Backtracking

Outline

- What is backtracking?
- The general structure of the algorithm
- Applications: generating permutations, generating subsets, n-queens problem, map coloring, path finding, maze problem

What is backtracking?

- It is a systematic search strategy of the state-space of combinatorial problems
- It is mainly used to solve problems which ask for finding elements of a set which satisfy some constraints. Most of the problems which can be solved by backtracking have the following general form:
" Find a subset S of $A_{1} \times A_{2} \times \ldots \times A_{n}\left(A_{k}-\right.$ finite sets $)$ such that each element $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ satisfies some constraints"

Example: generating all permutations of $\{1,2, \ldots, n\}$

$$
\begin{aligned}
& A_{k}=\{1,2, \ldots, n\} \text { for all } k \\
& s_{i}<>s_{j} \text { for all } i<>j \text { (restriction: distinct components) }
\end{aligned}
$$

What is backtracking?

Basic ideas:

- the solutions are constructed in an incremental manner by finding the components successively
- each partial solution is evaluated in order to establish if it is promising (a promising solution could lead to a final solution while a non-promising one does not satisfy the partial constraints induced by the problem constraints)
- if all possible values for a component do not lead to a promising (valid or viable) partial solution then we come back to the previous component and try another value for it
- backtracking implicitly constructs a state space tree:
- The root corresponds to an initial state (before the search for a solution begins)
- An internal node corresponds to a promising partial solution
- An external node (leaf) corresponds either to a non-promising partial solution or to a final solution

What is backtracking?

Example: state space tree for permutations generation

Outline

- What is backtracking ?
- The general structure of the algorithm
- Applications: generating permutations, generating subsets, n-queens problem, map coloring, path finding, maze problem

The general structure of the algorithm

Basic steps:

1. Choose the representation of solutions
2. Establish the sets A_{1}, \ldots, A_{n} and the order in which their elements are processed
3. Derive from the problem restrictions the conditions which a partial solution should satisfy in order to be promising (valid). These conditions are sometimes called continuation conditions.
4. Choose a criterion to decide when a partial solution is a final one

The general structure of the algorithm

Example: generating permutations

1. Solution representation: each permutation is a vector $\mathrm{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right.$, ... s_{n}) satisfying: $\mathrm{s}_{\mathrm{i}}<>\mathrm{s}_{\mathrm{j}}$ for all $\mathrm{i}<>\mathrm{j}$
2. Sets $A_{1}, \ldots, A_{n}:\{1,2, \ldots, n\}$. Each set will be processed in the natural order of the elements
3. Continuation conditions: a partial solution $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)$ should satisfy $\mathrm{s}_{\mathrm{k}}<>\mathrm{s}_{\mathrm{i}}$ for all $\mathrm{i}<\mathrm{k}$
4. Criterion to decide when a partial solution is a final one: $k=n$

The general structure of the algorithm

Some notation:
$\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)$ partial solution
k - index for constructing s
$A_{k}=\left\{a^{k}{ }_{1}, \ldots, a^{\mathrm{k}}{ }_{m k}\right\}$
$m_{k}=\operatorname{card}\left\{A_{k}\right\}$
i_{k} - index for scanning A_{k}

The general structure of the algorithm

The general structure of the algorithm

The recursive variant:

- Suppose that A_{1}, \ldots, A_{n} and s are global variables
- Let k be the component to be filled in

The algorithm will be called with BT_rec(1)

Try each possible value

Outline

- What is backtracking?
- The general structure of the algorithm
- Applications: generating permutations, generating subsets, n -queens problem, map coloring, path finding, maze problem

Application: generating permutations

```
Backtracking(A ( , A , ,., A A )
    k:=1; i
    WHILE k>0 DO
    ik
    v:=False
    WHILE v=False AND i}\mp@subsup{i}{k}{}<=\mp@subsup{m}{k}{}\mathrm{ DO
        S
            IF (s,...sk})\mathrm{ is valid THEN v:=True
            ELSE i}\mp@subsup{i}{k}{}:=\mp@subsup{i}{k}{}+1 ENDIF ENDWHILE
    IF v=True THEN
    IF "( }\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{k}{})\mathrm{ is a final solution"
        THEN "process the final solution"
        ELSE k:=k+1; i
    ELSE k:=k-1 ENDIF
    ENDWHILE
```

```
permutations(n)
    k:=1; s[k]:=0
    WHILE k>0 DO
    s[k]:=s[k]+1
    v:=False
    WHILE v=False AND s[k]<=n DO
            IF valid(s[1..k])
                THEN v:=True
                ELSE s[k]:=s[k]+1
            ENDWHILE
    IF v=True THEN
    IF k=n
        THEN WRITE s[1..n]
        ELSE k:=k+1; s[k]:=0
    ELSE k:=k-1
    ENDIF ENDIF ENDWHILE

\section*{Application: generating permutations}

\section*{Function to check if a partial solution is a valid one}

\author{
valid(s[1..k]) \\ FOR \(\mathrm{i}:=1, \mathrm{k}-1 \mathrm{DO}\) \\ IF \(\mathrm{s}[\mathrm{k}]=\mathrm{s}[\mathrm{i}]\) \\ THEN RETURN FALSE \\ ENDIF \\ ENDFOR \\ RETURN TRUE
}

Recursive variant:
```

perm_rec(k)

```

IF k=n+1 THEN WRITE s[1..n]
ELSE
FOR i:=1,n DO
s[k]:=i
IF valid(s[1..k])=True
THEN perm_rec(k+1)
ENDIF
ENDFOR
ENDIF

\section*{Outline}
- What is backtracking?
- The general structure of the algorithm
- Applications: generating permutations, generating subsets, n-queens problem, map coloring, path finding, maze problem

\section*{Application: generating subsets}

Let \(A=\left\{a_{1}, \ldots, a_{n}\right\}\) be a finite set. Generate all subsets of \(A\) having \(m\) elements.

Example: \(A=\{1,2,3\}, m=2, S=\{\{1,2\},\{1,3\},\{2,3\}\}\)
- Solution representation: each subset is represented by its characteristic vector ( \(\mathrm{s}_{\mathrm{i}}=1\) if \(\mathrm{a}_{\mathrm{i}}\) belongs to the subset and \(\mathrm{s}_{\mathrm{i}}=0\) otherwise)
- Sets \(A_{1}, \ldots, A_{n}:\{0,1\}\). Each set will be processed in the natural order of the elements (first 0 then 1)
- Continuation conditions: a partial solution ( \(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\) ) should satisfy \(\mathrm{s}_{1}+\mathrm{s}_{2}+\ldots+\mathrm{s}_{\mathrm{k}}<=\mathrm{m}\) (the partial subset contains at most m elements)
- Criterion to decide when a partial solution is a final one: \(\mathrm{s}_{1}+\mathrm{s}_{2}+\) \(\ldots+\mathrm{s}_{\mathrm{k}}=\mathrm{m}\) ( m elements were already selected)

\section*{Application: generating subsets}

\section*{Iterative algorithm}
```

subsets(n,m)
$\mathrm{k}:=1$
$\mathrm{s}[\mathrm{k}]:=-1$
WHILE k>0 DO
$\mathrm{s}[\mathrm{k}]:=\mathrm{s}[\mathrm{k}]+1$;
IF s[k]<=1 AND
sum $(\mathrm{s}[1 . . \mathrm{k}])<=m$

```
    THEN
        IF sum(s[1..k])=m
        THEN \(s[k+1 . . n]=0\)
            WRITE s[1..n]
        ELSE \(k:=k+1 ; ~ s[k]:=-1\)
    ENDIF
    ELSE k:=k-1
    ENDIF ENDWHILE

\section*{Recursive algorithm}
subsets_rec(k)
IF sum(s[1..k-1])=m
THEN
\[
\mathrm{s}[\mathrm{k} . . \mathrm{n}]=0
\]

WRITE s[1..n]

\section*{ELSE}
s[k]:=0; subsets_rec(k+1);
s[k]:=1; subsets_rec(k+1);
ENDIF

Rmk: sum(s[1..k]) computes the sum of the first \(k\) components of \(\mathrm{s}[1 . . \mathrm{n}]\)

\section*{Outline}
- What is backtracking ?
- The general structure of the algorithm
- Applications: generating permutations, generating subsets, n-queens problem, map coloring, path finding, maze problem

\section*{Application: n-queens problem}

Find all possibilities of placing \(n\) queens on a \(n\)-by-n chessboard such that they does not attack each other:
- each line contains only one queen
- each column contains only one queen
- each diagonal contains only one queen

This is a classical problem proposed by Max Bezzel (1850) an studied by several mathematicians of the time (Gauss, Cantor)
Examples: if \(n<=3\) there is no solution; if \(n=4\) there are two solutions


As \(n\) becomes larger the number of solutions becomes also larger (for \(\mathrm{n}=8\) there are 92 solutions)

\section*{Application: n-queens problem}
1. Solution representation: we shall consider that queen \(k\) will be placed on row \(k\). Thus for each queen it suffices to explicitly specify only the column to which it belongs:

The solution will be represented as an array \(\left(s_{1}, \ldots, s_{n}\right)\) with \(s_{k}=\) the column on which the queen \(k\) is placed
2. Sets \(A_{1}, \ldots, A_{n}:\{1,2, \ldots, n\}\). Each set will be processed in the natural order of the elements (starting from 1 to \(n\) )
3. Continuation conditions: a partial solution \(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)\) should satisfy the problems restrictions (no more than one queen on a line, column or diagonal)
4. Criterion to decide when a partial solution is a final one: \(k=n\) (all n queens have been placed)

\section*{Application: n-queens problem}

Continuation conditions: Let \(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)\) be a partial solution. It is a valid partial solution if it satisfies:
- All queens are on different rows - implicitly satisfied by the solution representation (each queen is placed on its own row)
- All queens are on different columns:
\(\mathrm{s}_{\mathrm{i}}<>\mathrm{s}_{\mathrm{j}}\) for all i<>j
(it is enough to check that \(\mathrm{s}_{\mathrm{k}}<>\mathrm{s}_{\mathrm{i}}\) for all \(\mathrm{i}<=\mathrm{k}-1\) )
- All queens are on different diagonals:
\(|i-j|<>\left|s_{i}-s_{j}\right|\) for all \(i<>j\)
(it is enough to check that \(|k-i|<>\left|s_{k}-s_{i}\right|\) for all \(1<=i<=k-1\) ) Indeed ....

\section*{Application: n-queens problem}

\section*{Remark:}
two queens i and j are on the
same diagonal if either
\[
i-s_{i}=j-s_{j} \Leftrightarrow i-j=s_{i}-s_{j}
\]
or


\section*{Application: n-queens problem}

Algorithm:
Validation(s[1..k])
FOR \(\mathrm{i}:=1, \mathrm{k}-1\) DO
IF \(s[k]=s[i]\) OR \(|i-\mathrm{k}|=|\mathrm{s}[\mathrm{i}]-\mathrm{s}[\mathrm{k}]|\)
THEN RETURN False
ENDIF
ENDFOR
RETURN True

IF \(\mathrm{k}=\mathrm{n}+1\) THEN WRITE \(\mathrm{s}[1 . . \mathrm{n}]\)
ELSE
FOR \(\mathrm{i}:=1, \mathrm{n}\) DO
\(\mathrm{s}[\mathrm{k}]:=\mathrm{i}\)
IF Validation(s[1..k])=True
THEN Queens \((\mathrm{k}+1)\)
ENDIF
ENDFOR

\section*{ENDIF}

\section*{Application: map coloring}

Problem: Let us consider a geographical map containing n countries. Propose a coloring of the map by using \(4<=m<n\) colors such that any two neighboring countries have different colors


Mathematical related problem: any map can be colored by using at most 4 colors (proved in 1976 by Appel and Haken) - one of the first results of computer assisted theorem proving

\section*{Application: map coloring}

Problem: Let us consider a geographical map containing \(n\) countries. Propose a coloring of the map by using \(4<=m<n\) colors such that any two neighboring countries have different colors

Problem formalization: Let us consider that the neighborhood relation between countries is represented as a matrix N as follows:
\[
N(i, j)= \begin{cases}0 & \text { if } i \text { and } j \text { are not neighbors } \\ 1 & \text { if } i \text { and } j \text { are neighbors }\end{cases}
\]

Find a map coloring \(S=\left(s_{1}, \ldots, s_{n}\right)\) with \(s_{k}\) in \(\{1, \ldots, m\}\) such that for all pairs (i,j) with \(N(i, j)=1\) the elements \(s_{i}\) and \(s_{j}\) are different ( \(\mathrm{s}_{\mathrm{i}}<>\mathrm{s}_{\mathrm{j}}\) )

\section*{Application: map coloring}
1. Solution representation
\(\mathrm{S}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)\) with \(\mathrm{s}_{\mathrm{k}}\) representing the color associated to country k
2. Sets \(A_{1}, \ldots, A_{n}:\{1,2, \ldots, m\}\). Each set will be processed in the natural order of the elements (starting from 1 to m )
1. Continuation conditions: a partial solution \(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)\) should satisfy \(\mathrm{s}_{\mathrm{i}}<>\mathrm{s}_{\mathrm{j}}\) for all pairs (i,j) with \(\mathrm{N}(\mathrm{i}, \mathrm{j})=1\)

For each \(k\) it suffices to check that \(\mathrm{s}_{\mathrm{k}}<>\mathrm{s}_{\mathrm{j}}\) for all pairs i in \(\{1,2\), ...,k-1\} with \(N(i, k)=1\)
4. Criterion to decide when a partial solution is a final one: \(k=n\) (all countries have been colored)

\section*{Application: map coloring}

\section*{Recursive algorithm}

Coloring(k)
IF k=n+1 THEN WRITE s[1..n]
ELSE
FOR \(\mathrm{j}:=1, \mathrm{~m}\) DO
\(\mathrm{s}[\mathrm{k}]:=\mathrm{j}\)
IF valid(s[1..k])=True
THEN coloring \((k+1)\)
ENDIF
ENDFOR
ENDIF

Call: Coloring(1)

\section*{Validation algorithm}

\author{
valid(s[1..k]) \\ FOR \(\mathrm{i}:=1, \mathrm{k}-1 \mathrm{DO}\) \\ IF N[i,k]=1 AND s[i]=s[k] \\ THEN RETURN False \\ ENDIF \\ ENDFOR \\ RETURN True
}

\section*{Application: path finding}

Let us consider a set of n towns. There is a network of routes between these towns. Generate all routes which connect two given towns such that the route doesn't reach twice the same town


\section*{Application: path finding}

Problem formalization: Let us consider that the connections are stored in a matrix C as follows:
\(C(i, j)= \begin{cases}0 & \text { if doesn't exist a direct connection between } i \text { and } j \\ 1 & \text { if there is a direct connection between } i \text { and } j\end{cases}\)

Find all routes \(\mathrm{S}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}\right)\) with \(\mathrm{s}_{\mathrm{k}}\) in \(\{1, \ldots, \mathrm{n}\}\) denoting the town visited at moment \(k\) such that
\(\mathrm{s}_{1}\) is the starting town
\(\mathrm{s}_{\mathrm{m}}\) is the destination town
\(\mathrm{s}_{\mathrm{i}}<>\mathrm{s}_{\mathrm{j}}\) for all \(\mathrm{i}<>\mathrm{j}\) (a town is visited only once)
\(\mathrm{C}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}+1}\right)=1\) (there exists a direct connections between towns visited at successive moments)

\section*{Application: path finding}
1. Solution representation
\[
\mathrm{S}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}\right) \text { with } \mathrm{s}_{\mathrm{k}} \text { representing the town visited at }
\] moment \(k\)
1. Sets \(A_{1}, \ldots, A_{n}:\{1,2, \ldots, n\}\). Each set will be processed in the natural order of the elements (starting from 1 to \(n\) )
3. Continuation conditions: a partial solution \(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)\) should satisfy:
\[
\begin{aligned}
& \mathrm{s}_{\mathrm{k}}<>\mathrm{s}_{\mathrm{j}} \text { for all } \mathrm{j} \text { in }\{1,2, \ldots, \mathrm{k}-1\} \\
& \mathrm{C}\left(\mathrm{~s}_{\mathrm{k}-1}, \mathrm{~s}_{\mathrm{k}}\right)=1
\end{aligned}
\]
4. Criterion to decide when a partial solution is a final one:
\(\mathrm{s}_{\mathrm{k}}=\) destination town

\section*{Application: path finding}

```

Validation algorithm
Valid(s[1..k])
IF C[s[k-1],s[k]]=0 THEN
RETURN False
ENDIF
FOR i:=1,k-1 DO
IF s[i]=s[k]
THEN RETURN False
ENDIF
ENDFOR
RETURN True

```

Call:
s[1]:=starting town
routes(2)

\section*{Application: maze}

Maze problem. Let us consider a maze defined on a nxn grid. Find a path in the maze which starts from the position \((1,1)\) and finishes in (nxn)


Only white cells can be accessed. From a given cell (i,j) one can pass in one of the following neighboring positions:


Remark: cells on the border have fewer neighbours

\section*{Application: maze}

Problem formalization. The maze is stored as a nxn matrix
\(M(i, j)= \begin{cases}0 & \text { free cell } \\ 1 & \text { occupied cell }\end{cases}\)

Find a path \(S=\left(s_{1}, \ldots, s_{m}\right)\) with \(\mathrm{s}_{\mathrm{k}}\) in \(\{1, \ldots, \mathrm{n}\} \times\{1, \ldots, \mathrm{n}\}\) denoting the indices corresponding to the cell visited at moment \(k\)
- \(s_{1}\) is the starting cell \((1,1)\)
- \(\mathrm{s}_{\mathrm{m}}\) is the destination cell ( \(\mathrm{n}, \mathrm{n}\) )
- \(\mathrm{s}_{\mathrm{k}}<>\mathrm{s}_{\mathrm{qj}}\) for all \(\mathrm{k}<>\mathrm{q}\) (a cell is visited at most once)
- \(\mathrm{M}\left(\mathrm{s}_{\mathrm{k}}\right)=0\) (each visited cell is a free one)
- \(\mathrm{s}_{\mathrm{k}}\) and \(\mathrm{s}_{\mathrm{k}+1}\) are neighborhood cells

\section*{Application: maze}
1. Solution representation
\(\mathrm{S}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)\) with \(\mathrm{s}_{\mathrm{k}}\) representing the cell visited at moment k
2. Sets \(A_{1}, \ldots, A_{n}\) are subsets of \(\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}\). For each cell \((\mathrm{i}, \mathrm{j})\) there is a set of at most 4 neighbors
3. Continuation conditions: a partial solution \(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right)\) should satisfy:
\[
\begin{aligned}
& \mathrm{s}_{\mathrm{k}}>\mathrm{s}_{\mathrm{q}} \text { for all } \mathrm{q} \text { in }\{1,2, \ldots, \mathrm{k}-1\} \\
& \mathrm{M}\left(\mathrm{~s}_{\mathrm{k}}\right)=0 \\
& \mathrm{~s}_{\mathrm{k}-1} \text { and } \mathrm{s}_{\mathrm{k}} \text { are neighbours }
\end{aligned}
\]
4. Criterion to decide when a partial solution is a final one:
\[
\mathrm{s}_{\mathrm{k}}=(\mathrm{n}, \mathrm{n})
\]

\section*{Application: maze}

\section*{maze(k)}

IF \(\mathrm{s}[\mathrm{k}-1]=(\mathrm{n}, \mathrm{n})\) THEN WRITE \(\mathrm{s}[1 . . \mathrm{k}]\)
ELSE // try all neighbouring cells
\(s[k] . i:=s[k-1] . i-1 ; s[k] . j:=s[k-1] . j \quad / /\) up
IF valid(s[1..k])=True THEN maze(k+1) ENDIF \(\mathrm{s}[\mathrm{k}] . \mathrm{i}=\mathrm{s}[\mathrm{k}-1] . \mathrm{i}+1\); \(\mathrm{s}[\mathrm{k}] . \mathrm{j}:=\mathrm{s}[\mathrm{k}-1]\).j // down
IF valid(s[1..k])=True THEN maze(k+1) ENDIF \(s[k] . i:=s[k-1] . j ; s[k] . j:=s[k-1] . j-1 \quad / /\) left
IF valid(s[1..k])=True THEN maze(k+1) ENDIF \(s[k] . i:=s[k-1] . i ; s[k] . j:=s[k-1] . j+1 \quad / /\) right
IF valid(s[1..k])=True THEN maze(k+1) ENDIF ENDIF

\section*{Application: maze}

\section*{valid(s[1..k])}

IF \(s[k] . i<1\) OR \(s[k] . i>n\) OR \(s[k] . j<1\) OR \(s[k] . j>n \quad / /\) out of the grid THEN RETURN False

\section*{ENDIF}

IF M[s[k].i,s[k].j]=1 THEN RETURN False ENDIF // occupied cell FOR q:=1,k-1 DO // loop

IF \(s[k] . i=s[q] . i\) AND \(s[k] . j=s[q] . j\) THEN RETURN False ENDIF
ENDFOR
RETURN True
Call of algorithm maze:
\(s[1] . i:=1 ; \quad s[1] . j:=1\)
maze(2)```

