
Algorithmics 1

Backtracking

2

Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating subsets,
n-queens problem, map coloring, path finding, maze
problem

3

What is backtracking?

• It is a systematic search strategy of the state-space of
combinatorial problems

• It is mainly used to solve problems which ask for finding elements
of a set which satisfy some constraints. Most of the problems
which can be solved by backtracking have the following general
form:

 “ Find a subset S of A1 x A2 x … x An (Ak – finite sets) such that
each element s=(s1,s2,…,sn) satisfies some constraints”

Example: generating all permutations of {1,2,…,n}
 Ak = {1,2,…,n} for all k

 si <> sj for all i<>j (restriction: distinct components)

4

What is backtracking?
Basic ideas:
• the solutions are constructed in an incremental manner by finding

the components successively
• each partial solution is evaluated in order to establish if it is

promising (a promising solution could lead to a final solution while
a non-promising one does not satisfy the partial constraints
induced by the problem constraints)

• if all possible values for a component do not lead to a promising
(valid or viable) partial solution then we come back to the previous
component and try another value for it

• backtracking implicitly constructs a state space tree:
– The root corresponds to an initial state (before the search for a

solution begins)
– An internal node corresponds to a promising partial solution
– An external node (leaf) corresponds either to a non-promising partial

solution or to a final solution

5

What is backtracking?

Example: state space tree for permutations generation

(*,*,*)

(1,*,*) (2,*,*) (3,*,*)

(1,1,*) (1,2,*) (1,3,*)

(1,2,3) (1,3,2)

(2,1,*) (2,2,*) (2,3,*) (3,1,*) (3,2,*) (3,3,*)

(2,1,3) (2,3,1) (3,1,2) (3,2,1)

6

Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating
subsets, n-queens problem, map coloring, path
finding, maze problem

7

The general structure of the algorithm

Basic steps:

1. Choose the representation of solutions

1. Establish the sets A1,…,An and the order in which their elements
are processed

1. Derive from the problem restrictions the conditions which a
partial solution should satisfy in order to be promising (valid).
These conditions are sometimes called continuation conditions.

1. Choose a criterion to decide when a partial solution is a final
one

8

The general structure of the algorithm

Example: generating permutations

1. Solution representation: each permutation is a vector s=(s1,s2,
…sn) satisfying: si<>sj for all i<>j

1. Sets A1,…,An : {1,2,…,n}. Each set will be processed in the
natural order of the elements

1. Continuation conditions: a partial solution (s1,s2,…,sk) should
satisfy sk<>si for all i<k

1. Criterion to decide when a partial solution is a final one: k=n

9

The general structure of the algorithm

Some notation:

(s1,s2,…,sk) partial solution

k – index for constructing s

Ak = {ak
1,…,ak

mk}

mk=card{Ak}

ik - index for scanning Ak

10

The general structure of the algorithm

Backtracking(A1, A2, …, An)

 k:=1; ik:=0

 WHILE k>0 DO

 ik:=ik+1

 v:=False

 WHILE v=False AND ik<=mk DO

 sk:=ak
ik

 IF (s1,..sk) is valid THEN v:=True

 ELSE ik:=ik+1 ENDIF ENDWHILE

 IF v=True THEN

 IF “(s1,…,sk) is a final solution”

 THEN “process the final solution”

 ELSE k:=k+1; ik:=0 ENDIF

 ELSE k:=k-1 ENDIF

 ENDWHILE

Search for a value of
k-th component which leads
to a promising partial solution

If such a value exists
check if a final solution
was obtained

If it doesn’t exist then go back
to the previous component

If it is not a final solution
go to the next component

If it is a solution then process it and
go to try the next possible value

11

The general structure of the algorithm

The recursive variant:

• Suppose that A1,…,An and s
are global variables

• Let k be the component to
be filled in

The algorithm will be called with

BT_rec(1)

BT_rec(k)

IF “(s1,…,sk-1) is a solution”

 THEN “process it”

 ELSE

 FOR j:=1,mk DO

 sk:=ak
j

 IF “(s1,…sk) is valid”

 THEN BT_rec(k+1) ENDIF

 ENDFOR

ENDIFTry each possible value

Go to fill in the next component

12

Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating
subsets, n-queens problem, map coloring, path finding,
maze problem

13

Application: generating permutations
Backtracking(A1, A2, …, An)
 k:=1; ik:=0
 WHILE k>0 DO
 ik:=ik+1
 v:=False
 WHILE v=False AND ik<=mk DO
 sk:=ak

ik

 IF (s1,..sk) is valid THEN v:=True
 ELSE ik:=ik+1 ENDIF ENDWHILE
 IF v=True THEN
 IF “(s1,…,sk) is a final solution”
 THEN “process the final solution”
 ELSE k:=k+1; ik:=0 ENDIF
 ELSE k:=k-1 ENDIF
 ENDWHILE

permutations(n)

 k:=1; s[k]:=0

 WHILE k>0 DO

 s[k]:=s[k]+1

 v:=False

 WHILE v=False AND s[k]<=n DO

 IF valid(s[1..k])

 THEN v:=True

 ELSE s[k]:=s[k]+1

 ENDWHILE

 IF v=True THEN

 IF k=n

 THEN WRITE s[1..n]

 ELSE k:=k+1; s[k]:=0

 ELSE k:=k-1

 ENDIF ENDIF ENDWHILE

14

Application: generating permutations

Function to check if a partial
solution is a valid one

valid(s[1..k])

FOR i:=1,k-1 DO

 IF s[k]=s[i]

 THEN RETURN FALSE

 ENDIF

ENDFOR

RETURN TRUE

Recursive variant:

perm_rec(k)

IF k=n+1 THEN WRITE s[1..n]

ELSE

 FOR i:=1,n DO

 s[k]:=i

 IF valid(s[1..k])=True

 THEN perm_rec(k+1)

 ENDIF

 ENDFOR

ENDIF

15

Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating
subsets, n-queens problem, map coloring, path
finding, maze problem

Algorithmics - Lecture 13 16

Application: generating subsets

Let A={a1,…,an} be a finite set. Generate all subsets of A having m
elements.

Example: A={1,2,3}, m=2, S={{1,2},{1,3},{2,3}}

• Solution representation: each subset is represented by its
characteristic vector (si=1 if ai belongs to the subset and si=0
otherwise)

• Sets A1,…,An : {0,1}. Each set will be processed in the natural
order of the elements (first 0 then 1)

• Continuation conditions: a partial solution (s1,s2,…,sk) should
satisfy s1+s2+…+sk <= m (the partial subset contains at most m
elements)

• Criterion to decide when a partial solution is a final one: s1+s2+
…+sk = m (m elements were already selected)

17

Application: generating subsets
Iterative algorithm
subsets(n,m)
 k:=1
 s[k]:=-1
 WHILE k>0 DO
 s[k]:=s[k]+1;
 IF s[k]<=1 AND

sum(s[1..k])<=m
 THEN
 IF sum(s[1..k])=m

THEN s[k+1..n]=0
 WRITE s[1..n]
 ELSE k:=k+1; s[k]:=-1
 ENDIF
 ELSE k:=k-1
 ENDIF ENDWHILE

Recursive algorithm

subsets_rec(k)
 IF sum(s[1..k-1])=m
 THEN
 s[k..n]=0
 WRITE s[1..n]
 ELSE
 s[k]:=0; subsets_rec(k+1);
 s[k]:=1; subsets_rec(k+1);
 ENDIF

Rmk: sum(s[1..k]) computes the
sum of the first k
components of s[1..n]

18

Outline

• What is backtracking ?

• The general structure of the algorithm

• Applications: generating permutations, generating
subsets, n-queens problem, map coloring, path
finding, maze problem

19

Application: n-queens problem

Find all possibilities of placing n queens on a n-by-n chessboard
such that they does not attack each other:

 - each line contains only one queen
 - each column contains only one queen
 - each diagonal contains only one queen

This is a classical problem proposed by Max Bezzel (1850) an
studied by several mathematicians of the time (Gauss, Cantor)

Examples: if n<=3 there is no solution; if n=4 there are two solutions

As n becomes larger the
number of solutions becomes
also larger (for n=8 there are
92 solutions)

20

Application: n-queens problem

1. Solution representation: we shall consider that queen k will
be placed on row k. Thus for each queen it suffices to
explicitly specify only the column to which it belongs:
 The solution will be represented as an array
(s1,…,sn) with sk = the column on which the queen k is
placed

2. Sets A1,…,An : {1,2,…,n}. Each set will be processed in the
natural order of the elements (starting from 1 to n)

3. Continuation conditions: a partial solution (s1,s2,…,sk) should
satisfy the problems restrictions (no more than one queen on
a line, column or diagonal)

4. Criterion to decide when a partial solution is a final one: k = n
(all n queens have been placed)

21

Application: n-queens problem
Continuation conditions: Let (s1,s2,…,sk) be a partial solution. It is a

valid partial solution if it satisfies:

• All queens are on different rows - implicitly satisfied by the
solution representation (each queen is placed on its own row)

• All queens are on different columns:

 si<>sj for all i<>j

 (it is enough to check that sk<>si for all i<=k-1)

• All queens are on different diagonals:

 |i-j| <> |si – sj| for all i<>j

 (it is enough to check that |k-i|<>| sk - si| for all 1<=i<=k-1)

 Indeed ….

22

Application: n-queens problem
Remark:

two queens i and j are on the

same diagonal if either

 i-si=j-sj  i-j = si-sj

or

 i+si=j+sj  i-j= sj-si

This means |i-j|=|si-sj|

i-j=0

i-j=-1

i-j=-(n-2)
i-j=1

i-j=n-2

i+j=n+1

i+j=n

i+j=3

i+j=2n-1

i+j=n+2

23

Application: n-queens problem

Validation(s[1..k])

FOR i:=1,k-1 DO

 IF s[k]=s[i] OR |i-k|=|s[i]-s[k]|
THEN RETURN False

 ENDIF

ENDFOR

RETURN True

Algorithm:

Queens(k)

IF k=n+1 THEN WRITE s[1..n]

ELSE

 FOR i:=1,n DO

 s[k]:=i

 IF Validation(s[1..k])=True

 THEN Queens(k+1)

 ENDIF

 ENDFOR

ENDIF

24

Application: map coloring
Problem: Let us consider a geographical map containing n

countries. Propose a coloring of the map by using 4<=m<n
colors such that any two neighboring countries have different
colors

Mathematical related problem: any map can be colored by using at
most 4 colors (proved in 1976 by Appel and Haken) – one of
the first results of computer assisted theorem proving

Algorithmics - Lecture 13 25

Application: map coloring
Problem: Let us consider a geographical map containing n

countries. Propose a coloring of the map by using 4<=m<n
colors such that any two neighboring countries have different
colors

Problem formalization: Let us consider that the neighborhood
relation between countries is represented as a matrix N as
follows:

 0 if i and j are not neighbors

 N(i,j) =

 1 if i and j are neighbors

Find a map coloring S=(s1,…,sn) with sk in {1,…,m} such that for all
pairs (i,j) with N(i,j)=1 the elements si and sj are different
(si<>sj)

Algorithmics - Lecture 13 26

Application: map coloring
1. Solution representation

 S=(s1,…,sn) with sk representing the color associated to
country k

2. Sets A1,…,An : {1,2,…,m}. Each set will be processed in the
natural order of the elements (starting from 1 to m)

1. Continuation conditions: a partial solution (s1,s2,…,sk) should
satisfy si<>sj for all pairs (i,j) with N(i,j)=1

 For each k it suffices to check that sk<>sj for all pairs i in {1,2,
…,k-1} with N(i,k)=1

4. Criterion to decide when a partial solution is a final one: k = n
(all countries have been colored)

Algorithmics - Lecture 13 27

Application: map coloring
Recursive algorithm

Coloring(k)
IF k=n+1 THEN WRITE s[1..n]
ELSE
 FOR j:=1,m DO
 s[k]:=j
 IF valid(s[1..k])=True
 THEN coloring(k+1)
 ENDIF
 ENDFOR
ENDIF

Validation algorithm

valid(s[1..k])
FOR i:=1,k-1 DO
 IF N[i,k]=1 AND s[i]=s[k]
 THEN RETURN False
 ENDIF
ENDFOR
RETURN True

Call: Coloring(1)

Algorithmics - Lecture 13 28

Application: path finding
Let us consider a set of n towns. There is a network of routes

between these towns. Generate all routes which connect
two given towns such that the route doesn’t reach twice the
same town

Arad

Timisoara

Satu Mare

Brasov

Iasi

Bucuresti

Constanta

Towns:

1.Arad

2.Brasov

3.Bucuresti

4.Constanta

5.Iasi

6.Satu-Mare

7.Timisoara

Routes from Arad

to Constanta:

1->7->3->4

1->2->3->4

1->6->5->3->4

1->6->5->2->3->4

Algorithmics - Lecture 13 29

Application: path finding
Problem formalization: Let us consider that the connections are

stored in a matrix C as follows:

 0 if doesn’t exist a direct connection between i and j

C(i,j) =

 1 if there is a direct connection between i and j

Find all routes S=(s1,…,sm) with sk in {1,…,n} denoting the town
visited at moment k such that

s1 is the starting town

sm is the destination town

si<>sj for all i <>j (a town is visited only once)

C(si,si+1)=1 (there exists a direct connections between towns
visited at successive moments)

Algorithmics - Lecture 13 30

Application: path finding
1. Solution representation
 S=(s1,…,sm) with sk representing the town visited at

moment k

1. Sets A1,…,An : {1,2,…,n}. Each set will be processed in the
natural order of the elements (starting from 1 to n)

3. Continuation conditions: a partial solution (s1,s2,…,sk) should
satisfy:

 sk<>sj for all j in {1,2,…,k-1}
 C(sk-1,sk)=1

4. Criterion to decide when a partial solution is a final one:
 sk = destination town

Algorithmics - Lecture 13 31

Application: path finding
Recursive algorithm

routes(k)
IF s[k-1]=destination town THEN

WRITE s[1..k-1]
ELSE
 FOR j:=1,n DO
 s[k]:=j
 IF valid(s[1..k])=True
 THEN routes(k+1)
 ENDIF
 ENDFOR
ENDIF

Validation algorithm

Valid(s[1..k])
IF C[s[k-1],s[k]]=0 THEN

RETURN False
ENDIF
FOR i:=1,k-1 DO
 IF s[i]=s[k]
 THEN RETURN False
 ENDIF
ENDFOR
RETURN True

Call:
s[1]:=starting town
routes(2)

Algorithmics - Lecture 13 32

Application: maze
Maze problem. Let us consider a maze defined on a nxn grid. Find

a path in the maze which starts from the position (1,1) and
finishes in (nxn)

Only white cells can be accessed. From a
given cell (i,j) one can pass in one of
the following neighboring positions:

(i,j)(i,j-1) (i,j+1)

(i-1,j)

(i+1,j)

Remark: cells on the border have fewer

neighbours

Algorithmics - Lecture 13 33

Application: maze
Problem formalization. The maze is stored as a nxn matrix

 0 free cell

M(i,j) =

 1 occupied cell

Find a path S=(s1,…,sm) with sk in {1,…,n}x{1,…,n} denoting the
indices corresponding to the cell visited at moment k

• s1 is the starting cell (1,1)

• sm is the destination cell (n,n)

• sk<>sqj for all k <>q (a cell is visited at most once)

• M(sk)=0 (each visited cell is a free one)

• sk and sk+1 are neighborhood cells

Algorithmics - Lecture 13 34

Application: maze
1. Solution representation
 S=(s1,…,sn) with sk representing the cell visited at moment k

2. Sets A1,…,An are subsets of {1,2,…,n}x{1,2,…,n}. For each cell
(i,j) there is a set of at most 4 neighbors

3. Continuation conditions: a partial solution (s1,s2,…,sk) should
satisfy:

 sk<>sq for all q in {1,2,…,k-1}

 M(sk)=0

 sk-1 and sk are neighbours

4. Criterion to decide when a partial solution is a final one:
 sk = (n,n)

Algorithmics - Lecture 13 35

Application: maze
maze(k)

IF s[k-1]=(n,n) THEN WRITE s[1..k]

ELSE // try all neighbouring cells

 s[k].i:=s[k-1].i-1; s[k].j:=s[k-1].j // up

 IF valid(s[1..k])=True THEN maze(k+1) ENDIF

 s[k].i:=s[k-1].i+1; s[k].j:=s[k-1].j // down

 IF valid(s[1..k])=True THEN maze(k+1) ENDIF

 s[k].i:=s[k-1].i; s[k].j:=s[k-1].j-1 // left

 IF valid(s[1..k])=True THEN maze(k+1) ENDIF

 s[k].i:=s[k-1].i; s[k].j:=s[k-1].j+1 // right

 IF valid(s[1..k])=True THEN maze(k+1) ENDIF

ENDIF

Algorithmics - Lecture 13 36

Application: maze

valid(s[1..k])

IF s[k].i<1 OR s[k].i>n OR s[k].j<1 OR s[k].j>n // out of the grid

 THEN RETURN False

ENDIF

IF M[s[k].i,s[k].j]=1 THEN RETURN False ENDIF // occupied cell

FOR q:=1,k-1 DO // loop

 IF s[k].i=s[q].i AND s[k].j=s[q].j THEN RETURN False ENDIF

ENDFOR

RETURN True
Call of algorithm maze:

s[1].i:=1; s[1].j:=1

maze(2)

