1..n])

 FOR i:=1,n DO s[i]:=0 ENDFOR

 i:=n; j:=C

 WHILE i>0 and j>0 DO

 WHILE (i>1) AND (V[i,j]=V[i-1,j])

 DO i:=i-1

 ENDWHILE

 s[i]:=1

 j:=j-d[i]

 i:=i-1

 ENDWHILE

 RETURN s[1..n]

Algorithmics - Lecture 12 35

Application: discrete knapsack

Remark

 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 6 6 6 6 6

2 0 6 10 16 16 16

3 0 6 10 16 18 22

To compute V[3,5] and to construct the
solution only the marked values
are needed

Thus the number of computations could
be reduced by computing only the
values which are necessary

We can do this by combining the
top-down approach with the idea
of storing the computed values in a
table

This is the so-called memoization
technique

Algorithmics - Lecture 12 36

Memory functions (memoization)

Goal: solve only the subproblems that are necessary and solve
them only once

Basic idea: combine the top-down approach with the bottom-up
approach

Motivation:
– The classic top-down approach solves only the necessary

subproblems but common subproblems are solved more than
once (this leads to an inefficient algorithm)

– The classic bottom-up approach solves all subproblems but even
the common ones are solved only once

Algorithmics - Lecture 12 37

Memory functions (memoization)

Steps in applying the memoization:

• Initialize the table with a virtual
value (this value should be
different from any value which
could be obtained during the
computations)

• Compute the value we are
searching for (e.g. V[n,C]) in a
recursive manner by storing in
the same time the computed
values in the table and using
these values any time it is
possible

Virtual initialization:
 FOR i:=0,n DO
 FOR j:=0,C DO V[i,j]:=-1 ENDFOR
 ENDFOR

Recursive function:
comp(i,j)
IF V[i,j]<>-1 THEN RETURN V[i,j]
ELSE
 IF i=0 OR j=0 THEN V[i,j]:=0
 ELSE
 IF j<d[i] THEN V[i,j]:=comp(i-1,j)
 ELSE
 V[i,j] :=
 max(comp(i-1,j),comp(i-1,j-d[i])+p[i])
 ENDIF ENDIF
 RETURN V[i,j]
ENDIF

Remark: p[1..n], d[1..n] and
V[0..n,0..C] are global variables
Call: comp(n,C)

Algorithmics - Lecture 12 38

Application: optimal multiplication of matrices

Given n matrices A1, A2, …, An to be multiplied in this order
determine how to group the matrices such that the number of
scalar multiplications is minimized

Remarks

1. The dimensions of matrices are compatible. Let us suppose that
they are denoted by p0,p1,….pn and the matrix Ai has pi-1 rows
and pi columns

1. Different groupings of factors lead to the same result (since
matrices multiplication is associative) but they can lead to
different values for the number of scalar multiplications

Algorithmics - Lecture 12 39

Application: optimal multiplication of matrices

Example: Let A1, A2 and A3 be three matrices having the dimensions:
 (2,20), (20,5) and (5,10)

 p0=2 p1=20 p2=5 p3=10

We consider the following groupings:

• (A1*A2)*A3 - this needs (2*20*5)+2*5*10=300 scalar
multiplications

• A1*(A2*A3) – this needs (20*5*10)+2*20*10=1400 scalar
multiplications

Remark: for large values of n the number of possible groupings can
be very large

Algorithmics - Lecture 12 40

Application: optimal multiplication of matrices

In the general case the grouping process is a hierarchical one:

• The upper level define the grouping corresponding to the last
multiplication

• The other levels correspond to groupings of the remaining
factors

We identify a grouping by the position of the last multiplication. For
instance the grouping

 (A1*…*Ak)*(Ak+1*…*An)

 is specified by the value k
There are (n-1) possible groupings at the upper level (1<=k<n-1) but

to each upper level grouping correspond a lot of groupings of
the two factors A1*…*Ak and Ak+1*…*An

Algorithmics - Lecture 12 41

Application: optimal multiplication of matrices

The numbers of groupings for a product of n factors is:

 1 n<=2
K(n)=
 K(1)*K(n-1)+…+ K(i)*K(n-i)+…+K(n-1)*K(1) n>2

Remark:
K(n)=C(n-1) where C(0),C(1) … are the Catalan’s numbers which

satisfy:

 C(n)=Comb(2n, n)/(n+1)

The order of K(n) is almost 4n-1/(n-1)3/2

 Thus an exhaustive search is not at all efficient !

Algorithmics - Lecture 12 42

Application: optimal multiplication of matrices

1. Analyzing the structure of an optimal solution

Let us denote by A(i..j) the product Ai*Ai+1*…*Aj (i<=j)

If the optimal multiplication corresponds to a grouping at position k
(i<=k<j) then the computation of A(i..k) and A(k+1..j) should also
be optimal (otherwise the computation of A(i..j) wouldn’t be
optimal)

Thus the property of optimal substructure is satisfied

Algorithmics - Lecture 12 43

Application: optimal multiplication of matrices

2. Constructing a recurrence relation

Let us denote by c(i,j) the number of scalar multiplications necessary
to compute A(i..j).

 0 if i=j
c(i,j)=
 min{c(i,k)+c(k+1,j)+pi-1pkpj | i<=k<j} if i<j

Cost of computing
A(i..k)

Cost of computing
A(k+1..j)

Cost of multiplying
A(i..j) with A(k+1..j)

All values of k are tried and the best one is chosen

Algorithmics - Lecture 12 44

Application: optimal multiplication of matrices

3. Developing the recurrence
relation

 0 if i=j
c(i,j)=
 min{c(i,k)+c(k+1,j)
 +pi-1pkpj | i<=k<j},

 if i<j

Example

p0=2
p1=20
p2=5
p3=10

Only the upper triangular part of the
table will be used

 1 2 3

1 0 200 300

2 - 0 1000

1 - - 0

The elements are computed starting with
the diagonal (j-i=0), followed by the
computation of elements which
satisfy j-i=1 and so on …

Algorithmics - Lecture 12 45

Application: optimal multiplication of matrices

3. Developing the recurrence
relation

 0 if i=j
c(i,j)=
 min{c(i,k)+c(k+1,j)
 +pi-1pkpj | i<=k<j},

 if i<j

Let q=j-i. The table will be filled in
for q varying from 1 to n-1

During the computation of c the
index of grouping is also
stored in a table s.

s(i,j) = k of the optimal grouping of
A(i..j)

Algorithm
Compute(p[0..n])
 FOR i:=1,n DO c[i,i]:=0 ENDFOR
 FOR q:=1,n-1 DO
 FOR i:=1,n-q DO
 j:=i+q
 c[i,j]:=c[i,i]+c[i+1,j]+p[i-1]*p[i]*p[j]
 s[i,j]:=i
 FOR k:=i+1,j-1 DO
 r:=c[i,k]+c[k+1,j]+p[i-1]*p[k]*p[j]
 IF c[i,j]>r THEN c[i,j]:=r
 s[i,j]:=k
 ENDIF
 ENDFOR
 ENDFOR ENDFOR

 RETURN c[1..n,1..n],s[1..n,1..n]

Algorithmics - Lecture 12 46

Application: optimal multiplication of matrices

Complexity analysis:

Problem size: n

Dominant operation:
multiplication

Efficiency class: θ(n3)

Algorithm
Compute(p[0..n])
 FOR i:=1,n DO c[i,i]:=0 ENDFOR
 FOR q:=1,n-1 DO
 FOR i:=1,n-q DO
 j:=i+q
 c[i,j]:=c[i,i]+c[i+1,j]+p[i-1]*p[i]*p[j]
 s[i,j]:=i
 FOR k:=i+1,j-1 DO
 r:=c[i,k]+c[k+1,j]+p[i-1]*p[k]*p[j]
 IF c[i,j]>r THEN c[i,j]:=r
 s[i,j]:=k
 ENDIF
 ENDFOR
 ENDFOR ENDFOR
 RETURN c[1..n,1..n],s[1..n,1..n]

Algorithmics - Lecture 12 47

Application: optimal multiplication of matrices

1. Constructing the solution

Variants of the problem:

• Find out the minimal number of scalar multiplications
 Solution: this is given by c(1,n)

• Compute A(1..n) in a optimal manner
Solution: recursive algorithm (opt_mul)

• Identify the optimal groupings (placement of parentheses)
Solution: recursive algorithm (opt_group)

Algorithmics - Lecture 12 48

Application: optimal multiplication of matrices

Computation of A(1..n) in a optimal manner

Hypothesis: Let us suppose that
• A[1..n] is a global array of matrices (A[i] is Ai)

• s[1..n,1..n] is a global variable and classic_mul is a function for
computing the product of two matrices.

opt_mul(i,j)
 IF i=j THEN RETURN A[i]
 ELSE
 X:= opt_mul(i,s[i,j])
 Y:= opt_mul(s[i,j]+1,j)
 Z:= classic_mul(X,Y)
 RETURN Z
ENDIF

Algorithmics - Lecture 12 49

Application: optimal multiplication of matrices

Printing the optimal grouping (the positions where the product is split)

opt_group(i,j)
 IF i<>j THEN
 opt_group(i,s[i,j])
 WRITE s[i,j]
 opt_group(s[i,j]+1,j)
 ENDIF

Algorithmics - Lecture 12 50

Application: transitive closure of a binary relation

Let R⊆ {1,2,…,n}x{1,2,…,n} be a binary relation. Its transitive closure
is the smallest (in the sense of set inclusion) relation R* which is
transitive and includes R

R* has the following property:

“ if i and j are from {1,…,n} and there exists i1,i2,….im such that

• i1Ri2, …., im-1Rim
• i1=i and im=j

then i R j”

Examples: R={(1,2),(2,3)} R*={(1,2),(2,3),(1,3)}

 R={(1,2),(2,3),(3,1)}
 R*={(1,2),(2,3),(3,1),(1,3),(1,1), (2,1),(2,2),(3,2),(3,3)}

Algorithmics - Lecture 12 51

Application: transitive closure of a binary relation

Even if this is not an optimization problem it can be solved by using the
idea of dynamic programming of deriving a recurrence relation.

R* is successively constructed starting from R0=R and using R1, R2,…
Rn=R*

The intermediate relations Rk (k=1..n) are defined as follows:

 i Rk j < = > i Rk-1 j or i Rk-1 k and k Rk-1 j

Example:
R={(1,2),(2,3)} R1=R
R2={(1,2),(2,3),(1,3)} R*=R3 ={(1,2),(2,3),(1,3)}

Algorithmics - Lecture 12 52

Application: transitive closure of a binary relation

Representation of binary relations:

Let us consider that a binary relation is represented using a n*n matrix
whose elements are defined as follows

 1 if iRj
r(i,j) =
 0 if not iRj

Example: R ={(1,2),(2,3)}
 0 1 0
r= 0 0 1
 0 0 0

Algorithmics - Lecture 12 53

Application: transitive closure of a binary relation

Recurrence relation for the matrices:

 1 if rk-1(i,j)=1 OR (rk-1(i,k)=1 AND rk-1(k,j)=1)
rk(i,j) =
 0 otherwise

Example:
 0 1 0 0 1 0 0 1 1 0 1 1
r= 0 0 1 r1= 0 0 1 r2= 0 0 1 r3= 0 0 1
 0 0 0 0 0 0 0 0 0 0 0 0

Algorithmics - Lecture 12 54

Application: transitive closure of a binary relation

Warshall’s algorithm

It develops the
recurrence
relationship on
matrices by using
two matrices r1
and r2

Closure(r[1..n,1..n])
r2[1..n,1..n]:=r[1..n,1..n]
FOR k:=1,n DO
 r1[1..n,1..n]:=r2[1..n,1..n]
 FOR i:=1,n DO
 FOR j:=1,n DO
 IF r1[i,j]=0 OR r1[i,k]=1 AND r1[k,j]=1
 THEN r2[i,j]=1
 ELSE r2[i,j]=0
 ENDIF
 ENDFOR
 ENDFOR
 ENDFOR
 RETURN r2[1..n,1..n]

