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Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating subsets, 
n-queens problem, map coloring, path finding, maze 
problem



3

What is backtracking?

• It is a systematic search strategy of the state-space of 
combinatorial problems

• It is mainly used to solve problems which ask for finding elements 
of a set which satisfy some constraints.  Most of the problems 
which can be solved by backtracking have the following general 
form:

     “ Find a subset S of A1 x A2 x … x An (Ak – finite sets) such that  
each element s=(s1,s2,…,sn) satisfies some constraints”

Example:  generating all permutations of {1,2,…,n}
            Ak = {1,2,…,n}  for all k

            si <> sj   for all  i<>j    (restriction: distinct components)
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What is backtracking?
Basic ideas:
• the solutions are constructed in an incremental manner by finding 

the components successively
• each partial solution is evaluated in order to establish if it is 

promising (a promising solution could lead to a final solution while 
a non-promising one does not satisfy the partial constraints 
induced  by the problem constraints)

• if all possible values for a component do not lead to a promising 
(valid or viable) partial solution then we come back to the previous 
component and try another value for it

• backtracking implicitly constructs a state space tree:
– The root corresponds to an initial state (before the search for a 

solution begins)
– An internal node corresponds to a promising partial solution
– An external node (leaf) corresponds either to a non-promising partial 

solution or to a final solution
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What is backtracking?

Example:  state space tree for permutations generation

(*,*,*)

(1,*,*) (2,*,*) (3,*,*)

(1,1,*) (1,2,*) (1,3,*)

(1,2,3) (1,3,2)

(2,1,*) (2,2,*) (2,3,*) (3,1,*) (3,2,*) (3,3,*)

(2,1,3) (2,3,1) (3,1,2) (3,2,1)
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Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating 
subsets, n-queens problem, map coloring, path 
finding, maze problem
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The general structure of the algorithm

Basic steps:

1. Choose the representation of solutions 

1. Establish the sets A1,…,An and the order in which their elements 
are processed

1. Derive from the problem restrictions the conditions which a 
partial solution should satisfy in order to be promising (valid). 
These conditions are sometimes called continuation conditions.

1. Choose a criterion to decide when a partial solution is a final 
one
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The general structure of the algorithm

Example:  generating permutations 

1. Solution representation:  each permutation is a vector s=(s1,s2,
…sn) satisfying:  si<>sj for all i<>j

1. Sets A1,…,An  :  {1,2,…,n}.  Each set will be processed in the 
natural order of the elements

1. Continuation conditions:  a partial solution (s1,s2,…,sk) should  
satisfy sk<>si  for all i<k

1. Criterion to decide when a partial solution is a final one:  k=n
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The general structure of the algorithm

Some notation:

(s1,s2,…,sk)  partial solution

k – index for constructing s 

Ak = {ak
1,…,ak

mk}

mk=card{Ak}

ik  - index for scanning Ak
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The general structure of the algorithm

Backtracking(A1, A2, …, An)

   k:=1;   ik:=0

   WHILE k>0 DO

     ik:=ik+1       

     v:=False

     WHILE v=False AND ik<=mk DO

       sk:=ak
ik

       IF (s1,..sk) is valid THEN v:=True

       ELSE ik:=ik+1  ENDIF  ENDWHILE

    IF v=True THEN

     IF “(s1,…,sk) is a final solution” 

         THEN “process the final solution”

          ELSE k:=k+1; ik:=0 ENDIF

    ELSE k:=k-1  ENDIF

    ENDWHILE  

     

Search for a value of 
k-th component which leads
to a promising partial solution

If such a value exists
check if a final solution
was obtained

If it doesn’t exist then go back 
to the previous component

If it is not a final solution
go to the next  component

If it is a solution then process it and 
go to try the next possible value
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The general structure of the algorithm

The recursive variant:

• Suppose that A1,…,An and  s 
are global variables

• Let k be the component to 
be filled in

The algorithm will be called with

BT_rec(1)

BT_rec(k)

IF “(s1,…,sk-1) is a solution” 

     THEN  “process it”

     ELSE   

       FOR j:=1,mk  DO

          sk:=ak
j

          IF “(s1,…sk) is valid”

          THEN BT_rec(k+1) ENDIF

      ENDFOR      

ENDIFTry each possible value

Go to fill in the  next component
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Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating 
subsets, n-queens problem, map coloring, path finding, 
maze problem
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Application:  generating permutations
Backtracking(A1, A2, …, An)
   k:=1;   ik:=0
   WHILE k>0 DO
     ik:=ik+1       
     v:=False
     WHILE v=False AND ik<=mk DO
       sk:=ak

ik

       IF (s1,..sk) is valid THEN  v:=True
       ELSE ik:=ik+1  ENDIF  ENDWHILE
    IF v=True THEN
     IF “(s1,…,sk) is a final solution” 
         THEN “process the final solution”
          ELSE k:=k+1; ik:=0 ENDIF
    ELSE k:=k-1  ENDIF
    ENDWHILE  

     

permutations(n)

   k:=1;   s[k]:=0

   WHILE k>0 DO

     s[k]:=s[k]+1       

     v:=False

     WHILE v=False AND s[k]<=n DO

       IF valid(s[1..k]) 

             THEN v:=True

             ELSE s[k]:=s[k]+1

      ENDWHILE 

    IF v=True THEN

     IF k=n 

         THEN WRITE s[1..n]

          ELSE k:=k+1; s[k]:=0

    ELSE k:=k-1 

   ENDIF ENDIF ENDWHILE   
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Application:  generating permutations

Function to check if a partial 
solution is a valid one

valid(s[1..k])

FOR i:=1,k-1 DO

   IF s[k]=s[i] 

       THEN RETURN FALSE

   ENDIF

ENDFOR

RETURN TRUE

Recursive variant: 

perm_rec(k)

IF k=n+1 THEN WRITE s[1..n]

ELSE

   FOR i:=1,n DO

      s[k]:=i

      IF valid(s[1..k])=True

           THEN perm_rec(k+1)

      ENDIF

   ENDFOR

ENDIF
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Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating 
subsets, n-queens problem, map coloring, path 
finding, maze problem
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Application: generating subsets

Let A={a1,…,an} be a finite set. Generate all subsets of A having m 
elements.

Example:  A={1,2,3}, m=2, S={{1,2},{1,3},{2,3}}

• Solution representation: each subset is represented by its 
characteristic vector (si=1 if ai belongs to the subset and si=0 
otherwise)

• Sets A1,…,An  :  {0,1}.  Each set will be processed in the natural 
order of the elements (first 0 then 1)

• Continuation conditions:  a partial solution (s1,s2,…,sk) should  
satisfy s1+s2+…+sk <= m (the partial subset contains at most m 
elements)

• Criterion to decide when a partial solution is a final one: s1+s2+
…+sk = m (m elements were already selected)
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Application: generating subsets
Iterative algorithm
subsets(n,m)
  k:=1
  s[k]:=-1
  WHILE k>0 DO
     s[k]:=s[k]+1;
     IF s[k]<=1 AND 

sum(s[1..k])<=m
     THEN 
        IF sum(s[1..k])=m             

THEN s[k+1..n]=0
                    WRITE s[1..n]
        ELSE k:=k+1; s[k]:=-1
      ENDIF
    ELSE k:=k-1
    ENDIF  ENDWHILE
     

Recursive algorithm

subsets_rec(k)
  IF sum(s[1..k-1])=m 
  THEN
          s[k..n]=0 
          WRITE s[1..n]
  ELSE
     s[k]:=0; subsets_rec(k+1);
     s[k]:=1; subsets_rec(k+1);
  ENDIF

Rmk: sum(s[1..k])  computes the 
sum of the first k 
components of s[1..n]
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Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating 
subsets, n-queens problem, map coloring, path 
finding, maze problem
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Application: n-queens problem

Find all possibilities of placing n queens on a n-by-n chessboard 
such that they does not attack each other:

            - each line contains only one queen
            - each column contains only one queen
            - each diagonal contains only one queen

This is a classical problem proposed by Max Bezzel (1850) an 
studied by several mathematicians of the time (Gauss, Cantor)

Examples:  if n<=3 there is no solution; if n=4 there are two solutions

As n becomes larger  the
number of solutions becomes
also larger (for n=8 there are 
92 solutions)
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Application: n-queens problem

1. Solution representation:  we shall consider that queen k will 
be placed on row k. Thus for each queen it suffices to 
explicitly specify only the column  to which it belongs:               
                            The solution will be represented as an array 
(s1,…,sn) with    sk  =  the column on which the queen k is 
placed

2. Sets A1,…,An  :  {1,2,…,n}.  Each set will be processed in the 
natural order of the elements (starting from 1 to n)

3. Continuation conditions:  a partial solution (s1,s2,…,sk) should  
satisfy the problems restrictions (no more than one queen on 
a line, column or diagonal)

4. Criterion to decide when a partial solution is a final one: k = n 
(all n queens have been placed)
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Application: n-queens problem
Continuation conditions:  Let (s1,s2,…,sk) be a partial solution. It is a 

valid partial solution if it satisfies:

• All queens are on different rows  - implicitly satisfied by the 
solution representation (each queen is placed on its own row)

• All queens are on different columns:

         si<>sj for all i<>j 

                (it is enough to check that sk<>si for all i<=k-1)

• All queens are on different diagonals:

         |i-j| <> |si – sj| for all i<>j

                (it is enough to check that |k-i|<>| sk - si| for all 1<=i<=k-1)

          Indeed ….
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Application: n-queens problem
Remark:  

two queens i and j are on the 

same diagonal if  either

         i-si=j-sj      i-j = si-sj  

or

         i+si=j+sj   i-j= sj-si

This means |i-j|=|si-sj|

i-j=0

i-j=-1

i-j=-(n-2)
i-j=1

i-j=n-2

i+j=n+1

i+j=n

i+j=3

i+j=2n-1

i+j=n+2
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Application: n-queens problem

Validation(s[1..k])

FOR i:=1,k-1 DO

  IF s[k]=s[i] OR |i-k|=|s[i]-s[k]| 
THEN RETURN False

  ENDIF

ENDFOR

RETURN True   

Algorithm:

Queens(k)

IF k=n+1 THEN WRITE s[1..n]

ELSE

   FOR i:=1,n DO

      s[k]:=i

      IF Validation(s[1..k])=True

          THEN Queens(k+1) 

      ENDIF

   ENDFOR

ENDIF    
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Application: map coloring
Problem:  Let us consider a geographical map containing n 

countries. Propose a coloring of the map by using 4<=m<n 
colors such that any two neighboring countries have different 
colors

Mathematical related problem:  any map can be colored by using at 
most 4 colors (proved in 1976 by Appel and Haken) – one of 
the first results of computer assisted theorem proving
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Application: map coloring
Problem:  Let us consider a geographical map containing n 

countries. Propose a coloring of the map by using 4<=m<n 
colors such that any two neighboring countries have different 
colors

Problem formalization:  Let us consider that the neighborhood 
relation between countries is represented as a matrix N as 
follows:

                             0      if  i and j are not neighbors

            N(i,j) = 

                             1      if i and j are neighbors

Find a map coloring S=(s1,…,sn) with sk in {1,…,m} such that  for all 
pairs (i,j) with N(i,j)=1 the elements si and sj are different 
(si<>sj)
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Application: map coloring
1. Solution representation

          S=(s1,…,sn) with sk representing the color associated to 
country k

2.      Sets A1,…,An  :  {1,2,…,m}.  Each set will be processed in the 
natural order of the elements (starting from 1 to m)

1. Continuation conditions:  a partial solution (s1,s2,…,sk) should  
satisfy si<>sj for all pairs (i,j) with N(i,j)=1 

         For each k it suffices to check that sk<>sj for all pairs i in {1,2,
…,k-1}  with N(i,k)=1 

4.     Criterion to decide when a partial solution is a final one: k = n 
(all countries have been colored)
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Application: map coloring
Recursive algorithm

Coloring(k)
IF k=n+1 THEN WRITE s[1..n]
ELSE
   FOR j:=1,m DO
      s[k]:=j
      IF valid(s[1..k])=True
          THEN coloring(k+1)
      ENDIF
   ENDFOR
ENDIF       

Validation algorithm

valid(s[1..k])
FOR i:=1,k-1 DO
   IF N[i,k]=1 AND s[i]=s[k]
   THEN RETURN False
    ENDIF
ENDFOR
RETURN True

          

Call:   Coloring(1)
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Application: path finding
Let us consider a set of n towns. There is a network of routes 

between these towns.  Generate all routes which connect 
two given towns such that the route doesn’t reach twice the 
same town

Arad

Timisoara

Satu Mare

Brasov

Iasi

Bucuresti

Constanta

Towns:

1.Arad 

2.Brasov

3.Bucuresti

4.Constanta

5.Iasi

6.Satu-Mare 

7.Timisoara

Routes from Arad 

to Constanta:

1->7->3->4

1->2->3->4

1->6->5->3->4

1->6->5->2->3->4
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Application: path finding
Problem formalization:  Let us consider that the connections are 

stored in  a matrix C as follows: 

                  0      if doesn’t exist a direct connection between i and j

C(i,j) = 

                  1      if there is a direct connection between i and j

Find all  routes S=(s1,…,sm) with sk in {1,…,n} denoting the town 
visited at moment k such that  

s1  is the starting town

sm is the destination town 

si<>sj  for all i <>j  (a town is visited only once)

C(si,si+1)=1 (there exists a direct connections between towns 
visited at successive moments)
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Application: path finding
1. Solution representation
          S=(s1,…,sm) with sk representing the town visited at 

moment  k

1. Sets A1,…,An  :  {1,2,…,n}.  Each set will be processed in the 
natural order of the elements (starting from 1 to n)

3. Continuation conditions:  a partial solution (s1,s2,…,sk) should 
satisfy:

         sk<>sj for all  j in {1,2,…,k-1} 
         C(sk-1,sk)=1

4. Criterion to decide when a partial solution is a final one: 
         sk = destination town
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Application: path finding
Recursive algorithm

routes(k)
IF s[k-1]=destination town THEN 

WRITE s[1..k-1]
ELSE
   FOR j:=1,n DO
      s[k]:=j
      IF valid(s[1..k])=True
      THEN routes(k+1)
      ENDIF
  ENDFOR
ENDIF

Validation algorithm

Valid(s[1..k])
IF C[s[k-1],s[k]]=0 THEN 

RETURN False
ENDIF
FOR i:=1,k-1 DO
   IF s[i]=s[k]
       THEN RETURN False
   ENDIF
ENDFOR
RETURN True          

Call:   
s[1]:=starting town
routes(2)
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Application: maze
Maze problem.  Let us consider a maze defined on a nxn grid. Find 

a path in the maze which starts from the position (1,1) and 
finishes in (nxn)

Only white cells can be accessed. From a 
given cell (i,j) one can pass in one of 
the following neighboring positions:   
      

(i,j)(i,j-1) (i,j+1)

(i-1,j)

(i+1,j)

Remark:  cells on the border have fewer

neighbours 
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Application: maze
Problem formalization.  The maze is stored as a nxn matrix

                  0      free cell

M(i,j) = 

                  1      occupied cell

Find a path S=(s1,…,sm) with sk in {1,…,n}x{1,…,n} denoting the 
indices corresponding to the cell visited at moment k  

• s1  is the starting cell (1,1)

• sm is the destination cell (n,n)

• sk<>sqj  for all k <>q  (a cell is visited at most once)

• M(sk)=0 (each visited cell is a free one)

• sk and sk+1 are neighborhood cells
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Application: maze
1. Solution representation
       S=(s1,…,sn) with sk representing the cell visited at moment  k

2. Sets A1,…,An  are subsets of   {1,2,…,n}x{1,2,…,n}. For each cell 
(i,j) there is a set of at most 4 neighbors

3. Continuation conditions:  a partial solution (s1,s2,…,sk) should 
satisfy:

         sk<>sq for all q in {1,2,…,k-1} 

         M(sk)=0

         sk-1 and sk are neighbours

4. Criterion to decide when a partial solution is a final one: 
         sk = (n,n)
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Application: maze
maze(k)

IF s[k-1]=(n,n) THEN WRITE s[1..k]

ELSE   // try all neighbouring cells

   s[k].i:=s[k-1].i-1; s[k].j:=s[k-1].j       // up

   IF valid(s[1..k])=True THEN maze(k+1) ENDIF

   s[k].i:=s[k-1].i+1; s[k].j:=s[k-1].j      // down

   IF valid(s[1..k])=True THEN maze(k+1) ENDIF

   s[k].i:=s[k-1].i; s[k].j:=s[k-1].j-1      // left

   IF valid(s[1..k])=True THEN maze(k+1) ENDIF

   s[k].i:=s[k-1].i; s[k].j:=s[k-1].j+1    // right

   IF valid(s[1..k])=True THEN maze(k+1) ENDIF

ENDIF
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Application: maze

valid(s[1..k])

IF s[k].i<1 OR s[k].i>n OR s[k].j<1 OR s[k].j>n    // out of the grid

     THEN RETURN False

ENDIF

IF M[s[k].i,s[k].j]=1 THEN RETURN False ENDIF   // occupied cell

FOR q:=1,k-1 DO     // loop

      IF s[k].i=s[q].i AND s[k].j=s[q].j THEN RETURN False ENDIF

ENDFOR

RETURN True
Call of algorithm maze:

s[1].i:=1;   s[1].j:=1

maze(2)


